陳麗娟,沈培輝,朱定一
(1.福建船政交通職業(yè)學(xué)院安全技術(shù)與環(huán)境工程系,福建 福州350007;2.福州大學(xué)材料科學(xué)與工程學(xué)院,福建 福州 350108)
α - MnO2納米線作為潤滑油添加劑的摩擦磨損性能研究
陳麗娟1,沈培輝1,朱定一2
(1.福建船政交通職業(yè)學(xué)院安全技術(shù)與環(huán)境工程系,福建 福州350007;2.福州大學(xué)材料科學(xué)與工程學(xué)院,福建 福州 350108)
采用水熱方法制備出不同直徑的α-MnO2納米線,利用X射線衍射儀,比表面儀和透射電鏡對(duì)樣品進(jìn)行了表征,利用立式萬能摩擦磨損試驗(yàn)機(jī)對(duì)α-MnO2納米線作為液體石蠟添加劑的摩擦磨損性能進(jìn)行了研究.研究結(jié)果表明,添加納米潤滑油添加劑后,銷的摩擦系數(shù)改變不明顯,但磨損率顯著降低.磨損率與α-MnO2納米線添加劑的直徑密切相關(guān),當(dāng)納米材料的粒徑為17nm時(shí)磨損率最低,磨損率值降低為3.28×10-15m3·N-1·m-1,降低了約50%.并得出了α-MnO2納米線在液體石蠟中可能的抗磨損機(jī)理.
α-MnO2納米線; 摩擦性質(zhì);潤滑油添加劑;抗磨損
摩擦磨損損耗了大量的能源,潤滑油的添加是減小摩擦磨損的一種重要手段.而將納米添加劑添加到潤滑油中是提升潤滑油性能的重要方式,納米晶粒尺寸小,比表面積大,能夠比較容易進(jìn)入摩擦接觸表面形成一層保護(hù)膜,從而起到降低摩擦磨損的作用[1-3].目前潤滑油添加劑使用較多的是層狀物質(zhì),如MoS2, FeS和WS2等[4-8],由于硫化物的制備相對(duì)比較復(fù)雜,而且硫化物不夠環(huán)保,限制了其廣泛的應(yīng)用.納米氧化物,由于無毒、性質(zhì)穩(wěn)定,是納米潤滑油添加劑中倍受關(guān)注的一種納米潤滑油添加劑,如CeO2,CuO,MgO和Fe2O3等[9-12].而α-MnO2作為潤滑油添加劑國內(nèi)外文獻(xiàn)尚未見報(bào)道,研究α-MnO2納米線作為潤滑油添加劑以及其直徑對(duì)性能的影響有重要的應(yīng)用價(jià)值.
通過不同溫度水熱方法制備了不同直徑的α-MnO2納米線,研究納米α-MnO2納米線作為潤滑油添加劑的摩擦磨損性能.
1.1 試劑
(NH4)2S2O8,MnSO4·H2O,(NH4)2SO4,分散劑span-80,NH3·H2O(25%) 和液體石蠟(LP)均是上海國藥集團(tuán)化學(xué)試劑有限公司的分析純?cè)噭?
1.2 樣品制備和表征
通過水熱方法制備α-MnO2,以(NH4)2S2O8、MnSO4·H2O和(NH4)2SO4為反應(yīng)物,將這一混合溶液轉(zhuǎn)移至兩個(gè)100ml聚四氟乙烯反應(yīng)釜中,于特定溫度(120℃,160℃,200℃)反應(yīng)24h[13].待反應(yīng)釜自然冷卻至室溫后,用離心機(jī)分離出黑色沉淀物用蒸餾水充分洗滌,最終試樣在80℃溫度下烘干8h,制得樣品即為α-MnO2納米顆粒.
樣品的相成分通過XRD粉末衍射確定,所用儀器為日本Rigaku公司的DMAX2500 X-射線衍射儀(Cu靶,Kα=0.15418 nm).樣品的形態(tài)通過TEM觀察,所用的儀器為JEM2100,加速電壓為200 kV.樣品的比表面積用BET 技術(shù)測試,所用儀器為 BEL SORP max 全自動(dòng)比表面孔徑測定儀.
1.3 摩擦實(shí)驗(yàn)
納米材料作為潤滑油添加劑的摩擦性能通過立式萬能摩擦磨損試驗(yàn)機(jī)(MM-W1A)檢測的.每次實(shí)驗(yàn)前后,試樣銷和盤都用丙酮超聲清洗5分鐘去除表明殘留的雜質(zhì),并且吹干.試樣銷的質(zhì)量損失用感量為0.0001g的電子天平測定.分別添加1wt%的不同直徑的α-MnO2納米線和1wt%分散劑span-80于2 mL LP 中.然后混合溶液超聲半小時(shí)以獲得納米添加劑均勻分散的潤滑油.所有實(shí)驗(yàn)設(shè)定的參數(shù)為:載荷200N,轉(zhuǎn)速300r/min,實(shí)驗(yàn)時(shí)間60min,滴加五滴上述潤滑油在盤上,室溫操作.實(shí)驗(yàn)所用試樣銷硬度為25-30HRC,材質(zhì)是生鐵,直徑4.78mm,長度為12.56mm.摩擦磨損的實(shí)驗(yàn)結(jié)果用摩擦系數(shù)和磨損率計(jì)算,銷的磨損表面形貌用MM-6寬視場顯微鏡分析.
2.1 α-MnO2 表征
圖1為不同溫度制備的α-MnO2納米線的XRD譜圖.從圖中可以看出,樣品為純相的α-MnO2,沒有其他雜相.隨著樣品制備溫度的提高,峰逐漸增強(qiáng),說明樣品的粒徑逐漸增大.圖2所示為所制備的α-MnO2電鏡圖,從圖中可以看出不同溫度制備的α-MnO2均為納米線,從TEM圖中可分別計(jì)算出120oC,160oC 以及200oC 制備的α-MnO2納米線的直徑分別為11,17和21nm.樣品的比表面積隨著粒徑的增大而減小,如表1所示,其對(duì)應(yīng)的比表面積分別為:84.9,60.6和46.7 m2/g.
圖1 α-MnO2納米線XRD圖譜
(a)120oC (b)160oC (c) 200 oC
2.2 摩擦磨損性能表征
添加不同直徑的α-MnO2納米線液體石蠟后銷的摩擦系數(shù)和磨損率如圖3和表1所示.從圖3和表1中可以看出添加不同直徑的α-MnO2納米線液體石蠟后,銷的平均摩擦系數(shù)相差不大,值基本保持在0.09左右.未添加納米添加劑時(shí),銷的磨損率為6.26×10-15m3·N-1·m-1,而添加不同直徑的納米添加劑后,銷的磨損率均大大降低,其中直徑為17 nm的納米線的磨損率降低最多,降低到3.28×10-15m3·N-1·m-1,降低了約50%,比文獻(xiàn)報(bào)道的納米蒙脫石小[14].可見α-MnO2納米線的添加能夠有效提高潤滑油的摩擦磨損性能.由于α-MnO2納米線比表面積較大,納米材料的添加能夠進(jìn)入摩擦表面的凹坑,所以能夠起到減小摩擦的作用[15].
表1 添加不同α-MnO2納米線的液體石蠟潤滑后的銷的平均摩擦系數(shù)和磨損率
圖3 添加不同直徑α-MnO2納米線的液體石蠟潤滑后銷的:(a)平均摩擦系數(shù);(b) 磨損率
2.3 摩擦磨損實(shí)驗(yàn)的表明形貌分析
圖4 摩擦實(shí)驗(yàn)后的銷的表面形貌
圖4所示為摩擦磨損后銷的表面形貌.從圖5(a)中可以看出,未添加納米添加劑的銷的表面比較粗糙,滑痕很明顯、很深,表現(xiàn)出比較深的犁溝和粘著磨損.但是添加不同直徑的α-MnO2納米線后,表面較為光滑,犁溝較淺,而且添加17nm的α-MnO2納米線表面要比21nm的更為光滑,所以17nm的α-MnO2納米線的摩擦磨損性能最好.
2.4 抗摩擦磨損機(jī)理
從圖4中可以看出,沒有添加納米添加劑時(shí),磨痕大而深,犁溝較為明顯,表現(xiàn)出明顯的粘著磨損,而添加納米材料后,表面較為光滑,犁溝變淺.原因是納米材料的粒徑較小,在摩擦磨損的過程中能夠沉積在凹坑處,以及發(fā)生摩擦化學(xué)反應(yīng),因而能夠在摩擦表面形成一層保護(hù)膜,這層膜對(duì)摩擦表面起到微拋光和自潤滑作用[16-18],從而避免了摩擦副之間的直接接觸,提高了摩擦磨損性能.這種填充作用一方面與粒徑密切相關(guān),粒徑小相對(duì)更容易進(jìn)入凹坑處;另一方面,納米添加劑在摩擦過程中可以起到滾動(dòng)摩擦作用.粒徑適當(dāng),滾動(dòng)效應(yīng)比較明顯,兩者的相互作用使得17nm的α-MnO2納米線摩擦磨損性能最好.
[1] Zhao C, Chen Y K, Jiao Y, et al. The preparation and tribological properties of surface modified zinc borate ultrafine powder as a lubricant additive in liquid paraffin[J]. Tribol Int, 2014, (2): 155-164.
[2] 曹敬煜,李文善,黃德歡. 納米銅在潤滑油基礎(chǔ)油中的制備及性能表征[J]. 材料科學(xué)與工程學(xué)報(bào),2010,(1): 97-101.
[3] Yu B, Liu Z L, Ma C B, et al. Ionic liquid modified multi-walled carbon nanotubes as lubricant additive[J]. Tribol Int, 2015, 81:38-42.
[4] Xie H M, Jiang B, He J J, et al. Lubrication performance of MoS2and SiO2nanoparticles as lubricant additives in magnesium alloy-steel contacts[J]. Tribol Int, 2016,(1):63-70.
[5] Zhang Y, Li C, Jia D, et al. Experimental evaluation of MoS2nanoparticles in jet MQL grinding with different types of vegetable oil as base oil[J]. J Clean Prod, 2015, (15):930-940.
[6] Liu Y, Wang C, Yuan J, et al. Investigation on anti-wear properties of sulfide layer on bearing steel lubricated by oil-containing FeS particles[J]. Surf Coat Technol, 2010,(2):470-474.
[7] Shi X, Zhai W, Xu Z, et al. Synergetic lubricating effect of MoS2and Ti3SiC2on tribological properties of NiAl matrix self-lubricating composites over a wide temperature range[J]. Mater Des, 2014,55:93-103.
[8] Quan X, Hu M, Gao X, et al. Friction and wear performance of dual lubrication systems combining WS2-MoS2composite film and low volatility oils under vacuum condition[J]. Tribol Int, 2016,99:57-66.
[9] Shen T J, Wang D X , Yun J, et al. Tribological properties and tribochemical analysis of nano-cerium oxide and sulfurized isobutene in titanium complex grease[J]. Tribol Int, 2016, 93: 332-346.
[10] Pena-papas L, Taha-tijerina J, Garza L,et al.Effect of CuO and Al2O3nanoparticle additives on the tribological behavior of fully formulated oils[J]. Wear, 2015, 332-333: 1256-1261.
[11] 蘇登成,陶文宏,王平,等.復(fù)合納米潤滑油添加劑的制備及其摩擦學(xué)性能[J].機(jī)械工程材料,2007,(3):47-50.
[12] Hu Z S, Dong J X, Chen G X. Study on antiwear and reducing friction additive of nanometer ferric oxide[J]. Tribol Int, 1998,(7): 355-360.
[13] Chen L J, Zhu D Y. The particle dimension controlling synthesis of α-MnO2nanowires with enhanced catalytic activity on the thermal decomposition of ammonium perchlorate[J]. Solid State Science,2014,(1):69-72.
[14] 曹陽,周元康,張大斌,等.納米蒙脫石添加劑對(duì)45#鋼摩擦副摩擦學(xué)性能的影響[J].潤滑與密封,2014,(9):46-51.
[15] Wang X L, Yin Y L, Zhang G N, et al. Study on antiwear and repairing performances about mass of nano-copper lubricating additives to 45 steel[J]. Physics Procedia, 2013, 50: 466-472.
[16] Luo T, Wei X W, Zhao H Y, et al. Tribology properties of Al2O3/TiO2nanocomposites as lubricant additives[J].Ceram Int, 2014, (7): 10103-10109.
[17] Luo T, Wei X W, Huang X, et al. Tribological properties of Al2O3nanoparticles as lubricating oil additives[J]. Ceram Int, 2014,(5): 7143-7149.
[18] Hu Z S, Dong J X, Chen G X, et al. Preparation and tribological properties of nanoparticle lanthanum borate[J]. Wear, 2000,(1): 43-47.
(責(zé)任編校:晴川)
Study on Tribological Properties of α-MnO2Nanowires as Lubricating Oil Additives
CHEN Lijuan1, SHEN Peihui1, ZHU Dingyi2
(1. Fujian Chuanzheng Communications College, Fuzhou Fujian 350007, China; 2. School of Materials Science and Engineering, Fuzhou University, Fuzhou Fujian 350108, China)
α-MnO2nanowires were prepared by hydrothermal method. The prepared α-MnO2nanowires with different diameters were characterized by X-ray diffraction (XRD) and transition electron microscope (TEM). The tribological properties of α-MnO2nanowires as additives in the liquid paraffin were investigated by vertical universal friction and wear testing machine. It was found that the addition of α-MnO2nanowires did not influence much about friction coefficient, but greatly reduced the wear rate. The wear rate was relative with the diameter of α-MnO2nanowires additives. α-MnO2nanowire with diameter of 17 nm showed the lowest wear rate of 3.28×10-15m3·N-1·m-1, reduced by about 50%. Based on the study results, the paper concluded a possible anti-wear mechanism of α-MnO2nanowires as additive in the liquid paraffin.
α-MnO2nanowires; tribological properties; lubricating oil additive; anti-wear
2016-11-24
福建省交通廳項(xiàng)目(批準(zhǔn)號(hào):201411);福建省教育廳科技資助項(xiàng)目(批準(zhǔn)號(hào):JAT160703);福建省高校產(chǎn)學(xué)合作科技重大項(xiàng)目(批準(zhǔn)號(hào):2011H6012).
陳麗娟(1978— ),女,福建屏南人,福建船政交通職業(yè)學(xué)院安全技術(shù)與環(huán)境工程系副教授,博士.研究方向:納米功能材料.
TH117.2
A
1008-4681(2017)02-0032-03