隋春華+翟華玲+郭郁郁
[摘要] 目的 研究GLP-1類似物對2型糖尿病SD大鼠糖、脂代謝和血管超微結(jié)構(gòu)的影響。 方法 采用隨機數(shù)字表法將28只SD大鼠隨機分成四組:正常對照組(C組,n=6),正常對照+Exenatide干預(yù)組(C+E組,N=6),2型糖尿病組(D組,n=8),2型糖尿病+Exenatide干預(yù)組(D+E組,n=8)。觀察四組大鼠體重、胰島素敏感指數(shù)、血糖、胰島素、血脂、胰島素抵抗指數(shù),并電子顯微鏡觀察血管超微結(jié)構(gòu)的改變。 結(jié)果 Exenatide治療前后各組大鼠體重、空腹血糖、空腹胰島素、血脂譜、胰島素抵抗指數(shù)、胰島素敏感指數(shù)差異均有統(tǒng)計學(xué)意義(P < 0.05)。電子顯微鏡顯示,D組大鼠血管內(nèi)皮細(xì)胞欠完整,內(nèi)皮下見膠原纖維增生,線粒體腫脹;D+E組大鼠血管內(nèi)皮細(xì)胞較完整,個別線粒體腫脹。 結(jié)論 GLP-1類似物能改善糖尿病大鼠血管超微結(jié)構(gòu),從而改善其功能。
[關(guān)鍵詞] GLP-1類似物;糖尿??;血管超微結(jié)構(gòu)
[中圖分類號] R587.1 [文獻(xiàn)標(biāo)識碼] A [文章編號] 1673-7210(2017)03(a)-0004-04
Effects of GLP-1 analogues on glucose, lipid metabolism and vessel ultra-structure in type 2 diabetic SD rats
SUI Chunhua ZHAI Hualing GUO Yuyu
Department of Endocrinology, the Ninth People's Hospital, Shanghai Jiaotong University Medical School, Shanghai 200011, China
[Abstract] Objective To study the effects of GLP-1 analogues on glucose, lipid metabolism and vessel ultra-structure in type 2 diabetic SD rats. Methods Twenty-eight SD rats were randomly divided into four groups by the method of random number table: normal rats (group C, n=6), normal rats treated with Exenatide (group C+E, n=6), diabetic rats (group D, n=8), diabetic rats treated with Exenatide (group D+E, n=8). The body weight, fasting glucose, fasting insulin, insulin resistance index, insulin sensitivity index, lipid profile of the four groups were observed, while the ultrastructural changes of the vessel before and after treatment by GLP-1 analogues of the four groups using electron microscopy were observed. Results Bodyweight, fasting glucose, fasting insulin, insulin resistance index, insulin sensitivity index, lipid profiles of rats in each group were significantly improved and had statistically significant differents (P < 0.05) by treatment with GLP-1 analogues. Electron microscopy showed that, in group D, vascular endothelial cells were not intact, and the proliferation of collagen fibers was seen, mitochondria swelled. In group D+E, vascular endothelial cells were still intact, individual mitochondrial swelled. Conclusion GLP-1 analogues can improve vessel ultrastructure in diabetic rats, thereby improving its functionality.
[Key words] GLP-1 analogue; Diabetes; Vessel ultrastructure
胰高糖素樣肽-1(GLP-1)屬于一種有腸促胰島素作用的胃腸激素,由結(jié)腸和小腸遠(yuǎn)端的L細(xì)胞分泌[1]。GLP-1除了刺激胰腺β細(xì)胞分泌胰島素、減少胰高糖素釋放[2-3],同時有延遲胃腸排空、抑制攝食中樞的功能,以此明顯改善以餐后血糖為主的糖代謝[4]。小鼠實驗中敲除GLP-1受體引起小鼠空腹血糖、餐后血糖升高[5]。在早期糖尿病患者中,發(fā)現(xiàn)GLP-1刺激胰腺β細(xì)胞分泌胰島素的作用存在功能缺陷[6],隨著疾病發(fā)展,可以完全喪失[7]。糖尿病患者的胰腺β細(xì)胞對胰高糖素樣肽-1的敏感性也同時降低的[8]。本實驗借助電子顯微鏡觀察正常大鼠、糖尿病大鼠、GLP-1類似物治療后大鼠的血管超微結(jié)構(gòu)改變,提示了GLP-1類似物對血管內(nèi)皮具有改善功能。本研究所用的GLP-1類似物為Exenatide。
1 材料與方法
1.1 實驗動物
取28只6周齡、體重(123.5±8.5)g雄性SPF級SD大鼠,動物生產(chǎn)許可證號:SCXK(滬)2008-0016,動物使用許可證號:SYXK(滬)2007-0007。隨機分成四組:正常對照組(C組,n=6),正常對照+Exenatide(禮來公司)干預(yù)組(C+E組,n=6),2型糖尿病組(D組,n=8),2型糖尿病+Exenatide干預(yù)組(D+E組,n=8)。D組與D+E組給予30 mg/kg 1%鏈脲佐菌素(STZ)注射液空腹腹腔注射。C組與C+E組給予pH 4.5 0.1 mol/L等體積檸檬酸緩沖液一次性腹腔注射。注射藥物72 h后各組大鼠由尾靜脈隨機采血測血糖,以連續(xù)3次及以上查得血糖≥16.7 mmol/L作為糖尿病大鼠建模成功。D組和D+E組16只大鼠全部成模。糖尿病模型建模成功后的第3天起,D+E組、C+E組給予Exenatide每天皮下注射5 μg。D組、C組給予等量生理鹽水為對照液皮下注射,注射8周。建模后8周之內(nèi)C組、C+E組、D+E組均無死亡,D組死亡1只。實驗最終納入各組別大鼠情況:C組6只,C+E組6只,D組7只,D+E組8只。
1.2 方法
采用加拿大BIOCHEM公司MK-3型酶標(biāo)儀測定血漿胰島素。使用胰島素敏感指數(shù)(ISI)、穩(wěn)態(tài)模型(HOMA)判斷每組大鼠胰島素敏感情況。低密度脂蛋白膽固醇(LDL-C)、總膽固醇(TC)、三酰甘油(TG)、高密度脂蛋白膽固醇(HDL-C)檢測采用德國SIEMENS公司Dimension Rel MAX型自動生化分析儀。采用荷蘭PHILIPS公司CM-120型電子顯微鏡觀察血管超微結(jié)構(gòu)改變。
1.3 統(tǒng)計學(xué)方法
采用SPSS 17.0統(tǒng)計學(xué)軟件進行數(shù)據(jù)分析,計量資料數(shù)據(jù)用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,多組間比較采用單因素方差分析,組間兩兩比較采用LSD-t檢驗,以P < 0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 各組大鼠體重監(jiān)測結(jié)果比較
實驗開始(0周)時,四組大鼠體重差異無統(tǒng)計學(xué)意義(P > 0.05)。喂養(yǎng)10周后,四組大鼠體重比較,差異有高度統(tǒng)計學(xué)意義(P < 0.01);其中,D組及D+E組大鼠體重均較C組及C+E組明顯增加(P < 0.01);18周時,C+E組大鼠體重較C組明顯降低(P < 0.01),D+E組大鼠體重較D組明顯降低(P < 0.05)。見表1。
2.2 各組大鼠血糖監(jiān)測結(jié)果比較
實驗開始(0周)時,四組大鼠基礎(chǔ)空腹血糖值差異無統(tǒng)計學(xué)意義(P > 0.05); 10周后,D組與D+E組大鼠空腹血糖值均較C組和C+E組大鼠高,但四組大鼠血糖值差異無統(tǒng)計學(xué)意義(P > 0.05)。誘導(dǎo)模型組大鼠成糖尿病后8周,D組大鼠空腹血糖值持續(xù)升高,顯著高于其他三組大鼠(P < 0.01);D+E組大鼠經(jīng)過Exenatide皮下注射干預(yù)8周后,血糖值顯著低于未經(jīng)干預(yù)的D組大鼠(P < 0.01),但仍高于C組及C+E組(P < 0.01)。經(jīng)過Exenatide皮下注射干預(yù)8周后的C+E組大鼠空腹血糖值也低于C組,差異有統(tǒng)計學(xué)意義(P < 0.05)。見表2。
2.3 各組大鼠ISI、空腹胰島素(FINS)、胰島素抵抗指數(shù)(HOMA-IR)比較
誘導(dǎo)糖尿病模型大鼠成模8周后,D組大鼠FINS水平顯著高于C組、C+E組及D+E 組,差異均有統(tǒng)計學(xué)意義(P < 0.05或P < 0.01)。而予Exenatide皮下注射干預(yù)8周的D+E組大鼠,其FINS水平與C組、C+E組大鼠相比,雖有所升高但差異無統(tǒng)計學(xué)意義(P > 0.05)。見圖1。
實驗結(jié)果顯示,D組大鼠HOMA-IR水平顯著高于C組、C+E組及D+E組(P < 0.01);D+E組大鼠HOMA-IR水平雖然顯著低于D組大鼠(P < 0.01),但仍明顯高于C組和C+E組大鼠(P < 0.01);而C+E組大鼠HOMA-IR水平較C組大鼠略低,差異無統(tǒng)計學(xué)意義(P > 0.05)。見圖1。
與上述各組大鼠HOMA-IR改變相應(yīng),ISI也出現(xiàn)相應(yīng)變化。D組大鼠的ISI水平顯著低于C組、C+E組及D+E組大鼠(P < 0.01);D+E組大鼠ISI水平雖然顯著高于D組(P < 0.01),但仍顯著低于C組與C+E組(P < 0.01);C+E組大鼠ISI雖然略高于C組大鼠,差異無統(tǒng)計學(xué)意義(P > 0.05)。見圖1。
2.4 各組大鼠血脂水平比較
實驗結(jié)束時,D組大鼠的血漿TC顯著高于C組、C+E組及D+E組,差異均有統(tǒng)計學(xué)意義(P < 0.05或P < 0.01);D組大鼠的血漿TG顯著高于C組、C+E組以及D+E組(P < 0.01);四組大鼠的血漿HDL-C水平差異無統(tǒng)計學(xué)意義(P > 0.05);D組大鼠血漿LDL-C水平顯著高于C組、C+E組以及D+E組(P < 0.01)。D+E組大鼠血漿TC、TG及LDL-C水平雖然顯著低于D組大鼠(P < 0.05或P < 0.01),但仍顯著高于C組和C+E組大鼠(P < 0.01)。C組與C+E組大鼠血脂譜各項參數(shù)比較差異無統(tǒng)計學(xué)意義(P > 0.05)。見圖2。
2.5 各組大鼠主動脈超微結(jié)構(gòu)情況
C組大鼠主動脈內(nèi)皮結(jié)構(gòu)完整,為單層扁平上皮細(xì)胞,細(xì)胞核、胞漿、線粒體形態(tài)正常;內(nèi)皮細(xì)胞下較松散地黏附著彈性纖維、膠原纖維,較多細(xì)胞連接整齊、清晰地排列于內(nèi)皮細(xì)胞間;平滑肌細(xì)胞規(guī)則層疊,細(xì)胞質(zhì)內(nèi)見線粒體、粗面內(nèi)質(zhì)網(wǎng)。C+E組大鼠主動脈內(nèi)皮細(xì)胞形態(tài)與C組相似,內(nèi)皮結(jié)構(gòu)非常完整,細(xì)胞核、線粒體形態(tài)正常;內(nèi)皮細(xì)胞間見細(xì)胞連接,內(nèi)皮細(xì)胞下未見膠原纖維;平滑肌層內(nèi)平滑肌細(xì)胞排列整齊,細(xì)胞質(zhì)內(nèi)見形態(tài)正常的線粒體。D組大鼠主動脈管壁結(jié)構(gòu)紊亂;內(nèi)皮細(xì)胞欠完整,部分水腫、斷裂;細(xì)胞內(nèi)線粒體腫脹、空泡變性;內(nèi)皮下彈力膜不明顯,膠原纖維增生,見少量巨噬炎性細(xì)胞及水腫區(qū)。D+E組大鼠主動脈管壁結(jié)構(gòu)較清晰;內(nèi)皮細(xì)胞扁平、完整,核橢圓形;個別線粒體腫脹;平滑肌層排列較整齊,細(xì)胞質(zhì)內(nèi)見少量線粒體。見圖3。
3 討論
目前研究表明,GLP-1類似物發(fā)揮減重作用是借助這幾個方面來明顯抑制食欲的:①目前已發(fā)現(xiàn)GLP-1受體存在于胃、胰腺等消化器官,同樣有意義的是,在室旁核、弓狀核等位點呈高密度分布[9]。這些部位恰是食欲調(diào)控的重要區(qū)域,能顯著提高飽腹感[10]。②發(fā)生于中樞神經(jīng)系統(tǒng)孤束核的抑制性反饋,減慢胃腸蠕動,延遲胃腸排空時間[11-12]。③阻止促食欲激素合成和分泌。
促胰島素合成和分泌方面,有研究表明,GLP-1治療24 h,胰島細(xì)胞內(nèi)胰島素含量增加至基礎(chǔ)的1.5倍[13],與胰島素基因的轉(zhuǎn)錄和胰島素mRNA穩(wěn)定性增加有關(guān),這與GLP-1激活重要的核轉(zhuǎn)錄因子——胰腺十二指腸同源盒-I(PDX-1)是密不可分的[14]。
對胰島β細(xì)胞體凋亡、再生方面的影響,體外細(xì)胞實驗證實,GLP-1能減少胰島細(xì)胞凋亡基因caspase-3的表達(dá),維持人類離體胰島的三維形態(tài)[15-16]。還有研究表明,GLP-1使胰島細(xì)胞缺乏的動物模型產(chǎn)生治療作用,在胰腺腺管區(qū)發(fā)現(xiàn)一些細(xì)胞可能產(chǎn)生胰島素[17]。近年證實,GLP-1還可以通過激活蛋白激酶B(PKB),促進β細(xì)胞增殖分化,抑制糖毒性誘導(dǎo)的β細(xì)胞凋亡[18]。
本實驗結(jié)果揭示,Exenatide能明顯改善2型糖尿病的糖代謝、脂代謝及體重,有顯著提高胰島素敏感性作用。內(nèi)皮功能紊亂與胰島素抵抗密切相關(guān),可能是導(dǎo)致2型糖尿病患者出現(xiàn)心血管并發(fā)癥的主要原因。有研究證實,GLP-1類似物具備調(diào)節(jié)LDL-C、TC、TG、HLD-C作用[19]。Nystrom等[20]在糖尿病患者和健康人群中進行了GLP-1受體激動劑對內(nèi)皮功能作用的比較,前者血管內(nèi)皮功能明顯好轉(zhuǎn),而后者未看到類似情況。
本研究中,透射電鏡顯示,糖尿病大鼠血管壁結(jié)構(gòu)紊亂,內(nèi)皮細(xì)胞欠完整,部分水腫、斷裂,細(xì)胞內(nèi)線粒體腫脹、空泡變性,內(nèi)皮下彈力膜不明顯,膠原纖維增生,見少量巨噬炎性細(xì)胞及水腫區(qū);經(jīng)過Exenatide干預(yù)8周的糖尿病大鼠主動脈管壁結(jié)構(gòu)較清晰,內(nèi)皮細(xì)胞扁平、完整,核橢圓形,個別線粒體腫脹,平滑肌層排列較整齊,細(xì)胞質(zhì)內(nèi)見少量線粒體。本研究所示血管內(nèi)皮超微結(jié)構(gòu)的改變,揭示GLP-1類似物顯著減少糖尿病大鼠血管內(nèi)皮細(xì)胞受損,起到保護血管的作用。
[參考文獻(xiàn)]
[1] Rouille Y,Martin S,Steiner DF. Differential processing of proglucagon by the subtilisin-like prohormone convertases PC2 and PC3 to generate either glucagon or glucagon-like peptide [J]. Biol Chem,1995,270(44):26488-26496.
[2] Schirra J,Sturm K,Leicht P,et al. Exendin(9-39)amide is an antagonist of glucagon-like peptide-1(7-36)amide in humans [J]. Clin Invest,1998,101(7):1421-1430.
[3] Schirra J,Nicolaus M,Roggel R,et al. Endogenous glucagon-like peptide 1 controls endocrine pancreatic secretion and antro-pyloro-duodenal motility in humans [J]. Gut,2006,55(2):243-251.
[4] Deane AM,Nguyen NQ,Stevens JE,et al. Endogenous glucagon-like peptide-1 slows gastric emptying in healthy subjects, attenuating postprandial glycemia [J]. Clin Endocrinol Metab,2010,95(1):215-221.
[5] Kiec-Klimczak ME,Pach DM,Pogwizd ME,et al. Incretins yesterday,pleiotropic gastrointestinal hormones today:glucagon-like peptide-1(GLP-1)and glucose-dependent insulinotropic polypeptide(GIP)[J]. Recent Pat Endocr Metab Immune Drug Discov,2011,5(3):176-182.
[6] Nauck M,Stockmann F,Ebert R,et al. Reduced incretin effect in type 2(non-insulin-dependent)diabetes [J]. Diabetologia,1986,29(1):46-52.
[7] Kjems LL,Holst JJ,Volund A,et al. The influence of GLP-1 on glucose-stimulated insulin secretion:effects on beta-cell sensitivity in type 2 and nondiabetic subjects [J]. Diabetes,2003,52(2):380-386.
[8] Wu H,Xia FZ,Xu H,et al. Acute effects of different glycemic index diets on serum motilin, orexin and neuropeptide Y concentrations in healthy individuals [J]. Neuropeptides,2012,50(2):320-328.
[9] Dattilo AM,Kris-Etherton PM. Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis [J]. Am J Clin Nutr, 1992,56(2):320-328.
[10] Franklin I,Gromada J,Gjinovci A,et al. Beta-cell secretory products activate alpha-cell ATP-dependent potassium channels to inhibit glucagon release [J]. Diabetes,2005,54(6):1808-1815.
[11] Widenmaier Scott B,Sampaio Arthur V,Underhill TM,et al. Noncanonical Activation of Akt/Protein Kinase B in β-cells by the IncretinHormoneGlucose-dependent Insulinotropic Polypeptide [J]. J Biol Chem,2009,284(1):1076-1084.
[12] Nystrom T,Gumiak MK,Zhang Q,et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronaly artery disease [J]. Am J Phsiol Endocrinol Metab,2004,287(1):1209-1215.
[13] Wang Y,Egan JM,Raygada M,et al. Glucagon-like peptide-1 affects gene transcription and messenger ribonucleic acid stability of components of the insulin secretory system jn RIN 1046-38 cells [J]. Endocrinology,2014, 136(7):4910-4917.
[14] Li Y,Cao X,Li LX,et al. Beta—cell Pdx l expression is essential for the glucoregulatory,proliferative,and cytoprotective actions of glucagon-like peptide-1 [J]. Diabetes,2015,54(2):482-491.
[15] Farilla L,Bulotta A,Hirshberg B,et al. Glueagon-like Peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets [J]. Endocrinology,2013,144(3):5149-5158.
[16] Farilla L,Hui H,Bertolotto C,et al. Glueagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zueker diabetic rats [J]. Endocrinology,2014,143(3):4397-4408.
[17] Hao E,Tyrberg B,Itkin-Ansari P,et al. Beta-cell differentiation from nonendocrine epithelial cells of the adult human pancreas [J]. Nat Med,2013,12(3):310-316.
[18] Li L,ElKholy W,Rhodes CJ,et al. Glucagon-like peptide-1 protects beta cells from cytokine-induced apoptosis and necrosis:role of protein kinase B [J]. Diabetologia,2015,48(7):1339-1349.
[19] Dozier KC,Cureton EL,Kwan RO,et al. Glucagon-like peptide-1 protects mesenteric endothelium from injury during inflammation [J]. Peptides,2009,30(9):1735-1741.
[20] Nystrom T,Gutniak MK,Zhang Q,et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease [J]. Am J Physiol Endocrinol Metab,2004,287(6):1209-1215.