趙廣震,姜天堯,時君友
(東北電力大學 化學工程學院,吉林 吉林 132012)
?
多酸功能化儲能材料的研究進展
趙廣震,姜天堯,時君友
(東北電力大學 化學工程學院,吉林 吉林 132012)
與煤炭、石油等非再生能源不同,可再生能源(太陽能、風能)不能大規(guī)模直接儲存,必須通過能量轉化實現能源的儲存,而儲能技術是解決可再生能源發(fā)電非穩(wěn)態(tài)特性的關鍵技術。開發(fā)高效、穩(wěn)定的儲能材料是突破儲能技術瓶頸的有效途徑之一。多酸具有較強的電子和質子轉移及存儲能力,因此多酸功能化儲能材料引起越來越多的學者關注。該部分主要對多酸功能化儲能材料的研究進行文獻綜述。
多酸;太陽能電池;鋰離子電池;燃料電池;超級電容器
21世紀以來,能源問題是人們最關心的問題之一。煤炭、石油等非再生能源曾經是經濟發(fā)展的重要保障,但現階段非再生能源的枯竭、利用效率低以及造成的環(huán)境問題是制約經濟發(fā)展的重要因素。而風能、太陽能等可再生能源具有豐富、廉價、清潔和地域分布廣泛等優(yōu)勢,但其開發(fā)和利用程度還不成熟,現階段還不能取代傳統的化石能源,只能作為輔助能源。與非可再生能源相比,不能大規(guī)模直接儲存,必須通過能量轉化實現能量的儲存。因此儲能技術是可再生能源開發(fā)和利用的重要發(fā)展方向,而開發(fā)高效穩(wěn)定的儲能材料是突破儲能技術的關鍵[1-4]。
多金屬氧酸鹽又稱多酸(polyoxometalates,POMs),是前過渡金屬離子的高氧化態(tài)(如V、Mo、W等)與氧形成的納米級的金屬-氧簇類化合物[5]。自1934年,學者們相繼提出Keggin (XM12O40)、Dawson (X2M18O62)、Anderson (XM6O24)、Waugh (XM9O32)、Silverton (XM12O42)以及Lindqvist (M6O19)六種基本結構[5-9],具有以下特點[6-9]:
(1)結構多樣性、可修飾性和可調變性,具有較強的電子和質子轉移/存儲能力;
(2)優(yōu)異的氧化還原性能;
(3)熱穩(wěn)定性高,相對分子質量較大(103-104),易溶于水。
POMs可以與多種功能材料結合并實現材料之間的協同作用。目前,POMs功能化的材料在醫(yī)藥、磁性材料、環(huán)境保護、催化、能源轉化和儲能材料等尖端技術領域具有廣闊的應用前景[10-19]。近年來,由于POMs功能化儲能材料具有低成本、高效率、穩(wěn)定性高、兼容性強等特性,有利于實現儲能材料的工業(yè)化,因此受到科研工作者的極大關注[12,19]。該部分概述了POMs在功能化儲能材料的制備及應用領域的研究進展。
POMs功能化儲能材料主要制備方法包括:溶膠-凝膠法、電化學沉積法、分子層層組裝法、吸附法等。
1.1 溶膠-凝膠法
溶膠-凝膠法是在互溶溶劑及酸或堿的條件下,金屬或半金屬醇鹽發(fā)生水解和縮聚反應,釋放出醇或水,形成特定結構的凝膠,然后經陳化、室溫干燥成固凝膠。
孫長青、Wang等[20,21]分別以四乙氧基硅烷和三甲基硅烷作為前驅體采用溶膠-凝膠法制備了POMs功能化的納米復合儲能材料。Wang的課題組[22]也采用了溶膠-凝膠法制備了高分散的POMs-Cs2SO4@TiO2納米材料:先將SiW11Co(0.05 g)溶液滴加到鈦酸異丙酯(5 mL)與正丁醇(3 mL)的混合溶液中。然后將渾濁溶液加熱到45 ℃保持3 h,再升溫到80 ℃保持3 h形成凝膠,最后經過洗滌干燥焙燒得到POMs-Cs2SO4@TiO2。
溶膠-凝膠法制備POMs功能化納米儲能材料具有熱穩(wěn)定性好,不易分解,可以形成特定結構,并且能維持POMs的活性和穩(wěn)定性。為POMs功能化儲能材料的應用奠定基礎。
1.2 電化學沉積法
法國學者Keita和Nadjo最早發(fā)現電化學沉積法方法[23]。制備過程是:先將預處理的電極放置于含有POMs的酸性溶液中。然后在一定的電位下,將POMs沉積到電極表面得到POMs功能化電極材料。杜金艷等[24]通過電化學沉積法制備了多層POMs修飾的玻碳電極。方法是先將清潔的玻碳電極放入4-氨基硫酚的乙醇溶液中。取出后,超純水清洗去除物理吸附的物質。然后在一定電流電位下,將預修飾的電極放置于[SiCu(H2O)W11O39]6-(SiCuW11)的醋酸/醋酸鈉的緩沖溶液中,得到單層POMs修飾的電極材料。重復多次得到多層POMs修飾的電極材料。杜金艷等[25,26]還采用相似的方法制備了SiZnW11和SiMnW11修飾的玻碳電極。黃正國等[27]也采用相同的方法制備了多酸SiMo11V修飾的金電極。同時,學者們[28,29]發(fā)現多酸陰離子可以與金屬共同沉積到電極表面,提高電極材料性能,降低對雜質敏感程度。該方法的缺點是制備過程不可控制、電化學沉淀情況比較復雜,因此很少采用該方法。
1.3 分子層層組裝法
分子層層組裝法是利用不同材料之間的共價鍵或靜電作用把材料組裝起來的方法。分為單層和多層POMs功能化的儲能材料。主要的連接化合物包括重氮鹽、4-氨基苯甲酸、L-半胱氨酸等或相應的衍生物[17,29-34]。
董紹俊課題組[30]先用重氮鹽還原法形成4-硝基苯,然后將硝基還原成氨基,質子化后可以得到帶正電荷的表面,可以將SiW12修飾碳材料的表面形成的電極材料。王升富課題組[32]在酸性條件下通過半胱氨酸將PMo6W6修飾到電極表面。Kim等[33]發(fā)現還原氧化石墨烯首先與3-丙氨基三乙氧基硅烷結合,然后加入磷鎢酸反應24 h得到多酸修飾的石墨烯材料。2016年,Genovese研究小組[17]用分子層層組裝法制備多酸基復合碳材料,通過咪唑陽離子將GeMo12或SiMo12與碳納米管結合。該方法結構穩(wěn)定性強、操作簡單,已成為制備多酸功能化儲能材料最廣泛的一種方法。
除此之外,還有吸附法、聚合物包埋法等方法[29,35],但存在制備過程繁瑣、機械性能差等缺點,在多酸功能化儲能材料的研究中比較少見。
在POMs功能化儲能材料的制備過程中,POMs與其它材料的結合方式主要有共價鍵結合和非共價鍵結合。
2.1 共價鍵結合
功能化的POMs與其它官能團修飾的基質材料可以通過化學反應形成穩(wěn)定的化學鍵。通過共價鍵結合材料具有穩(wěn)定的結構,可控性強。2014年,宋宇飛課題組[36]采用氨基功能化的Keggin型多酸SiW11與氧化的多層碳納米管制備POMs/CNTs。首先用強酸將CNTs氧化成CNTs-COOH,然后與SOCl2反應生成酰氯修飾的碳納米管CNTs-COCl,在氮氣保護下,超聲將20 mg CNTs-COCl分散到60 mL乙腈中,然后將0.5 mL三乙胺滴加到溶液中,除氧、氮氣保護,冷卻到0 ℃,最后將1 g SiW11-NH2溶于10 mL乙腈溶液,30 min內滴加到CNTs溶液中,在0 ℃下保持2 h,然后加熱到70 ℃維持24 h,分離干燥得到SiW11/CNTs。宋宇飛課題組[37]還采用氨基功能化的Anderson型MnMo6多酸與氧化的單層碳納米管制備MnMo6/SWNT。
2.2 非共價鍵結合
POMs與其它材料的非共價鍵結合是通過分子間相互作用(靜電作用或氫鍵等)[38-41]。例如芳香烴類有機物修飾的POMs可以與碳材料產生π-π共軛的靜電作用,得到多酸功能化的碳材料[39-41]。Toma[39]發(fā)現嵌二萘修飾的多酸可與碳納米管結合,宋宇飛的課題組[40,41]實現了嵌二萘修飾的PW11、MnMo6等多酸通過π-π共軛與碳納米管結合。另外,Wang等[4]通過化學吸附作用成功的將PMo12嫁接到SWCNT上,并作為陰極材料提高電池性能。
目前,儲能材料與技術正在快速的發(fā)展。主要的儲能技術包括:a)將可再生能源轉化為電能的太陽能電池;b)電能轉化成化學能儲存,然后釋放電能的化學電池(鋰離子電池);c)通過氧化還原反應,可以將燃料的化學能轉化成電能的方式(燃料電池);d)以電能的形式儲存釋放的超級電容器。開發(fā)穩(wěn)定高效的儲能材料是突破儲能技術的關鍵。由于POMs具有電子存儲好、化學可調性高和穩(wěn)定性高等特性,還具有氧化還原的活性位點,因此POMs功能化儲能材料是非常重要的研究方向[42-45]。
3.1 太陽能電池
太陽能是取之不盡用之不竭的可再生的清潔能源,是化石能源的替代能源之一。太陽能電池具有成本低廉、制作簡單、光電轉化效率較高和兼容性強等優(yōu)點。研制太陽能電池是太陽能的有效利用方式之一,染料光敏化太陽能電池(DSSCs)是第三代太陽能電池。近年來,在DSSCs上POMs功能化材料是研究的熱點[46-48]。
雖然POMs具有較小光電流密度,但可與TiO2結合用于光電陽極材料的制備[49]。2013年,Xu的課題組[50]探究了H3PW12O40(PW12)、K6P2W18O62(P2W18)與TiO2復合材料薄膜用于光電陽極材料。發(fā)現0.75%的多酸PW12的DSSCs的參數分別是η:0.13%,Jsc:0.59 mA cm-2,Voc:0.28 V,明顯大于純TiO2材料。2016年,Li等[51]制備了PW12/TiO2的復合材料,并用于DSSCs的光電陽極材料。結果表明短路電流密度提高了150%,能量轉化效率提高了140%。Wang的課題組[52]通過溶膠-凝膠法合成了高分散的POMs-Cs2SO4@TiO2納米材料。DSSCs的效率由5.9%提高到8.4%。主要原因是POMs可以加快電子轉移和延緩電子的復合。Shan等[53]制備了 SiW9Co3的還原氧化石墨烯納米材料(SiW9Co3/RGO),與TiO2結合(SiW9Co3/RGO-3@TiO2)用于DSSCs的陽極材料。DSSCs參數分別是Jsc:17.5 mA cm-2,Voc:0.705 V,η:6.88%,都明顯高于TiO2太陽能電池的參數。
POMs功能化儲能材料也可以用于DSSCs的陰極電極材料。Wang的團隊[45]使用Sn(CH2)2COOH-Cu-GeW9-Cu-Sn(CH2)2COOH、Sn(CH2)2COOH-Co-GeW9-Co-Sn(CH2)2COOH修飾單層碳納米管材料,用于DSSCs的陰極電極材料來測試相關電化學性能。POMs/SWNT電化學性能明顯都高于SWNT材料,并且略低于貴金屬Pt。因此,POMs功能化儲能材料可以大大降低太陽能電池的成本。Yuan等[54]研究了[SiW11O39]8-與聚3,4-乙烯二氧噻吩復合材料用于DSSCs的陰極材料。發(fā)現POMs修飾的材料可以降低電荷轉移的電阻,電池總效率高達η= 5.93%。
3.2 鋰離子電池
在鋰離子電池中,POMs功能化材料一般用于電極活性物質。主要考察POMs功能化材料的儲存鋰離子和放電能力。
近年來,Wang等[4]發(fā)現PMo12通過化學吸附作用嫁接到SWCNT上,用于鋰離子電池的陰極材料能夠提高電池性能。PMo12/SWCNT提高鋰離子分散和在一維架構中電子的有效轉移。30%的PMo12量時,鋰離子電池的放電能力高達320 mAh·g-1。經過15次的充放電循環(huán),放電能力300 mAh·g-1。Song課題組[36,37]制備了不同的多酸碳納米管復合材料。將氨基功能化的SiW11、MnMo6與具有酰氯基團的碳納米管結合,在電流密度0.5 mA·cm-2下,首次放電容量均達到1 200 mAh·g-1,而100次循環(huán)充放電以后,MnMo6/CNTs的放電容量(932 mAh·g-1)遠大于SiW11/CNTs的放電容量(650 mAh·g-1),說明MnMo6/CNTs的穩(wěn)定性較強。Song[39]還通過π-π共軛制備嵌二萘修飾的MnMo6與碳納米管結合的儲能材料。發(fā)現初次放電容量高達1 898.5 mAh·g-1。經過100次循環(huán)充放電以后,MnMo6/CNTs的放電容量達665.3 mAh·g-1,說明共價鍵與碳納米管結合的復合材料具有更高的穩(wěn)定性。最近他們[57]通過超聲波處理的方法制備了一維的TBA-PMo11V/CNT復合材料,發(fā)現POM/CNT的晶體形狀與超生波強度和超聲時間等參數有關,還與多酸陰離子和陽離子有關。該復合材料作為鋰離子電池的陽極材料,呈現出良好的電化學性能和良好的穩(wěn)定性,100次循環(huán)充放電以后,放電能力達到850 mAh·g-1。
3.3 燃料電池
燃料電池(fuel cells)是一個非常有前途的清潔發(fā)電系統,并可能替代化石能源。燃料電池的商業(yè)化可以降低石油使用量和有害污染物的排放量。自從1979年,Nakamura等[58]首次發(fā)現H3PMo12O40可以用于燃料電池的固體電解質以來,多酸在燃料電池中的應用研究迅速的發(fā)展起來[59-62],相關研究見表1[63-73]。
Xu等[63]制備了H3PW12O40修飾的聚乙烯吡咯烷酮和聚醚砜樹脂的質子交換膜材料,用于直接甲醇燃料電池,發(fā)現甲醇的滲透率1.65×10-6cm2/s,穩(wěn)定長達130 h左右。2017年,Kim等[72]制備了H3PW12O40不同含量的Nafion膜材料(PWA-Nafion),用于直接乙醇燃料電池,發(fā)現多酸用量影響膜材料的質子導電率和乙醇分子的傳遞,多酸用量為15%的膜材料具有最大功率密度。
多酸修飾的電解質膜還可以應用于H2/O2質子交換膜燃料電池。Shao等[74]制備了Nafion/SiO2-PWA膜材料,并用于H2/O2質子交換膜燃料電池的性能測試,發(fā)現Nafion/SiO2-PWA膜材料的電流密度值(540 mA/cm2) 明顯大于Nafion/SiO2(340 Ma/cm2)和Nafion115(95 mA/cm2),并且Nafion/SiO2-PWA膜材料的氫氣交換非常小。Mehdi等[75]合成了含有Cs元素的雜多酸Cs2.5H0.5PMo12O40(CsPMo)和Cs2.5H0.5PW12O40(CsPW),并制備了Nafion/CsPMo和Nafion/CsPW膜材料用于質子交換膜燃料電池。研究表明Nafion/CsPMo膜材料的最大能量密度大于Nafion/CsPW膜材料,并遠遠大于Nafion膜材料。通過耐久性測試發(fā)現多酸復合膜材料的耐久性明顯提高。主要原因是含Cs的雜多酸可以提高膜材料的耐水性能。Kim等[33]采用多酸功能化的還原氧化石墨烯制備的Nafion膜電解質(Nafion/PW-mGO)可應用于H2/O2質子交換膜燃料電池,隨著相對濕度的增大,Nafion/PW-mGO的質子導電率增大,并大于沒有多酸修飾的還原氧化石墨烯的Nafion膜電解質(Nafion/mGO),最大功率密度達841 mW/cm2(RH 20%,溫度80 ℃)。
表1 近年來,多酸作為活性物質在燃料電池中的應用[63-73]
多酸除了在膜材料中廣泛應用外,還可以作為修飾電極材料以及催化材料的活性中心。2016年,Renzi等[76]制備了Pt/Cs3HPMo11VO40的電極材料,并用于質子交換膜燃料電池。發(fā)現Pt/Cs3HPMo11VO40電極材料表現的電化學性質與Pt相差不大,可以減少電極Pt金屬的使用量,有利于降低燃料電池的成本。Renzi等[77]進一步研究了Pt/Cs3H2PMo10V2O40電極材料的電化學性能,發(fā)現多酸可以提高Pt的分散和等同活性下降低Pt在電極材料中的用量,進而提高Pt電極材料的性能。
3.4 超級電容器
超級電容器(電化學電容器)是一種新型儲能元件[78,79]。根據儲能原理分為:雙電層超級電容器(通過在電解液和電極活性物質表面形成的界面雙電層來儲存電荷的新型儲能器件)和贗電容器(理想的雙電層電容器是通過雙電層儲存電荷,充放電過程中在電極材料和電解液之間均沒有法拉第氧化還原反應的發(fā)生)。具有能量密高(1-20 Wh/kg)、功率密度高(300 kW/kg~5 kW/kg)、轉換效率高和循環(huán)穩(wěn)定性高;除此之外,還具有充電速度快、安全系數高和使用范圍廣(航空航天、國防以及電動汽車等領域)的特點。碳材料或聚合物的儲能材料研究較多且成熟,具有穩(wěn)定性高、價格低廉、原料豐富、技術成熟的特點,但受到電荷機理的限制。據文獻報道,將多酸與其它材料復合作為超級電容器儲能材料還可以提高穩(wěn)定性和比電容。有關多酸功能化的儲能材料用于超級電容器的研究見表2[78-91]。
21世紀初,Romero等[92]發(fā)現化學-電化學沉積法(Ch-ECh method)和電化學沉積法(ECh method)制備的H3PMo12O40/carbon foil(碳箔材料)具有不同的電化學性能,電化學沉積法的循環(huán)伏安曲線明顯優(yōu)于化學-電化學沉積法。電化學沉積法制備的材料表面有大量的微孔結構,可以有效促進電解液在表面進行電荷轉移。2007年,他們[93]用硝酸或硫酸氧化處理碳納米管與Cs-PMo12,通過化學吸附作用制備Cs-PMo12/CNTs。結果表明Cs-PMo12是能量密度的增強劑,500次循環(huán)充放電以后,電容值達到285 F/g(200 mA/g)。Park等[38]通過化學沉積法制備了H3PMo12O40的碳材料,發(fā)現不僅比表面積和表面微孔結構對電容量有影響,而且碳原子的雜化形式也有影響。導電率可以隨著碳原子SP2/SP3的比值增大而增大。
表2 POMs修飾的超級電容器電極材料[78-91]
2016年,Genovese小組[17]采用分子自組裝法制備POMs功能化碳納米管材料。通過咪唑陽離子將GeMo12與碳納米管結合,發(fā)現GeMo12/CNT作為電極材料時電容(84 F/cm3)是CNT的4倍;GeMo12和SiMo12共同修飾的碳納米管,電容(191 F/cm3)是CNT的9倍,表明POMs種類對電極材料具有較大影響。
多酸不僅可以用于修飾儲能電極材料,還可以用于超級電容器的電解質材料。Lian等[94]采用磷鎢酸(PW12)和硅鎢酸(SiW12)的水溶液,作為超級電容器(石墨基和RuO2基)的電解質,通過直流電和交流電方式測試,參數見表3,表明多酸具有良好的離子導電率和穩(wěn)定性,SiWA和PWA的水溶液適合作為超級電容器的電解液。
表3 0.3 M H2SO4、SiW12、和PW12溶液用于超級電容器的電解質材料[94]
綜上所述,POMs功能化儲能材料具有廣泛的應用前景。不同的多酸與有機或無機材料復合,用于不同儲能技術的不同結構材料,均表現出較好的儲能性能。通過多酸分子的設計和多酸與功能材料結合的方式來提高儲能材料的性能是未來研究的重點。研究和開發(fā)穩(wěn)定、高效POMs功能化儲能材料的研究具有重要意義。
[1] N.S.Lewis,D.G.Nocera.Powering the planet:Chemical challenges in solar energy utilization[J].Proc.Natl.Acad.Sci.,2006,103(43):15729-15735.
[2] M.Kourasi,R.G.A.Wills,A.A.Shah,et al.Heteropolyacids for fuel cell applications[J].Electrochimica Acta,2014,127(5):454-466.
[3] Meng Lu,Baohan Xie,Jeonghee Kang,et al.Synthesis of main-chain polyoxometalate-containing hybrid polymers and their applications in photovoltaic cells[J].Chem.Mater.,2005,17(2):402-408.
[4] N.Kawasaki,Heng Wang,R.Nakanishi,et al.Nanohybridization of polyoxometalate clusters and single-wallcarbon nanotubes:Applications in molecular cluster batteries[J].Angew.Chem.,2011,50(15):3471-3474.
[5] M.T.Pope..雜多和同多金屬氧酸鹽[M].王恩波,等,譯.長春:吉林大學出版社,1991.
[6] 王恩波,胡長文,許林.多酸化學導論[M].北京:化學工業(yè)出版社,1998.
[7] 王恩波,李陽光,鹿穎,等.多酸化學概論[M].長春:東北師范大學出版社,2009.
[8] J.F.Keggin.Structure of the molecle 12-phosphotungstic acid[J].Nature,1933,131(3321):908-909.
[9] M.T.Pope.Heteropoly and is poly oxometalates[M].Berlin:Springer-Verlag,1983:1-10.
[10] D.E Katsoulis.A survey of applications of polyoxometalates[J].Chem.Rev.,1998,98(1):359-387.
[11] S.Omwoma,C.T.Gore,Yuanchun Ji,et al.Environmentally benign polyoxometalate materials[J].Coordination Chemistry Reviews,2015,286(286):17-29.
[12] S.Herrmann,C.Ritchie,C.Streb,et al.Polyoxometalate-conductive polymer composites for energy conversion,energy storage and nanostructured sensors[J].Dalton Trans.,2015,44(16):7092-7104.
[13] Yuanchun Ji,Lujiang Huang,Jun Hu,et al.Polyoxometalate-functionalized nanocarbon materials for energy conversion,energy storage and sensor systems[J].Energy Environ.Sci.,2015,8(3):776-789.
[14] J.T.Rhule,C.L.Hill,D.A.Judd,et al.Polyoxometalates in medicine[J].Chem.Rev.,1998,98(1):327-357.
[15] 張延林,王德鑫,于海輝.新型PW雜多酸合成及處理甲基橙廢液的應用研究[J].東北電力大學學報,2015,35(5):33-37.
[16] S.Li,X.Yu,G.Zhang,et al.Green synthesis of a Pt nanoparticle/polyoxometalate/carbon nanotube tri-component hybrid and its activity in the electrocatalysis of methanol oxidation[J].Carbon,2011,49(6):1906-1911.
[17] G.Matthew,L Keryn.Ionic liquid-derived imidazolium cation linkers for the layer-by-layer assembly of polyoxometalate-MWCNT composite electrodes with high power capability[J].ACS Appl.Mater.Interfaces,2016,8(29):19100-19109.
[18] Kai Yua,Baibin Zhou,Yang Yu,et al.Self-assembly of four one-dimensional molybdenum(V) phosphates linked by strontium and transition metal[J].Inorganica Chimica Acta,2012,384:8-17.
[19] 宋芳源,丁勇,趙崇超.多金屬氧酸鹽催化的水氧化研究進展[J].化學學報,2014,72(7):133-144.
[20] 李麗東,李文江,孫長青.基于溶膠-凝膠技術的磷鎢雜多酸化學修飾電極的組裝及其電催化[J].高等學校化學學報,2000,21(6):865-869.
[21] X.L.Wang,Z.H.Kang,E.B.Wang,et al.Inorganic-organic hybrid polyoxometalate nanoparticle modified wax impregnated graphite electrode:preparation,electrochemistry and electrocatalysis[J].J.electroanal.Chem.,2002,523(1/2):142-149.
[22] Liang Li,YuLin Yang,RuiQing Fan,et al.Photocurrent enhanced dye-sensitized solar cells based on TiO2 loaded K6SiW11O39Co(II)(H2O)·xH2O photoanode materials[J].Dalton Trans.,2014,43(4):1577-1582.
[23] B.Keita,L.Nadjo.Electrocatalysis by electrodeposited heteropolyanions and isopolyanions[J].J Electroanal Chem.,1987,227(1):265-270.
[24] 杜金艷,呂桂琴,胡長文.[SiCu(H2O)W11O39]6-在玻碳電極上的多層組裝及電催化性能[J].無機化學學報,2005,21(5):685-689.
[25] 杜金艷,呂桂琴,鄭傳明.[SiZn(H2O)W11O39]6-在玻碳電極上的多層組裝及電催化性能[J].分析試驗室.2006,25(2):51-54.
[26] 杜金艷,黃玉成,呂桂琴,等.[SiMn(H2O)W11O39]6-在玻碳電極上的多層組裝膜修飾電極及電化學行為[J].分析測試學報.2008,27(3):293-295.
[27] 黃正國,程龍,孫勤樞,等.雜多酸-聚(二烯丙基二甲基氯化銨)多層膜在4-氨基硫酚修飾金電極上的組裝和電化學行為[J].分析化學,2000,28(11);1331-1335.
[28] O.Savadogo,F.Carrier.The hydrogen evolution reaction in basic medium on iron electrodeposited with heteropolyacids[J].J Electroanal Chem.1992,22(5):437-442.
[29] 王秀麗,趙岷,等.多酸電化學導論[M].北京:中國環(huán)境科學出版社,2006.
[30] P.Allongue,M.Delamar,B.Desbat,et al.Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts[J].J.Am.Chem.Soc.,1997,119(1):201-207.
[31] J.Y.Liu,L.Cheng,B.F.Liu,et al.Covalent modification of a glassy carbon surface by 4-aminobenzoic acid and its application in fabrication of a polyoxometalates-consisting monolayer and multilayer films[J].Langmuir,2000,16(19):7471-7476.
[32] 王升富,杜丹,皺其超.磷鉬鎢雜多酸-L-半胱氨酸自組裝膜電極的電化學性質[J].物理化學學報,2001,17(12):1102-1106.
[33] Yong Kim,Kriangsak Ketpang,Shayapat Jaritphun,et al.A polyoxometalate coupled graphene oxide-Nafion composite membrane for fuel cells operating at low relative humidity[J].J.Mater.Chem.A,2015,3(15):8148-8155.
[34] Jianyun Liu,Long Cheng,Baifeng Liu,et al.Multilayer assemblies of tungstodiphosphate anions on 1,7-diaminoheptane modified glassy carbon electrode and the electrocatalytic reduction to iodate[J].Electroanalysis,2001,13(12):993-998.
[35] T.McCormac,D.Farrell,D.Drennan,et al.Immobilization of a series of dawson type heteropolyanions[J].Electroanalysis,2001,13(10):836-842.
[36] Wei Chen,Lujiang Huang,Jun Hu,et al.Connecting carbon nanotubes to polyoxometalate clusters for engineering high-performance anode materials[J].Phys.Chem.Chem.Phys.,2014,16(36):19668-19673.
[37] Yuanchun Ji,Jun Hu,Lujiang Huang,et al.Covalent attachment of anderson-type polyoxometalates to single-walled carbon nanotubes gives enhanced performance electrodes for lithium ion batteries[J].Chem.Eur.J.,2015,21(17):6469-6474.
[38] S.Park,K.Lian,Y.Gogotsi.Pseudocapacitive behavior of carbon nanoparticles modified by phosphomolybdic acid[J].Journal of the Electrochemical Society,2009,156 (156):A921-A926.
[39] Lujiang Huang,Jun Hu,Yuanchun Ji,et al.Pyrene-anderson-modified CNTs as anode materials for lithium-ion batteries[J].Chem.Eur.J.2015,21(51):18799-18804.
[40] Yuanchun Ji,Tengfei Li,Yu-Fei Song.Adsorption of human serum albumin (HSA) by SWNTs/Py-PW11nanocomposite[J].Ind.Eng.Chem.Res.2014,53(28):11566-11570.
[41] Dui Ma,Liying Liang,Wei Chen,et al.Covalently tethered polyoxometalate-pyrene hybrids for noncovalent sidewall functionalization of single-walled carbon nanotubes as high-performance anode material[J].Adv.Funct.Mater.,2013,23(48):6100-6105.
[42] U.Meinhardt,F.Lodermeyer,T A.Schaub,et al.N-Heterotriangulene chromophores with 4-pyridyl anchors for dye-sensitized solar cells[J].RSC.Adv.,2016,6(71):67372-67377.
[43] Zicheng Xiao,Kun Chen,Baolin Wu,et al.An easy way to construct polyoxovanadate-based organic-inorganic hybrids by stepwise functionalization[J].European Journal of Inorganic Chemistry,2016,2016(6):808-811.
[44] S.Vanhaecht,J.Jacobs,L.V.Meervelt,et al.A versatile and highly efficient post-functionalization method for grafting organic molecules onto Anderson-type polyoxometalates[J].Dalton Trans.,2015,44(44):19059-19062.
[45] Xiaojing Sang,Jiansheng Li,LanCui Zhang,et al.Two carboxyethyltin functionalized polyoxometalates for assembly on carbon nanotubes as efficient counter electrode materials in dye-sensitized solar cells[J].Chem.Commun.,2014,50(93):14678-14681.
[46] Fei Wu,Haitao Liu,Linna Zhu,et al.New organic dyes based on biarylmethylene-bridged triphenylamine for dye sensitized solar cell[J].Chin.J.Chem.,2015,33(8):925-933.
[47] Liqian Liu,Guichuan Zhang,Baitian He,et al.Polymer solar cells based on the copolymers of naphtho[1,2-c:5,6-c] bis(1,2,5-thiadiazole) and alkoxylphenyl substituted benzodithiophene with high open-circuit voltages[J].Chin.J.Chem.,2015,33(8):902-908.
[48] Tengling Ye,Junhai Wang,Guohua Dong,et al.Recent progress in the application of polyoxometalates for dye-sensitized/organic solar cells[J].Chin.J.Chem.2016,34(8):747-756.
[49] J.J.Walsh,A.M.Bond,R.J.Forster,et al.Hybrid polyoxometalate materials for photo(electro-)chemical applications[J].Coordination Chemistry Reviews,2016,306:217-234.
[50] Zhixia Sun,Fengyan Li,Mingliang Zhao,et al.A comparative study on photoelectrochemical performance of TiO2photoanodes enhanced by different polyoxometalates[J].Electrochemistry Communications,2013,30(3):38-41.
[51] Na Li,ZhixiaSun,RanLiu,et al.Enhanced power conversion efficiency in phthalocyanine-sensitized solar cells by modifying TiO2photoanode with polyoxometalate[J].Solar Energy Materials & Solar Cells,2016,157:853-860.
[52] Lifei He,Li Chen,Yue Zhao,et al.TiO2film decorated with highly dispersed polyoxometalate nanoparticles synthesized by micelle directed method for the efficiency enhancement of dye-sensitized solar cells[J].Journal of Power Sources,2016,328:1-7.
[53] Chunhui Shan,Hongzhang,Weilin Chen,et al.Pure inorganic D-A type polyoxometalate/reduced graphene oxide nanocomposite for the photoanode of dye-sensitized solar cells[J].J.Mater.Chem.A,2016,4(9):3297-3303.
[54] Chunchen Yuan,Shuangshuang Guo,Enbo Wang,et al.Electropolymerization polyoxometalate (POM)-doped PEDOT film electrodes with mastoid microstructure and its application in dye-sensitized solar cells(DSSCs)[J].Ind.Eng.Chem.Res.2013,52(20):6694-6703.
[55] Xiangwei Guo,Jiansheng Li,Xiaojing Sang,et al.Three keggin-type transition metal-substituted polyoxometalates as pure inorganic photosensitizers for p-type dye-sensitized solar cells[J].Chem.Eur.J.2016,47(22):3234-3238.
[56] Jiansheng Li,Xiaojing Sang,Enbo Wang,et al.The application of ZnO nanoparticles containing polyoxometalates in dye-sensitized solar cells[J].Eur.J.Inorg.Chem.,2013(10/11):1951-1959.
[57] Jun Hu,Yuanchun Ji,Wei Chen,et al.“Wiring” redox-active polyoxometalates to carbon nanotubes using a sonication-driven periodic functionalization strategy[J].Energy Environ.Sci.,2016,9(3):1095-1101.
[58] O.Nakamura,T.Kodama,I.Ogino,Y.Miyake.High-conductivity solid proton conductors:dodecamolybdophosphoric acid and dodecatungstophosphoric acid crystals [J].Chem.Lett.1979,1(1):17-18.
[59] H.Tian,O.Savadogo.Silicotungstic acid Nafion composite membrane for proton-exchange membrane fuel cell operation at high temperature[J].Journal of New Materials for Electrochemical Systems,2006,9(1):61-71.
[60] S.Y.Oh,T.Yoshid,G.Kawamur,et al.Inorganic-organic composite electrolytes consisting of polybenzimidazole and Cs-substituted heteropoly acids and their application for medium temperature fuel cells[J].Journal of Materials Chemistry,2010,20(30):6359-6366.
[61] M.Helen,B.Viswanathan,S.Srinivasa Murthy.Poly(vinylalcohol)-polyacrylamide blends with cesium salts of heteropolyacid as a polymer electrolyte for direct methanol fuel cell applications[J].Journal of Applied Polymer Science,2010,116(116):3437-3447.
[62] Chengji Zhao,Haidan Lin,Hui Na.Layer-by-layer self-assembly of polyaniline on sulfonated poly(arylene ether ketone) membrane with high proton conductivity and low methanol crossover[J].International Journal of Hydrogen Energy,2010,35(19):10482-10488.
[63] Xinxu,Hainingwang,Shanfu Lu,et al.A phosphotungstic acid self-anchored hybrid proton exchange membrane for direct methanol fuel cells[J].RSC.Adv.,2016,6(49):43049-43055.
[64] Hongjun Kim,Sunghwan Lee,Suran Kim,et al.Membrane crystallinity and fuel crossover in direct ethanol fuel cells with Nafion composite membranes containing phosphotungstic acid[J].J.Mater.Sci.,2017,52(5):2400-2412.
[65] Zhiming Cui,Wei Xing,Changpeng Liu,et al.Chitosan/heteropolyacid composite membranes for direct methanol fuel cell[J].Journal of Power Sources,2009,188(1):24-29.
[66] M.Santamaria,C.M.Pecoraro,F.Di Quarto,et al.Chitosanephosphotungstic acid complex as membranes for low temperature H2-O2fuel cell[J].Journal of Power Sources,2015,276(1):189-194.
[67] C.M.Pecoraro,M.Santamaria a,P.Bocchetta,et al.Influence of synthesis conditions on the performance of chitosane heteropolyacid complexes as membranes for low temperature H2-O2fuel cell[J].International Journal of Hydrogen Energy,2015,40(42):14616-14626.
[68] M.Santamaria,C.M.Pecoraro,F.D.Franco,et al.Heteropolyacids-chitosan membranes for H2/O2low temperature fuel cells[J].ECS.Transactions,2016,75(14):597-605.
[69] Suzhen Ren,Meiling Xu,Ying Yang,et al.Effects of microstructural functional polyaniline layers on SPEEK/HPW proton exchange membranes[J].J.appl.polym.sci.,2014,131(21):41033-41040.
[70] M.J.Martínez-Morlanes,A.M.Martos,A.Várez,et al.Synthesis and characterization of novel hybrid polysulfone/silica membranes doped with phosphomolybdic acid for fuel cell applications[J].Journal of Membrane Science,2015,492:371-379.
[71] E.Gerasimova,E.Safronova,A.Ukshe,et al.Electrocatalytic and transport properties of hybrid Nafion membranes doped with silica and cesium acid salt of phosphotungstic acid in hydrogen fuel cells[J].Chemical Engineering Journal,2015,305 :121-128.
[72] T.Inoue,T.Uma,M.Nogami.Performance of H2/O2fuel cell using membrane electrolyte of phosphotungstic acid-modified 3-glycidoxypropyl-trimethoxysilanes[J].Journal of Membrane Science 2008,323 (1):148-152.
[73] Zhigang Shao,Hongfeng Xu,Mingqiang Li,et al.Hybrid Nafion-inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell[J].Solid State Ionics,2006,177(7):779-785.
[74] Zhigang Shao,P.Joghee,I.M.Hsing.Preparation and characterization of hybrid Nafion-silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells[J].Journal of Membrane Science,2004,229(1/2):43-51.
[75] M.Amirinejad,S.S.Madaeni,E.Rafiee,et al.Cesium hydrogen salt of heteropolyacids/Nafion nanocomposite membranes for proton exchange membrane fuel cells[J].Journal of Membrane Science,2011,377(1):89-98.
[76] M.Renzi,P.Mignini,G.Giuli,et al.Rotating disk electrode study of Pt/Cs3HPMo11VO40composite catalysts for performing and durable PEM fuel cells[J].International Journal of Hydrogen Energy,2016,41(26):11163-11173.
[77] M.Renzi,R.Marassi,F.Nobili,et al.Low platinum loading cathode modified with Cs3H2PMo10V2O40for polymer electrolyte membrane fuel cells[J].Journal of Power Sources,2016,327:11-20.
[78] A.M.White,R.C.T.Slade.Polymer electrodes doped with heteropolymetallates and their use within solid-state supercapacitors[J].Synthetic Metals,2003,139(1):123-131.
[79] G.M.Suppes,B.A.Deore,M.S.Freund.Porous conducting polymer/heteropolyoxometalate hybrid haterial for electrochemical supercapacitor applications[J].Langmuir,2008,24(3):1064-1069.
[80] A.M.White,R.C.T.Slade.Investigation of vapour-grown conductive polymer/heteropolyacid electrodes[J].Electrochimica Acta,2003,48(18):2583-2588.
[81] A.M.White.,R.C.T.Slade.Electrochemically and vapour grown electrode coatings of poly(3,4-ethylenedioxythiophene) doped with heteropolyacids[J].Electrochimica Acta,2004,49(6):861-865.
[82] A.K.C.Gallegos,M.L.Cantu,N.Casan-Pastor,et al.Nanocomposite hybrid molecular materials for application in solid-state electrochemical supercapacitors[J].Adv.Funct.Mater,2005,15(15):1125-1133.
[83] J.Vaillant,M.L.Cantu,K.C.Gallegos,et al.Chemical synthesis of hybrid materials based on PAni and PEDOT with polyoxometalates for electrochemical supercapacitors[J].Progress in Solid State Chemistry,2006,34(2/3/4):147-159.
[84] G.M.Suppes,C.G.Cameron,M.S.Freund.A polypyrrole/phosphomolybdic acid||poly (3,4-ethylenedioxythiophene)/phosphotungstic acid asymmetric supercapacitor[J].Journal of the Electrochemical Society,2010,157(9):1030-1034.
[85] T.Akter,Kaiwen Hu,K.Lian.Investigations of multilayer polyoxometalates-modified carbon nanotubes for electrochemical capacitors[J].Electrochimica Acta,2011,56:4966-4971.
[86] S.Marta,G.K.Monika,S.N.Magdalena,et al.Hybrid materials utilizing polyelectrolyte-derivatized carbon nanotubes and vanadium-mixed addenda heteropolytungstate for efficient electrochemical charging and electrocatalysis[J].J Solid State Electrochem,2013,17(6):1631-1640.
[87] G.Bajwa.Nanocarbon/polyoxometalate composite electrodes for electrochemical capacitors[D].Toronto:University of Toronto,2012.
[88] S.Magdalena,C.Malgorzata,A.Iwona,et al.Improved capacitance characteristics during electrochemical charging of carbon nanotubes modified with polyoxometallate monolayers[J].Electrochimica Acta,2008,53(11):3862-3869.
[89] J.S.Guevara,V.Ruiz,P.G.Romero.Hybrid energy storage:high voltage aqueous supercapacitors based on activated carbon-phosphotungstate hybrid material[J].J.Mater.Chem.A,2014,2(4):1014-1021.
[90] V.Ruiz,J.S.Guevara,P.G.Romero.Hybrid electrodes based on polyoxometalate-carbon materials for electrochemical supercapacitors[J].Electrochemistry Communications,2012,24(1):35-38.
[91] J.S.Guevara,V.Ruiz,P.G.Romero.Stable graphene-polyoxometalate nanomaterials for application in hybrid supercapacitors[J].Phys.Chem.Chem.Phys.,2014,16(38):20411-20414.
[92] P.G.Romero,C.Malgorzata,K.C.Gallegos,et al.Hybrid organic-inorganic nanocomposite materials for application in solid state electrochemical supercapacitors[J].Electrochemistry Communications,2003,5(2):149-153.
[93] A.K.C.Gallegos,P.G.Romero,et al.Electrochemical supercapacitors based on novel hybrid materials made of carbon nanotubes and polyoxometalates[J].Electrochemistry Communications,2007,9(8) :2088-2092.
[94] K.Lian,Changming Li.Heteropoly acid electrolytes for double-layer capacitors and pseudocapacitors[J].Electrochemical and Solid-State Letters,2008,11(9):158-162.
The Research Progress of Polyoxometalate-functionalized Energy Storage Materials
Zhao Guangzhen,Jiang Tianyao,Shi Junyou
(School of Chemical Engineering,Northeast Electric Power University,Jilin Jilin 132012)
Compared with non-renewable energy (coal,oil,et al),renewable energy (solar,wind and so on) could not storage directly,and have to complete energy storage through energy transformation.Energy storage technology is the key technology to solve unsteady characteristics for generating electricity by renewable energy.It is one of the effective ways to breakthrough energy storage technology bottleneck through development of stable and efficient energy storage materials.Polyoxometalates have the strong ability of electron and proton transfer and storage,so the study of polyoxometalate-functionalized energy storage materials has raised more concerns in recent years.The paper is about the literature review of polyoxometalate-functionalized energy storage materials.
Polyoxometalates;Solar Cell;Lithium Ion Battery;Fuel cell;Supercapacitor
2016-12-11
國家公益行業(yè)重大專項(201504502)
趙廣震 (1989-),男,在讀博士研究生,主要研究方向:生物質轉化利用技術.
1005-2992(2017)03-0073-10
TM912.9
A
電子郵箱: zhaogzgold@126.com(趙廣震);240244369@qq.com(姜天堯);bhsjy64@163.com(時君友)