毛北行, 孟曉玲
(鄭州航空工業(yè)管理學(xué)院 理學(xué)院, 河南 鄭州 450015)
具有死區(qū)輸入的分?jǐn)?shù)階多渦卷混沌系統(tǒng)的有限時(shí)間同步
毛北行, 孟曉玲
(鄭州航空工業(yè)管理學(xué)院 理學(xué)院, 河南 鄭州 450015)
基于滑模控制研究了具有死區(qū)輸入的分?jǐn)?shù)階多渦卷系統(tǒng)的有限時(shí)間同步問(wèn)題,根據(jù)分?jǐn)?shù)階微積分的相關(guān)理論,給出了系統(tǒng)取得同步的充分性條件,結(jié)果表明:在一定條件下,分?jǐn)?shù)階多渦卷混沌系統(tǒng)可取得有限時(shí)間同步.
分?jǐn)?shù)階;多渦卷系統(tǒng);滑模;混沌同步
Journal of Zhejiang University(Science Edition), 2017,44(3):302-306
近年來(lái)混沌同步問(wèn)題引起了控制界的廣泛關(guān)注[1-8],分?jǐn)?shù)階混沌系統(tǒng)逐漸成為研究熱點(diǎn),例如:孫寧等[9]研究了分?jǐn)?shù)階不確定混沌系統(tǒng)的滑模投影同步問(wèn)題,實(shí)現(xiàn)了主從系統(tǒng)的投影同步.余明哲等[10]研究了一類(lèi)分?jǐn)?shù)階不確定混沌系統(tǒng)的自適應(yīng)滑模同步問(wèn)題,實(shí)現(xiàn)了驅(qū)動(dòng)系統(tǒng)與響應(yīng)系統(tǒng)的快速同步.仲啟龍等[11]基于主動(dòng)滑模控制方法研究了分?jǐn)?shù)階混沌系統(tǒng)的同步控制問(wèn)題.而多渦卷系統(tǒng)密匙參數(shù)更多,因而在混沌通信中得到了廣泛應(yīng)用.例如:孫美美等[12]研究了一類(lèi)多渦卷超混沌系統(tǒng)的同步控制問(wèn)題,提出了一種自適應(yīng)滑??刂品桨?利用滑模控制和自適應(yīng)控制技術(shù),消除了系統(tǒng)不確定性和未知擾動(dòng)的影響.劉恒等[13]研究了含擾動(dòng)的多渦卷系統(tǒng)的修正函數(shù)時(shí)滯投影同步,得到了系統(tǒng)取得同步的充分性條件.這些工作大多是研究分?jǐn)?shù)階系統(tǒng)的混沌同步,然而工程和實(shí)際應(yīng)用中更需要研究分?jǐn)?shù)階混沌系統(tǒng)的有限時(shí)間同步問(wèn)題.例如:毛北行等[14]研究了一類(lèi)分?jǐn)?shù)階復(fù)雜網(wǎng)絡(luò)混沌系統(tǒng)的有限時(shí)間同步問(wèn)題,并估計(jì)了系統(tǒng)取得混沌同步所需的時(shí)間.在設(shè)計(jì)和植入控制器時(shí),不能忽略具有死區(qū)的非線性輸入.田小敏等[15]研究了具有死區(qū)輸入的混沌系統(tǒng)的有限時(shí)間同步問(wèn)題,證明了滑模階段和趨近階段均是有限時(shí)間收斂的.本文基于滑??刂撇⒗梅?jǐn)?shù)階微積分的相關(guān)理論,研究了具有死區(qū)輸入的分?jǐn)?shù)階多渦卷系統(tǒng)的有限時(shí)間同步問(wèn)題,以得到系統(tǒng)取得有限時(shí)間同步的充分性條件.
n-1<α≤n∈Z+.
設(shè)計(jì)如下一類(lèi)分?jǐn)?shù)階多渦卷混沌系統(tǒng)作為主系統(tǒng):
(1)
其中,x1,x2,x3∈R3為系統(tǒng)的狀態(tài)變量,α,β為系統(tǒng)參數(shù),f(x1)為非線性項(xiàng),f(x1)=sin(ax1-bx1|x1|-(cx1)3),當(dāng)α=0.3,β=5.1,a=11,b=1.6,c=0.4,q=0.873時(shí)出現(xiàn)混沌吸引子,其對(duì)應(yīng)的從系統(tǒng)為:
(2)
其中,hi(ui(t))是死區(qū)非線性輸入,定義如下:
hi(ui(t))=
其中,h+i(t),h-i(t)是ui(t)的非線性函數(shù),u+i,u-i是給定的常數(shù).
其中,β+i,β-i是正常數(shù).
假設(shè)1 設(shè)不確定項(xiàng)Δfi(y)和外部擾動(dòng)di(t)有界,即存在δi,ρi>0,使得
|Δfi(y)|<δi, |di(t)|<ρi.
定義系統(tǒng)誤差:
e1=y1-x1,e2=y2-x2,e3=y3-x3,
很容易得到誤差方程:
(3)
V1-η(t)≤V1-η(t0)-p(1-η)(t-t0),t0≤t≤T,
并且V(t)≡0,t≥T,其中,
設(shè)計(jì)滑模面
誤差系統(tǒng)滿足滑動(dòng)面方程:
由此易得
(4)
定理1 設(shè)計(jì)控制器:
(5)
其中,
ki>0,σi=δi+ρi.
選取滑模面:
則系統(tǒng)的軌跡在有限時(shí)間T1內(nèi)收斂到原點(diǎn),其中,
得到
兩邊同乘以e2λt,得到
兩邊積分,得到
易得
如果
將我院2017年10月-2017年12月收治的520例醫(yī)?;颊咭暈檠芯繉?duì)象,對(duì)其住院費(fèi)用進(jìn)行分析。全部患者中,男性患者271例,女性患者249例。年齡最大85歲,最小23歲,平均年齡(52.3±1.4)歲。疾病類(lèi)型涵蓋了醫(yī)院各個(gè)科室系統(tǒng)。
則有
定理2 對(duì)誤差系統(tǒng)(3),具有非線性死區(qū)輸入的控制器(5),誤差系統(tǒng)的狀態(tài)軌跡能達(dá)到滑模面.
證明
(ui(t)-u+i)h+i(ui(t))=-γiζisgnsihi(ui(t))≥
-sgnsihi(ui(t))≥ζisgn2si,兩邊同乘以|si|,并考慮到|si|sgnsi=si,sgn2si=1,得到
sihi(ui(t))≤-ζi|si|.
利用龍格-庫(kù)塔法進(jìn)行仿真:
當(dāng)α=0.3,β=5.1,a=11,b=1.6,c=0.4,q=0.873時(shí)出現(xiàn)混沌吸引子,其中,
Δf1(y1,y2,y3)=cos(2πy2),
Δf2(y1,y2,y3)=0.5cos(2πy3),
Δf3(y1,y2,y3)=0.3cos(2πy2),
hi(ui(t))=
d1(t)=0.2cos(t),d2(t)=0.6sin(t),
d3(t)=cos(3t),β+i=0.4,β-i=0.5,
βi=0.4,γi=2.5x(0)=(1,-2,-2)T,
y(0)=(1,1,-1)T,λ=1,μ=0.5.
仿真結(jié)果如圖1~3所示,從圖1可看出,不加控制器系統(tǒng)無(wú)法取得同步;由圖2知,加入控制器系統(tǒng)可快速取得同步;由圖3知,系統(tǒng)的誤差很快趨近于零,表明系統(tǒng)快速取得了同步.
圖1 無(wú)控制的主從系統(tǒng)狀態(tài)Fig.1 State of master-slave with no control
圖2 有控制的主從系統(tǒng)狀態(tài)Fig.2 State of master-slave with control
圖3 系統(tǒng)誤差曲線Fig.3 The system errors
基于穩(wěn)定性理論研究了分?jǐn)?shù)階多渦卷系統(tǒng)的有限時(shí)間同步問(wèn)題,研究表明:設(shè)計(jì)非線性死區(qū)輸入的控制器以及構(gòu)造適當(dāng)?shù)那袚Q函數(shù),能夠使主從系統(tǒng)取得有限時(shí)間同步,并給出了嚴(yán)格的證明.數(shù)值仿真驗(yàn)證了方法的有效性.
[1]YASSENMT.Controllingchaosandsynchronizationfornewchaoticsystemusinglinearfeedbackcontrol[J]. Chaos,Solition & Fractals,2005,26(3):913-920.
[2] CHEN M, CHEN W. Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems[J]. Chaos,Solition & Fractals,2009,41(5):2716-2724.
[3] PECORA L M, CAROLL T L. Synchronization in chaotic systems[J].Physics Review Letters,1990,64(8):821-824.
[4] WU X J, LU H T. Adaptive generalized function projective lag synchronization of different chaotic systems with fully uncertain parameters[J].Chaos,Solition & Fractals,2011,44(10):810-820.
[5] SALARIEH H, ALASTY A. Adaptive synchronization of two chaotic systems with with stochastic unknown parameters[J].Communications in Nonlinear Science and Numerical Simulation,2009,14(2):508-519.
[6] SUN Y P, LI J M,WANG J A,et al. Generalized projective synchronization of chaotic systems via adaptive learning control[J].Chinese Physics B,2010,19(2):502-505.
[7] YANG L, YANG J. Robust finite-time convergence of chaotic systems via adaptive terminal sliding mode scheme[J].Communications in Nonlinear Science and Numerical Simulation,2011,16(6):2405-2413.
[8] AGHABABA M P, AKBARI M E . A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances[J].Applied Mathematics and Computation,2012,218(9):5757-5768.
[9] 孫寧,張化光,王智良.不確定分?jǐn)?shù)階混沌系統(tǒng)的滑模投影同步[J].浙江大學(xué)學(xué)報(bào):工學(xué)版,2010,44(7):1288-1291. SUN N,ZHANG H G,WANG Z L.Projective synchronization of uncertain fractional order chaotic system using sliding mode controller[J].Journal of Zhejiang University:Engineering Science, 2010,44(7):1288-1291.
[10] 余明哲,張友安.一類(lèi)不確定分?jǐn)?shù)階混沌系統(tǒng)的滑模自適應(yīng)同步[J].北京航空航天大學(xué)學(xué)報(bào),2014,40(9):1276-1280. YU M Z ,ZHANG Y A.Sliding mode adaptive synchronization for a class of fractional-order chaotic systems with uncertainties[J].Journal of Beijing University of Aeronautics and Astronautics,2014,40(9):1276-1280.
[11] 仲啟龍,邵永輝,鄭永愛(ài).分?jǐn)?shù)階混沌系統(tǒng)的主動(dòng)滑模同步[J].動(dòng)力學(xué)與控制學(xué)報(bào),2015,13(1):18-22. ZHONG Q L,SHAO Y H,ZHENG Y A.Synchronization of the fractional order chaotic systems based on TS models[J].Journal of Dynamics and Control,2015,13(1):18-22.
[12] 孫美美,胡云安,韋建明.多渦卷超混沌系統(tǒng)自適應(yīng)滑模同步控制[J].山東大學(xué)學(xué)報(bào):工學(xué)版,2015,45(6):46-49. SUN M M,HU Y A,WEI J M. Synchronization of multiwing hyperchaotic systems via adaptive sliding mode control[J].Journal of Shandong University:Engineering Edition,2015,45(6):46-49.
[13] 劉恒,余海軍,向偉.帶有未知擾動(dòng)的多渦卷混沌系統(tǒng)修正函數(shù)時(shí)滯投影同步[J].物理學(xué)報(bào),2012,61(18):5031-5036. LIU H, YU H J,XIANG W. Modified function projective lag synchronization for multi-scroll chaotic system with unknown disturbances[J].Acta Phys Sin,2012,61(18):5031-5036.
[14] 毛北行,王戰(zhàn)偉.一類(lèi)分?jǐn)?shù)階復(fù)雜網(wǎng)絡(luò)系統(tǒng)的有限時(shí)間同步控制[J].深圳大學(xué)學(xué)報(bào):理工版,2016,33(1):96-101.
MAO B X,WANG Z W. Finite-time synchronization of a class of fractional-order complex network systems[J].Journal of Shenzhen University:Science and Engineering,2016,33(1):96-101.
[15] 田小敏,費(fèi)樹(shù)岷,柴琳.具有死區(qū)輸入的分?jǐn)?shù)階混沌系統(tǒng)的有限時(shí)間同步[J].控制理論與應(yīng)用,2015,32(9):1240-1245. TIAN X M,F(xiàn)EI S M,CHAI L. Finite-time synchronization of chaotic systems by considering dead-zone phenomenon[J].Control Theory and Applications,2015,32(9):1240-1245.
[16] PODLUBNY. Fractional Differential Equation[M] .New York: Academic Press,1999.
[17] BHAT S P, BERNSTEIN D S. Geometric homogeneity with applications to finite-time stability[J]. Mathematics of Control Signals and Systems,2005,17(2):101-127.
[18] MOHAMMAD P A, SOHRAB K, GHASSEM A. Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique[J]. Applied Mathematical Modelling,2011,35(6):3080-3091.
Finite-time synchronization of fractional-order multi-scroll systems with dead-zone input.
MAO Beixing, MENG Xiaoling
(CollegeofScience,ZhengzhouUniversityofAeronautics,Zhengzhou450015,China)
The problem of finite-time synchronization of fractional-order multi-scroll systems with dead-zone input is studied. The sufficient conditions for the fractional order systems to get finite-time synchronization are obtained based on fractional order calculus theory. The research conclusion illustrates that fractional-order multi-scroll systems is finite-time chaos synchronization under proper conditions.
fractional order; multi-scroll systems; sliding model; chaos synchronization
2016-07-26.
國(guó)家自然科學(xué)基金資助項(xiàng)目(NSFC1501525).
毛北行(1976-),ORCID:http:∥orcid.org/0000-0002-9232-3434,男,碩士,副教授,主要從事分?jǐn)?shù)階混沌系統(tǒng)研究,E-mail:bxmao329@163.com.
10.3785/j.issn.1008-9497.2017.03.010
O 231
A
1008-9497(2017)03-302-05