• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      The Generalization on Inequalities of Hermite-Hadamard’s Integration

      2017-06-05 15:01:17LIANTieyanTANGWei
      關(guān)鍵詞:氮氧化合物氮化合物中氮

      LIAN Tie-yan,TANG Wei

      (1.College of Bioresources Chemical and Materials Engineering,Shaanxi University of Science and Technology,Xi’an 710021,China;2.College of Electrical and Information Engineering,Shaanxi University of Science and Technology,Xi’an 710021,China)

      The Generalization on Inequalities of Hermite-Hadamard’s Integration

      LIAN Tie-yan1,TANG Wei2

      (1.College of Bioresources Chemical and Materials Engineering,Shaanxi University of Science and Technology,Xi’an 710021,China;2.College of Electrical and Information Engineering,Shaanxi University of Science and Technology,Xi’an 710021,China)

      Some new inequalities of Hermite-Hadamard’s integration are established.As for as inequalities about the righthand side of the classical Hermite-Hadamard’s integral inequality refined by S Qaisar in[3],a new upper bound is given.Under special conditions, the bound is smaller than that in[3].

      Hermite-Hadamard’s integral inequality;convex function;the H¨older’s integral inequality;third derivative

      §1.Introduction

      It is common knowledge in mathematical analysis that a function f:I?R→R is said to be convex on an interval I if the inequality

      is valid for all x,y∈I and λ∈[0,1].

      Many inequalities have been established for convex functions but the most famous is the Hermite-Hadamard’s integral inequality,due to its rich geometrical significance and applications,which is stated as follow[1].

      If f:I?R→R is a convex function on I and a,b∈I with a<b,then the double inequalities

      hold.

      A function f:[a,b]?R→R is called a quasi-convex on[a,b],if f(λx+(1-λ)y)≤sup{f(x),f(y)}for all x,y∈[a,b]and λ∈[0,1].

      Since its discovery in 1893,Hermite-Hadamard’s integral inequality has been considered the most useful inequality in mathematical analysis.In[2],D A Ion discussed inequalities of the right-hand side of the Hermite-Hadamard’s integral inequality for functions whose derivatives in absolute values are quasi-convex functions.

      Theorem 1.1[2,Theorems1and2]Assume that a,b∈R with a<b,f is differentiable function on(a,b)and f′∈L[a,b].

      (1)If|f′|is quasi-convex on[a,b],then

      In[3],S Qaisar refined the above inequalities for functions whose third derivatives in absolute values at certain power are quasi-convex functions.

      Theorem 1.2[3,Theorems2.2,2.3and2.4]Let f:I?R→R be differentiable on I such that f′′′∈L[a,b],where a,b∈I with a<b.

      (1)If|f′′′|is a quasi-convex function on[a,b]and p>1,then

      For more results on Hermite-Hadamard’s integral inequality providing new proofs,noteworthy extensions,generalizations and numerous applications,see[1-11]and the references therein.

      In this paper,we will create some new integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex.

      §2.Proof Different from the Literature[2]

      For establishing some new integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex,we need an integral identity below.

      Lemma 2.1[3]Let f:I?R→R be differentiable on I such that f′′′∈L[a,b],where a,b∈I with a<b,then

      Since|f′′′|qis convex on[a,b],we have

      Then by using the facts

      The proof is completed.

      Theorem 2.2Let f:I?R→R be differentiable on I such that f′′′∈L[a,b],where a,b∈I with a<b.If|f′′′|qis a quasi-convex function on[a,b]and q>1,then

      Since|f′′′|qis quasi-convex on[a,b],we have

      Then by using the fact

      we get

      The proof is completed.

      (3)燃料型氮氧化合物。此種氮氧化合物由燃料中的氮化合物在燃燒中氧化而成,由于燃料中氮的熱分解溫度低于粉煤燃燒的溫度,600~800 ℃時(shí)就會(huì)生成燃料型氮氧化合物,其在煤粉燃燒中NOx產(chǎn)物中占60%~80%。在生成燃料型NOx過程中,首先是含有氮的有機(jī)化合物熱裂解產(chǎn)生N、CN、HCN等中間產(chǎn)物基團(tuán)。然后再氧化成為NOx。由于煤在燃燒過程中包含揮發(fā)分和焦炭燃燒兩個(gè)部分,故燃料型的氮氧化合物形成也由氣相氮的氧化(揮發(fā)分)形成和焦炭燃燒形成兩個(gè)部分組成(圖1)。

      Remark 2.1It’s clear that inequality(2.2)is equivalent to inequality(1.6).

      §3.Some New Hermite-Hadamard Type’s Integral Inequalities

      Theorem 3.1Let f:I?R→R be differentiable on I such that f′′′∈L[a,b],where a,b∈I with a<b.If|f′′′|qis a convex function on[a,b]and q≥1,then

      ProofFirst of all,we can prove that the two integral identities(3.2)and(3.3)hold.

      If q=1,by using Lemma 2.1,|f′′|’s convexity on[a,b]and identity(3.3),we have

      Since|f′′′|qis convex on[a,b],then

      Utilizing the inequalities(3.2)~(3.3),(3.5)~(3.6),we get(3.1).

      Corollary 3.1Suppose all the conditions of Theorem 3.1 are satisfied.Then

      Theorem 3.2Let f:I?R→R be differentiable on I,such that f′′′∈L[a,b],where a,b∈I with a<b.If|f′′′|is a convex function on[a,b],then for n∈N,the following inequality holds:

      ProofBy using Lemma 2.1 and well known the H¨older’s integral inequality,we have

      Since|f′′|is a convex function on[a,b],it is easy to prove that|f′′|2nis also a convex function on[a,b].Then we have

      Then by using the fact Z1

      we get

      The proof is completed.

      In the case that a quasi-convex function is also a convex function,we can do the following comparison.

      Remark 3.1The bound of inequality(3.4)is smaller than that’s of inequality(1.5),the bound of inequality(3.1)is smaller than that’s of inequality(1.6)and(1.7),so the results in [3]are generalized.

      §4.Application to Some Special Means

      Now,we consider the applications of our Theorems to the special means.

      Using the result of Theorem 3.1,we have the following theorem.

      Theorem 4.1For positive number a,b such that a<b with α≥1 and q≥1,we have

      AcknowledgementsThe author is grateful to the anonymous referees for their helpful comments and suggestions.

      [2]ION D A.Some estimates on the Hermite-Hadamard inequality through quasi-convex functions[J].Ann Univ Craiova Math Comp Sci Ser,2007,(34):82-87.

      [3]QAISAR S,HUSSAIN S,HE C J.On new inequalities of Hermite-Hadamard type for functions whose third derivative absolute values are quai-convex with applications[J].Journal of the Egyptian Mathematical Societly,2014,22(1):19-22.

      [4]DRAGMOMIR S S,FITZPATRICK S.The Hadamard inequality for s-convex functions in the second sense[J].Demonstratio Math,1999,32(4):687-696.

      [5]DRAGMOMIR S S,AGARWAL R P.Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula[J].Appl Math Lett,1998,11(5):91-95.

      [6]KIRMACI U S,KLARICIC B K,DEMIR M E,et al.Hadamard-type inequalities for s-convex functions[J]. Appl Math Comput,2007,193(1):26-35.

      [7]KIRMACI U S,DEMIR M E.On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula[J].Appl Math Comput,2004,153(1):361-368.

      [8]KIRMACI U S.Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula[J].Appl Math Comp,2004,147(1):137-146.

      [9]LATIF M A,DRAGOMIR S S.New inequalities of Hermite-Hadamard type for functions whose derivatives in absolute value are convex with applications[J].Acta Universitatis Matthiae Belii Series Mathematics, 2013,145(1):24-39.

      [10]QAISAR S,HUSSAIN S,HE C J.On new inequalities of Hermite-Hadamard type for functions whose third derivative absolute values are quasi-convex with applications[J].Journal of the Egyptian Mathematical Societly,2014,22(1):19-22.

      [11]HUANG Li-ping.The improvement of Fischer’s inequality and Hadamard’s inequality[J].Chin Quart J of Math,1994,9(3):13-18.

      tion:47A63

      :A

      1002–0462(2017)01–0034–08

      date:2015-09-24

      Supported by the Key Scientific and Technological Innovation Team Project in Shaanxi Province(2014KCT-15)

      Biography:LIAN Tie-yan(1978-),female,native of Weinan,Shaanxi,a lecturer of Shaanxi University of Science and Technology,M.S.D.,engages in operator theory.

      CLC number:O177.1

      猜你喜歡
      氮氧化合物氮化合物中氮
      思維模型在含氮化合物相關(guān)計(jì)算中的應(yīng)用
      淺析低氮燃燒技術(shù)在火電廠的應(yīng)用
      澳斯麥特爐氮氧化合物產(chǎn)生的原因分析
      焚燒爐尾氣中氮氧化合物的處理
      化工管理(2017年2期)2017-03-18 01:25:08
      氮氧化物廢氣的生化處理技術(shù)應(yīng)用研究
      化工管理(2017年5期)2017-03-05 08:28:57
      清水江水體和沉積物中氮、磷的分布及變化趨勢(shì)
      蒸餾滴定法測(cè)定高溫合金中氮的含量
      西藏濕地生態(tài)系統(tǒng)中氮循環(huán)微生物數(shù)量和多樣性研究
      西藏科技(2015年4期)2015-09-26 12:12:59
      煤焦油和石油基柴油餾分中含氮化合物的分離鑒定
      疊氮化合物B6H6-n(N3)n2-(n=1-6)生成熱的理論研究
      河南科技(2014年16期)2014-02-27 14:13:14
      合作市| 喀喇沁旗| 弥渡县| 宁德市| 沭阳县| 宽甸| 尼玛县| 永吉县| 长宁县| 兴城市| 常熟市| 神池县| 汕尾市| 五河县| 岑溪市| 顺义区| 礼泉县| 沽源县| 仙桃市| 江口县| 泊头市| 肥城市| 枝江市| 赤壁市| 茶陵县| 九龙县| 通山县| 台湾省| 万盛区| 克拉玛依市| 榆树市| 察哈| 曲阳县| 佛坪县| 天等县| 嘉祥县| 千阳县| 福安市| 松潘县| 望奎县| 甘德县|