宋慧明,劉 禹,,梅若晨,,趙伯陽,,PAYOMRAT Paramate,,張欣佳,
1.中國科學院地球環(huán)境研究所 黃土與第四紀地質(zhì)國家重點實驗室,西安 710061
2. 西安交通大學 人居環(huán)境與建筑工程學院 環(huán)境科學與技術系,西安 710049
3.中國科學院大學,北京 100049
甘肅竺尼山油松樹輪寬度氣候響應
宋慧明1,劉 禹1,2,梅若晨1,3,趙伯陽1,3,PAYOMRAT Paramate1,3,張欣佳1,3
1.中國科學院地球環(huán)境研究所 黃土與第四紀地質(zhì)國家重點實驗室,西安 710061
2. 西安交通大學 人居環(huán)境與建筑工程學院 環(huán)境科學與技術系,西安 710049
3.中國科學院大學,北京 100049
甘肅省中部是東亞夏季風活動邊緣帶,也是我國北方環(huán)境敏感帶,降水是制約當?shù)剞r(nóng)業(yè)社會發(fā)展的重要因素,因此對該區(qū)域過去降水變化開展研究有重要意義。本文在甘肅中部渭源縣竺尼山采集油松樹輪樣本,建立了STD和RES年表。計算表明,RES年表與上年8月到當年7月的年降水總量相關最高(r = 0.59),二者存在比較一致的變化趨勢,因此竺尼山RES年表可以代表當?shù)剡^去降水的變化信息,它與同處于東亞季風邊緣帶的興隆山和吐魯溝的樹輪年表(也被用來重建了當?shù)氐哪杲邓兓╋@著相關。三個地點樹輪寬度變化一致,樹木徑向生長均受控于降水。
甘肅竺尼山;油松;樹輪寬度;氣候響應
東亞夏季風是影響我國的重要天氣系統(tǒng),在季風弱的年份,季風往往到達不了季風活動邊緣地帶(胡豪然和錢維宏,2007;Qian et al,2011),無法帶來有效降水隨之產(chǎn)生干旱,因此季風活動邊緣帶是反映季風強弱的敏感地帶,同時也是干旱多發(fā)地帶。甘肅省中部是青藏高原、黃土高原及秦嶺三個地貌單元的過渡地帶,也是東亞夏季風活動的西部邊緣地帶,季風降水是該地降水的主要來源,降水的多寡嚴重制約和影響了當?shù)氐墓まr(nóng)業(yè)生產(chǎn)和人民生活。同時,該地區(qū)為典型的黃土地貌,植被稀疏,降水量年內(nèi)分配極不均勻,且降水變率大,既有長期干旱,又有短時暴雨,故干旱和水土流失嚴重(張漢雄和上官周平,2005),是生態(tài)環(huán)境惡化的脆弱地帶。隨著全球變暖不斷加劇,當?shù)貧夂蚝铜h(huán)境異常也不斷發(fā)生,為減少災害帶來的損失及應對極端氣候事件,非常有必要了解當?shù)亟邓淖兓?guī)律和機制,但過去60 a的氣象觀測記錄限制了對過去降水變化規(guī)律的理解和認識。樹木年輪具有定年準確、連續(xù)性強、分辨率高和樣本分布廣泛等特點,過去幾年里在黃土高原西部開展了部分樹輪降水變化研究(劉禹等,2012;Lu et al,2012;Liu et al,2013a,2013b,2013c),為研究該地區(qū)降水變化規(guī)律提供了重要的代用資料,有效延伸了氣象資料時段。繼續(xù)在該地區(qū)開展樹輪降水研究,將有助于更全面深入了解黃土高原西部的降水變化在區(qū)域分布的異同,并認識季風在不同時間和空間尺度上對該區(qū)降水的影響。
1.1 采樣點概況
樹輪采樣點位于甘肅省中部渭源縣竺尼山(35.14°N,103.94°E,圖1),該地具有典型的黃土地貌特征,海拔較低處為農(nóng)田及山地草原,黃土土層深厚并裸露,植被稀疏;但是在海拔較高處分布著一些石質(zhì)山地,基巖外露,土層薄且貧瘠,正是因為這些山地的海拔較高,氣溫隨海拔升高而降低,導致蒸發(fā)量減小,在一定高度內(nèi)降水量也隨之增加,使這些山地形成了與周邊干旱、貧瘠的黃土地貌截然不同地貌景觀,森林、灌叢、高山草甸和山地草原發(fā)育良好,植被垂直地帶性非常明顯(張靜,2006)。本研究所采樣本為生長于海拔較高處的油松純林,林間郁閉度較高,林間分布有低矮灌叢,土層較薄,樹木生境惡劣。選擇采集生長于山體北坡,坡度30°,海拔高度范圍在2420 — 2470 m,且位于森林邊緣地帶的健康油松(Pinus tabulaeformis Carr.),以避免林內(nèi)樹木之間的競爭。共采集油松樣本25棵,用生長錐在不同方向每樹取2棵芯。
圖1 采樣點地圖Fig.1 Map of sampling site
1.2 年表的建立
在實驗室,樣本經(jīng)過干燥、固定、打磨等程序之后,利用精度為0.001 mm的Lintab進行寬度測量及交叉定年,利用COFECHA程序?qū)徊娑杲Y(jié)果進行質(zhì)量控制(Holmes,1983),去除太短及與主年表相關過低的樣芯,最終采用20棵樹的39棵芯建立年表。年表的總長度為134 a(1881— 2014年),平均敏感度為0.30,表明竺尼山樹輪年表包含有較多的氣候信號。缺輪率為0.29%,主要集中于1997年和2000年。氣象資料顯示,這兩年降水量很低,應該是造成缺輪的主要原因。利用ARSTAN程序(Cook, 1985),采用傳統(tǒng)的直線和負指數(shù)函數(shù)的方法擬合樹木的生長趨勢,然后將寬度原始序列除去生長趨勢,最終得到標準年表(STD),差值年表(RES)和自回歸年表(ARS)。年表有效長度根據(jù)SSS > 0.85(Wigley et al,1984)來確定,始于1890年(對應于10個樹芯)。下面將對STD和RES進行共同分析,以比較兩種年表所代表的氣候信息的差異。
2.1 氣象資料的選取
本文選取離采樣點比較近的臨洮氣象站(35.37°N,103.87°E;海拔1886.6 m;1951 — 2014年)的溫度與降水資料來進行樹輪氣候響應分析,臨洮站的氣象資料(圖2)顯示,該地年平均氣溫為7.27℃,平均溫度最高的月份為7月(18.60℃),冬季(12、1、2月)3個月份平均溫度均低于0℃,年降水量為526.36 mm,降水主要集中在7 — 9月,表現(xiàn)為明顯的雨熱同季的特征。
圖2 臨洮站多年溫度、降水及附近的PDSI(36.25°N,103.75°E)變化Fig.2 Distribution of monthly mean temperature and precipitation of Lintao meteorological station (1951—2014) and monthly PDSI data (36.25°N, 103.75°E)
Palmer干旱指數(shù)(PDSI)是美國氣象干旱中最常用的指數(shù),反映的是大氣水分供給及地表水分需求之間的關系,該參數(shù)綜合考慮了前期降水、水分供給及土壤水分需求之間的關系,并通過一系列數(shù)學計算獲得(Palmer,1965)。PDSI是一個標準化值,范圍在-10(干)到10(濕)之間。本文采用Dai et al(2004)利用降水和溫度資料計算得到的全球陸地PDSI指數(shù),其分辨率為2.5°×2.5°。采用距離采樣點最近的PDSI格點(36.25°N,103.75°E)進行相關分析,分析時段為1951 — 2014年。分析發(fā)現(xiàn)該地PDSI數(shù)值幾乎全為負值(圖2),原因是研究區(qū)位于我國西北干旱區(qū),年降水量少且蒸發(fā)量大,土壤水分常年處于匱缺狀態(tài),因此全年的PDSI幾乎均為負值。
2.2 竺尼山樹輪STD年表和RES年表的氣候響應
黃土高原地區(qū)樹木一般于8月份結(jié)束生長(楊建偉等,2004),故選取臨洮站上年8月到當年10月的氣象資料與年表進行相關計算。相關分析結(jié)果(圖3)顯示,竺尼山樹輪STD年表和RES年表對不同氣候要素的響應關系是相似的,具體表現(xiàn)為:(1)與上年和當年生長季的月降水總量呈正相關關系,與冬季降水幾乎不相關,上個生長季的降水對樹木的影響更大一些,RES年表與降水的相關明顯高于STD年表;(2)與上年7、9、11月以及當年生長季前期5 — 7月平均溫度則為負相關關系,STD年表與溫度的相關更顯著,在這些月份均超過了95%置信度;(3)兩種年表均與PDSI呈正相關關系。竺尼山STD和RES年表與溫度、降水和PDSI的相關關系表明,這是典型的半干旱地區(qū)的樹輪對氣候的響應模式:在生長季及其前期,年表與降水正相關,與溫度負相關(Liang et al,2007;田沁花等,2009;Cook et al,2010;Fang et al,2010)。在生長季前期及初期(2—7月),竺尼山地區(qū)降水較少,高溫一方面很容易加速土壤水分蒸發(fā),從而導致土壤缺水,另一方面也加快了樹木的蒸騰作用,進一步消耗土壤水分,造成土壤干旱。嚴重的干旱導致水分脅迫,對樹木生長造成嚴重阻礙,使其生長減緩甚至停止生長。
圖3 竺尼山STD(a)和RES(b)年表與氣象數(shù)據(jù)的相關關系Fig.3 The correlations between STD (a) and RES (b) and meteorological data
在將不同月份的氣象資料進行組合后,發(fā)現(xiàn)與STD年表和RES年表相關最高的均是上年8月到當年7月的降水總量,相關系數(shù)分別為0.56和0.59,而與5 — 7月平均溫度的相關系數(shù)分別為-0.44和-0.35,與5 — 7月PDSI相關系數(shù)分別為0.33和0.38。表明STD年表低頻特征比較明顯,因此與溫度有著稍高的相關關系(圖4a)。而RES年表主要反映的是樹木生長的高頻信息,與高頻信息比較顯著的年降水量有著較高的相關關系(圖4b),幾乎達到可以重建的程度。兩個年表與PDSI的相關均不高,可能是因為該地處于多個PDSI格點的邊緣地帶,且地形及氣候條件復雜,2.5°×2.5°的格點間距較大,并不能真實反映研究地點真實的土壤濕度情況。所以認為竺尼山RES年表可以反映當?shù)剡^去降水的變化信息,這與黃土高原西部多個樹輪研究結(jié)果一致,例如興隆山(Liu et al,2013a)、吐魯溝(Liu et al,2013b)、昌嶺-壽鹿山(Liu et al,2013c)的樹輪均反映了當?shù)啬杲邓兓畔ⅰ?/p>
通過以上分析,認為竺尼山油松RES年表基本可以反映當?shù)剡^去降水變化歷史,如圖5所示,1891年和2011年分別是研究區(qū)過去最干旱的年份,另外1916年、1928年、 1940年、1966年、1995年、1997年、2003年及2000年也是干旱比較顯著的年份。在研究區(qū)附近,興隆山青海云杉(Picea crassifolia Kom.)和吐魯溝油松分別被用于重建當?shù)厣夏?月到當年6月和上年8月到當年7月的年降水總量,雖然樹種不同,且三者之間有一定的距離,但三者之間卻有十分相似的變化趨勢,且呈顯著相關,在共同時段1890 — 2008年,竺尼山與興隆山和吐魯溝的相關系數(shù)分別為0.51和0.52,興隆山和吐魯溝的相關系數(shù)為0.56。除此之外,三個地點的降水極少年也基本互相對應,表明三地均位于東亞季風降水邊緣區(qū),共同記錄了季風降水的強度變化。值得注意的是,在降水極少年,三個地點的降水強度表現(xiàn)出一定的差異,說明降水具有地域性特點。
圖4 竺尼山STD年表與臨洮站5—7月平均溫度對比(T57)(a);竺尼山RES年表與臨洮站上年8月到當年7月降水總量對比(P87)(b)Fig.4 Comparisons between STD chronology and mean temperature from May to July (T57) (a); comparisons between RES chronology and total precipitation from prior August to current July (P87) (b)
圖5 興隆山(a)、吐魯溝(b)、竺尼山(c)三個地點的RES年表對比Fig.5 Comparison of the RES chronologies within the Mt. Xinglong (a), Tulugou (b) and Mt. Zhuni (c)
這三條樹輪曲線中,發(fā)生干旱比較一致的年份有1916年、1923年、1928年、1940年、1966年、1995年、1997年和2000年。其中 1928 — 1929年的干旱是民國時期發(fā)生在我國北方的大范圍嚴重干旱事件,多個樹輪重建序列都記錄了這次干旱(Liang et al,2006;Liu et al,2007),在近代文獻中也有記載。1994年秋至1995年春末初夏,我國西北地區(qū)東部降水持續(xù)偏少,氣溫偏高,許多地區(qū)降水量為有氣象記錄以來的最小值或次小值(郭鈮等,1997)。1997年的大旱被廣泛認為是強厄爾尼諾事件所引起(段海霞等,2015)。2000年我國大部地區(qū)降水偏少,出現(xiàn)大范圍干旱,北方地區(qū)尤為嚴重。該次旱災主要發(fā)生在春夏季,受旱范圍廣,干旱時間長,旱情重(http://www.weather.com.cn/static/html/ article/20090218/24729.shtml)。由此可見,樹輪在對干旱記錄方面還是比較準確和可靠的。
為了進一步分析竺尼山樹輪所代表的年降水量與黃土高原西部降水的空間分布關系,對竺尼山樹輪RES年表和臨洮站上年8月到當年7月的年降水量與CRU 3.23 0.5°的格點數(shù)據(jù)進行了空間相關分析(http://climexp.knmi.nl/),結(jié)果如圖6所示。雖然RES年表與黃土高原西部的年降水量呈顯著相關,上文分析所述的吐魯溝和興隆山也在該區(qū)域內(nèi)。雖然其空間代表性弱于臨洮站的年降水量,這是因為樹輪年表的精度顯然不如氣象資料,但另一方面,也表明黃土高原西部的降水序列具有一致的變化特征,共同反映了東亞季風邊緣帶的降水變化歷史。
圖6 臨潭氣象站上年8月到當年7月年降水量(a)和竺尼山樹輪RES年表(b)與CRU 3.23 0.5°的格點數(shù)據(jù)的相關關系(1951 — 2014)Fig.6 Spatial correlations of observed precipitation of Lintan meteorological station andRES chronology of Mt. Zhuni with CRU 3.23 grid data from prior August to current July (1951—2004)
利用甘肅渭源縣竺尼山油松樹輪樣本,建立了STD和RES年表。相關計算顯示,兩個年表與上年8月到當年7月的年降水總量和5 — 7月的平均溫度均顯著相關,是半干旱地區(qū)的樹輪對氣候的典型響應模式,組合之后,RES年表與年降水總量最高,r = 0.59,竺尼山RES年表可以反映當?shù)剡^去降水的變化信息。竺尼山、興隆山和吐魯溝三個RES年表均反映了降水變化,且呈顯著相關,可以認為是東亞季風降水的限制作用使得這三個年表具有對氣候響應的一致性和變化的同步性。
段海霞, 李耀輝, 劉蕓蕓. 2015. 我國北方1986年和1997年干旱事件環(huán)流異常對比分析[J]. 干旱區(qū)研究, 32(5): 966 – 976. [Duan H X, Li Y H, Liu Y Y. 2015. Comparative analysis on atmospheric circulation anomalies of heavy drought event in northern China in 1986 and 1997 [J]. Arid Zone Research, 32(5): 966 – 976.]
郭 鈮,李棟梁,蔡曉軍,等. 1997. 1995年中國西北東部特大干旱的氣候診斷與衛(wèi)星監(jiān)測 [J].干旱區(qū)地理, 20(3): 69 – 74. [Guo N, Li D L, Cai X J, et al. 1997. Climatic diagnosis and satellite monitoring of a severe drought over eastern northwest China in 1995 [J]. Arid Land Geography, 20(3): 69 – 74.]
胡豪然, 錢維宏. 2007. 東亞夏季風北邊緣的確認 [J]. 自然科學進展, 17(1): 57 – 65. [ Hu H R, Qian W H. 2007. The confi rmation of the northern margin of the East Asian summer monsoon [J]. Progress in Natural Science, 17(1): 57 – 65.]
劉 禹, 解 利, 李 強, 等. 2012. 公元1820年以來甘肅東大山地區(qū)樹輪寬度對3—9月平均最低溫度的響應分析 [J]. 地球環(huán)境學報, 3(3): 900 – 907. [Liu Y, Xie L, Li Q, et al. 2012. Growth-climate response analysis between tree-ring width and March—September mean minimum temperature in Dongda Mountain, Gansu, China since 1820 AD [J]. Journal of Earth Environment, 3(3): 900 – 907.]
田沁花, 劉 禹, 蔡秋芳, 等. 2009. 油松樹輪記錄的過去134年伏牛山5—7月平均最高溫度 [J]. 地理學報, 64(7): 879 – 887. [Tian Q H, Liu Y, Cai Q F, et al. 2009. The maximum temperature of May—July inferred from tree-ring in Funiu Mountain since 1874 AD [J]. Acta Geographica Sinica, 64(7): 879 – 887.]
楊建偉, 梁宗鎖, 韓蕊蓮, 等. 2004. 土壤干旱對油松生長及水份利用的影響 [J]. 西北農(nóng)林科技大學學報(自然科學版) , 32: 89 – 96. [Yang J W, Liang Z S, Han R L, et al. 2004. Growth and waster consumption characteristics of Chinese pine under soil drought stress [J]. Journal of Northwest Science-technology of University of Agriculture and Forest, 32: 89 – 96.]
張漢雄, 上官周平. 2005. 隴中黃土高原丘陵區(qū)生態(tài)環(huán)境退化與恢復重建調(diào)控機理 [J]. 山地學報, 23(4): 413 – 419. [Zhang H X, Shangguan Z P. 2005. The mechanism of a recovering and rebuilding of ecological environment degeneration on the ecological system in Longzhong loess hilly region [J]. Journal of Mountain Science, 23(4): 413 – 419.]
張 靜. 2006. 甘肅黃土高原及周邊地區(qū)石質(zhì)山地旅游資源與開發(fā)研究[D]. 蘭州: 蘭州大學. [Zhang J. 2006. Study on rocky mountains area tourism resource and its tourism development in Gansu Loess Plateau and surrounding areas [D]. Lanzhou: Lanzhou University.]
Cook E R. 1985. A time-series analysis approach to tree-ring standardization [D]. Tucson: University of Arizona.
Cook E R, Anchukaitis K J, Buckley B M, et al. 2010. Asian monsoon failure and megadrought during the last Millennium [J]. Science, 328: 486 – 489.
Dai A G, Trenberth A K, Qian T. 2004. A global dataset of Palmar Drought Severity Index for 1870 — 2002: relationship with soil moisture and effects of surface warming [J]. Journal of Hydrometeorology, 5: 1117 – 1130.
Fang K Y, Gou X H, Chen F H, et al. 2010. Tree-ring based drought reconstruction for the Guiqing Mountain (China): linkages to the Indian and Pacific Oceans [J]. International Journal of Climatology, 30(8): 1137 – 1145.
Holmes R L. 1983. Computer-assisted quality control in tree-ring dating and measurement [J]. Tree-Ring Bulletin, 43: 69 – 78.
Liang E Y, Liu X H, Yuan Y J, et al. 2006. The 1920s drought recorded by tree rings and historical documents in the semi-arid and arid areas of northern China [J]. Climatic Change, 79: 403 – 432.
Liang E Y, Shao X M, Liu X H, et al. 2007. Tree-ring based PDSI reconstruction since AD 1842 in the Ortindag Sand Land, east Inner Mongolia [J]. Chinese Science Bulletin, 52: 2715 – 2721.
Liu Y, Lei Y, Sun B, et al. 2013b. Annual precipitation in Liancheng, China, since 1777AD derived from tree rings of Chinese pine (Pinus tabulaeformis Carr.) [J]. International Journal of Biometeorology, 57: 927 – 934.
Liu Y, Lei Y, Sun B, et al. 2013c. Annual precipitation variability inferred from tree-ring width chronologies in the Changling-Shoulu region, China, during AD 1853—2007 [J]. Dendrochronologia, 31: 290 – 296.
Liu Y, Sun B, Song H M, et al. 2013a. Tree-ring-based precipitation reconstruction for Mt. Xinglong, China, since AD 1679 [J]. Quaternary International, 283: 46 – 54.
Liu Y, Sun J Y, Yang Y K, et al. 2007. Tree-ring-derived precipitation records from Inner Mongolia, China, since AD 1627 [J]. Tree-ring Research, 63(1): 3 – 14.
Lu R J, Jia F F, Shang Y, et al. 2012. Response of Pinus tabulaeformis tree rings to climatic metrics in Hasi Mountain [J]. Journal of Earth Environment, 3(6): 1149 – 1155.
Palmer W C. 1965. Meteorological drought [M]. Washington D C: U. S. Department of Commerce, Weather Bureau: 1 – 65.
Qian W H, Shan X L, Chen D L, et al. 2011. Droughts near the northern fringe of the East Asian summer monsoon in China during 1470—2003 [J]. Climatic Change, 110(1/2): 373 – 383. Wigley T M L, Briffa K R, Jones P D. 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology [J]. Journal of Climate and Applied Meteorology, 23: 201 – 213.
The climatic response of Pinus tabulaeformis Carr. in Mt. Zhuni, Gansu
SONG Huiming1, LIU Yu1,2, MEI Ruochen1,3, ZHAO Boyang1,3, PAYOMRAT Paramate1,3, ZHANG Xinjia1,3
1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
2. Department of Environment Science and Technology, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
Background, aim, and scope The central Gansu province is the margin of the East Asian Summer Monsoon (EASM), and the environmentally sensitive region as well. The EASM related summer precipitation is an important factor for the local economical development. As such, it is very important to recognize the precipitation variations in the past. In this paper, Chinese pine from Gansu province was used to investigate the precipitation variations in the past century and to clutch some clues concerning the strength variations of the EASM in the study area as well. Materials and methods Chinese pine cores were collected on Mt. Zhuni which is located in the central Gansu province. In the laboratory, the standard dendrochronological processeswere employed, and the ring-widths of each core were measured with a precision of 0.001 mm. After crossdating, the COFECHA program was used to control the quality of cross-dating. STD and RES chronologies were developed using ARSTAN program. Pearson correlation analyses were used to identify the relationship between tree-ring chronology and climate factors. The precipitation and temperature from Lintao meteorological station were employed to do ring-width climatic response analysis. By using the KNMI Climate Explorer dataset (http:// www.knmi.nl), we also explored the spatial representiveness of our precipitation-related chronology within the large-scale of the EASM margin areas. Results The results showed that both RES and STD chronologies were positively correlated with precipitation and negatively with temperature. This was the typical tree-growthclimate response pattern in the arid and semi-arid region. This was a quite similar fi nding to the previous treering studies on the Chinese Loess Plateau. We found that STD was highly correlated with the temperature and RES with precipitation. The highest correlation was given to RES chronology with the total precipitation from prior August and current July, with r = 0.59. That is to say that the RES chronology could represent the annual precipitation variations in the Mt. Zhuni. Meanwhile, no high correlations were found between chronologies (both STD and RES) and local PDSI dataset. This is because that the study region is located in the margin of the PDSI grid with complicated topography and climate conditions, the 2.5°×2.5° PDSI grid is too big to represent the true conditions of all areas in one grid. We also observed that RES chronology of Mt. Zhuni was signifi cantly correlated with those of Mt. Xinglong and Tulugou which were located in the EASM margin too, with r = 0.51 and 0.52 separately. Discussion The study region is located on the western Loess Plateau. The precipitation is mainly concentrated during July to September caused by EASM. Strong EASM leads to more precipitation, and vice versa. In our study, the RES chronology of Mt. Zhuni could be regarded as the precipitation proxy indicating the strength variations of the EASM. We found that 1891 and 2011 were the visible bizarre driest years in the study region during the entire series. The year 1916, 1928, 1940, 1966, 1995, 1997, 2003 and 2000 were also very dry with low precipitation. Except these local exhibitions, there existed high correlations among tree-ring series of Mt. Zhuni, Xinglong and Tulugou, and they all displayed synchronous variation patterns imputing the EASM infl uences. The drought in 1916, 1923, 1928, 1940, 1966, 1995, 1997, and 2000 were recorded synchronously by three tree-ring series. The droughts occurred during1928 — 1929 was virtually the most severe drought in northern China and many tree-ring series in the northern-central China recorded this drought event. Some studies even showed that strong El Ni?o was one of the main reasons of drought in northern-central China, such as 1997. From this point of view, tree-ring data is a quite authentic and reasonable proxy to record drought events. The spatial correlation analysis indicated that our RES chronology could represent the precipitation variation over the EASM margin. The tree-ring series of EASM margin could be aspired to use for the EASM variation study in the past. Conclusions RES chronology of Mt. Zhuni could represent local annual precipitation variations. It was similar to other two tree-ring series on the western Loess Plateau, China. The variation pattern is quite synchronous among them, which may be caused by the EASM. Recommendations and perspectives The tree-ring studies in the semiarid and arid region of China are very important for the understanding of EASM. More studies are needed to give a deep insight to the EASM.
Mt. Zhuni, Gansu; Pinus tabulaeformis Carr.; ring width; climatic response
LIU Yu, E-mail: liuyu@loess.llqg.ac.cn
2016-11-15;錄用日期:2017-01-23
Received Date: 2016-11-15; Accepted Date: 2017-01-23
黃土與第四紀地質(zhì)國家重點實驗室開放基金;國家自然科學基金項目(41401060);中國科學院重點部署項目(KZZD-EW-04-01);中國科學院青年創(chuàng)新促進會
Foundation Item: Project of State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences; National Natural Science Foundation of China (41401060); Key Research Program of Chinese Academy of Sciences (KZZD-EW-04-01); Youth Innovation Promotion Association of Chinese Academy of Sciences
劉 禹,E-mail: liuyu@loess.llqg.ac.cn
宋慧明, 劉 禹 , 梅若晨, 等. 2017. 甘肅竺尼山油松樹輪寬度氣候響應[J]. 地球環(huán)境學報, 8(2): 119 – 126.
: Song H M, Liu Y, Mei R C, et al. 2017. The climatic response of Pinus tabulaeformis Carr. in Mt. Zhuni, Gansu [J]. Journal of Earth Environment, 8(2): 119 – 126.