楊明欣,王 敏,瞿 英
(河北科技大學經(jīng)濟管理學院,河北石家莊 050018)
應急物流救援系統(tǒng)的Petri網(wǎng)建模與性能分析
楊明欣,王 敏,瞿 英
(河北科技大學經(jīng)濟管理學院,河北石家莊 050018)
為了更有效地分析應急物流救援系統(tǒng)的性能,在分析Petri網(wǎng)特性及主要功能的基礎上,以大型自然災害或突發(fā)事件為背景,引入隨機Petri網(wǎng)建模方法建立應急系統(tǒng)模型,進行性能分析。首先根據(jù)應急物流救援系統(tǒng)流程圖構建Petri網(wǎng)模型,對模型的可達性、活性、安全性進行分析以驗證模型的有效性;然后利用馬爾可夫隨機過程與其同構的特性構建系統(tǒng)的馬爾可夫鏈,建立線性方程,引入算例,通過主要性能指標的定量分析反映系統(tǒng)問題;最后針對系統(tǒng)問題提出建議。該模型能夠形象地描述出流程發(fā)生的先后次序和異步并發(fā)關系,其成熟的性能分析方法能夠有效發(fā)掘影響系統(tǒng)運作效率的關鍵環(huán)節(jié),為分析系統(tǒng)流程提供了可行的方法,所提建議為優(yōu)化應急物流救援系統(tǒng)提供了參考。
物流系統(tǒng)管理;系統(tǒng)建模;應急物流;Petri網(wǎng);馬爾可夫鏈;性能分析
中國是受自然災害影響較為嚴重的國家之一,災害種類多,發(fā)生頻率高,如2003年的SARS病毒爆發(fā),2008年的汶川大地震,以及后來的舟曲泥石流、玉樹大地震、云南大旱等,均造成了重大的人員傷亡、財產(chǎn)損失和生態(tài)環(huán)境的嚴重破壞,諸如此類的身然災害事件直接催生出了巨大的應急物流需求。應急物流是指在緊急時間內,以損失或不利影響最小化、效益最大化為目標,通過現(xiàn)代信息和管理技術整合物流功能活動,對各類突發(fā)事件所需的應急物資實施從出發(fā)地到目的地的高效率管理過程,具有突發(fā)性、不確定性、非常規(guī)性、隨機性、不均衡性、緊迫性等特點。應急物流系統(tǒng)是為了滿足突發(fā)性的物流需求,將物流系統(tǒng)中的各個物流元素、物流環(huán)節(jié)、物流實體組合成相互聯(lián)系、相互協(xié)調、相互作用的有機整體。目前很多學者對應急物流系統(tǒng)進行了研究,但大多局限于對供應鏈模式下的應急物流系統(tǒng)的研究,主要包括應急服務定位選址問題、應急物資配送問題、應急物資庫存管理問題。
徐重岐等[1]提出一種應急物流配送中心選址問題的混合整數(shù)規(guī)劃模型,并利用Matlab軟件進行求解計算。甘秋明等[2]提出供應鏈視角下應急物流中心選址的相關指標,在此基礎上應用主成分分析法對應急物流中心選址問題進行了建模和分析,從而為應急物流中心選址決策提供科學的參考依據(jù)。韋曉等[3]考慮到道路阻塞情況與受災點需求信息不斷更新等動態(tài)因素對路徑選擇的影響,構建了動態(tài)需求條件下的應急物流路徑優(yōu)化模型,并利用蟻群算法進行分析計算驗證模型有效性。陳藝華等[4]根據(jù)自然災害救助的應急物流配送現(xiàn)狀分析試圖建立一套較完善的應急物流配送機制,為及時制定合理的救援計劃提供參考。朱佳翔等[5]針對應急物流配送過程中救災信息具有多重不確定性的特點,提出基于灰動態(tài)規(guī)劃的應急物流配送魯棒控制策略,對于解決突發(fā)事件下的應急物流配送決策問題具有重要的應用價值與實際意義。周愉峰等[6]考慮到在不同地區(qū)建立應急物資儲備庫的失靈風險,以應急物資保障的及時性和可靠性為目標,建立了一種應急物資儲備庫的可靠性P-中位選址模型。戚孝娣等[7]基于非線性規(guī)劃理論建立供需不平衡條件下的區(qū)域應急物資調配模型,以調配系統(tǒng)損失最小化為目標,用PSONIW算法對調配模型進行求解分析。朱娜等[8]研究面向復雜網(wǎng)絡的應急物流系統(tǒng)中多出救點、多受災點的物資分配問題并在車輛運載能力等限制條件下提出多目標優(yōu)化模型。隨著對應急物流具體問題的詳細分析,應急物流體系所折射出來的研究方向也越來越多,在這樣復雜的動態(tài)物流網(wǎng)絡下,對應急物流系統(tǒng)整體效率的研究就顯得尤為重要。
已有的對應急物流救援系統(tǒng)的研究,為應急物流服務網(wǎng)點選址、路徑優(yōu)化問題提供了解決辦法,為災害發(fā)生所引發(fā)的應急物資調度、配送問題建立了完善的機制,為應急物資儲備量的控制提供了算法和模型。但這些模型、算法、機制等都僅限于應急物流救援系統(tǒng)中的某一個環(huán)節(jié),而不適用于整個系統(tǒng)。由于災害發(fā)生的時間、地點和后果都存在極大的不確定性,因此應急物流救援系統(tǒng)流程繁多,過程復雜。而Petri網(wǎng)是一個適用于描述異步并發(fā)的離散隨機性事件的工具,能夠形象描述整個系統(tǒng)的各個環(huán)節(jié),為系統(tǒng)建立模型并對模型進行性能分析,分析哪些環(huán)節(jié)需要改進,提高整體效率。
1.1 隨機Petri網(wǎng)的基本概念
Petri網(wǎng)是20世紀60年代由卡爾·A·佩特里發(fā)明的,是對離散并行系統(tǒng)的數(shù)學表示,適合于描述異步的、并發(fā)的計算機系統(tǒng)模型。它不僅僅是一種可以用數(shù)學圖形表示的數(shù)學對象,同時也是一種尊重自然規(guī)律的物理對象,這樣可以確保以Petri網(wǎng)為模型描述的系統(tǒng)都可以實現(xiàn)。
一般系統(tǒng)模型的元素由表示狀態(tài)的元素和變化的元素構成,Petri網(wǎng)的狀態(tài)元素和變化元素分別為P和T,聯(lián)系兩者的是流關系F。其中P元素是指庫所Place,在Petri網(wǎng)中,將系統(tǒng)中的資源存放的位置稱為庫所,在Petri網(wǎng)中用圓圈○表示;存放在庫所中的系統(tǒng)資源如原料、部件、產(chǎn)品、人員、工具、設備、數(shù)據(jù)及信息等稱為托肯或者是令牌Token,用M表示,它是指與系統(tǒng)狀態(tài)變化有關的因素,在Petri網(wǎng)中用圓點●表示;T元素是指變遷Transition,激發(fā)庫所中資源的產(chǎn)生、消耗等狀態(tài)變化的事件,在Petri網(wǎng)中用矩形□或|表示;F是流關系(F?P×T∪T×P),它表示庫所與變遷之間的關系,變遷的產(chǎn)生導致庫所狀態(tài)的改變,在Petri網(wǎng)中用有向弧→表示。圖1是初始Petri網(wǎng),圖2是激發(fā)變遷t0后的Petri網(wǎng)[9-10]。
圖1 初始Petri網(wǎng)Fig.1 Initial Petri net
圖2 激發(fā)變遷t0后的Petri網(wǎng)Fig.2 Petri net of excited t0
1.2 Petri網(wǎng)的主要性能
應急物流救援系統(tǒng)不同于普通物流系統(tǒng),它是一個典型的離散事件系統(tǒng),是由事件驅動系統(tǒng)進程的動態(tài)系統(tǒng),事件發(fā)生的時間間隔不確定、地點不確定,救援配送的及時性很難控制,應急資源管理困難,救援需求信息的獲取和及時反饋很難實現(xiàn),這一系列的問題都在挑戰(zhàn)整個應急救援系統(tǒng)。為了保證突發(fā)事件發(fā)生后系統(tǒng)能夠高效運轉,其各項功能以及系統(tǒng)目標能夠完成,需要對系統(tǒng)進行性能分析。而Petri網(wǎng)中提供的性能分析方法,如可達樹、可達圖、安全性、有界性、活性、死鎖以及隨機Petri網(wǎng)特有的馬爾可夫鏈隨機過程的轉化方法,可以從多維度對系統(tǒng)狀態(tài)進行觀察和檢測,使系統(tǒng)的特性在運行前被有效監(jiān)控并及時糾偏,從而避免錯誤的發(fā)生。用Petri網(wǎng)對該系統(tǒng)進行建模的目的在于分析系統(tǒng)性能,提高系統(tǒng)速率,優(yōu)化整個系統(tǒng)。筆者主要從Petri網(wǎng)的主要特性,即可達性、有界性(安全性)和活性出發(fā)對其分析[11]。
1)可達性??蛇_性反映的是系統(tǒng)能否到達一個指定的狀態(tài),是研究系統(tǒng)動態(tài)特性的基礎。當且僅當存在一個變遷實施序列σ,使得初始標識M0經(jīng)σ實施得到M,則稱標識M是由M0可達的,M是M0的后繼標識,記為M0[σ>M。
2)有界性。有界性反映一個庫所在系統(tǒng)運行過程中能獲得的最大資源數(shù)。對于一個Petri網(wǎng)系統(tǒng),令牌數(shù)為1時,稱此系統(tǒng)是安全的,安全性是有界性的特殊狀態(tài)。在實際設計中,必須使每個庫所的令牌數(shù)在任何狀態(tài)下都小于庫所的容量,以保證系統(tǒng)正常運行而不發(fā)生溢出。如圖3所示。
3)活性。當且僅當從初始標識M0可達的任一標識出發(fā),都可以通過執(zhí)行某一變遷序列而最終啟動任一變遷,稱此Petri網(wǎng)系統(tǒng)是具有活性的。活性用于檢測系統(tǒng)中是否存在死鎖現(xiàn)象,若出現(xiàn),則會嚴重影響系統(tǒng)的分析與優(yōu)化。因此,要利用一切技術手段避免死鎖現(xiàn)象出現(xiàn),確保系統(tǒng)能正常運行。圖4為死鎖狀態(tài)下的Petri網(wǎng)模型,t0和t2互為死鎖關系。
圖3 安全性Petri網(wǎng)Fig.3 Safety Petri net
圖4 死鎖狀態(tài)下的Petri網(wǎng)模型Fig.4 Deadlock Petri net
1.3 Petri網(wǎng)性能分析理論
對Petri網(wǎng)的性能分析基于馬爾可夫隨機過程,隨機Petri網(wǎng)與時間連續(xù)的馬爾可夫鏈是同構的,因此可以通過求解出隨機Petri網(wǎng)的可達集,構造出相應的馬爾可夫鏈MC,根據(jù)MC的穩(wěn)定狀態(tài)概率對系統(tǒng)進行性能分析。
定義 連續(xù)時間隨機Petri網(wǎng)SPN=(P,T,F,W,M0)是一個P/T系統(tǒng),λ={λ1,λ2,…,λm}是變遷平均實施速率集合。λi是變遷ti∈T的平均實施速率,表示在可實施情況下單位時間內平均實施次數(shù)[12]。
求出SPN的可達圖,將其每條弧上標注的實施變遷ti換成其平均實施速率λi(或與標識λi相關的函數(shù)),即可得MC[13]。
對應急物流系統(tǒng)建模是一個復雜的過程,主要包括應急物資的調配采購、車輛的調度、救援人員的配置、信息的收集反饋以及應急方案的制定。筆者利用Petri網(wǎng)進行建模主要是因為它能夠反映其他模型不能反映的系統(tǒng)特性,而且在建模過程中能夠發(fā)現(xiàn)系統(tǒng)存在的潛在問題并及時改變模型結構進行重新分析。Petri網(wǎng)建模時只允許庫所與變遷相連,不能出現(xiàn)庫所與庫所、變遷與變遷連接的情況,也不能出現(xiàn)獨立的元素,同時所建模型不能有沖突和死鎖的現(xiàn)象,應具有安全性、活性和可達性。
2.1 應急物流系統(tǒng)救援流程
當災害事件發(fā)生時,首先由災害救援中心感知,對事件情況進行災害程度判斷,根據(jù)災害等級通知相應的救援部門采取行動。如發(fā)生Ⅰ級重災害時,應急中心會針對發(fā)生災害的地理環(huán)境立即制定應急決策并做出響應,包括啟動應急物流中心、指揮現(xiàn)場及時救援、聯(lián)系外援并實時根據(jù)現(xiàn)場反饋的信息修改決策等。突發(fā)災害事件應急流程如圖5所示。
2.2 基于Petri網(wǎng)的應急物流系統(tǒng)救援流程建模
根據(jù)圖5應急流程圖以及構建Petri網(wǎng)模型原則[14-15],筆者對應急物流救援系統(tǒng)進行建模,如圖6所示。
按照應急物流系統(tǒng)救援流程之間的關系,筆者對其進行了Petri網(wǎng)模型構建,模型中托肯是災害事件地觸發(fā)信息,分別對Petri網(wǎng)中庫所與變遷的含義進行說明,如表1和表2所示。
表1 Petri網(wǎng)模型庫所P變量說明
表2 Petri網(wǎng)模型變遷T變量說明
圖5 突發(fā)災害事件應急流程圖Fig.5 Flow chart of disaster emergency
Petri網(wǎng)的性能分析包括定性分析和定量分析,筆者借助馬爾可夫隨機鏈對該應急物流系統(tǒng)Petri網(wǎng)模型進行分析,判斷其是否具有可達性、有界性(安全性)、活性等。在對該模型的性能分析中,借鑒了文獻[12]中對Petri網(wǎng)性能的分析方法,但是該文獻只是給出了定量分析的初步方法,并沒有對每個穩(wěn)定狀態(tài)的概率進行計算,也沒有給出具體的性能評價指標?;诖?,筆者引入算例進行更進一步的分析,在求出每個穩(wěn)定狀態(tài)概率的基礎上,引入3個主要性能指標進行計算,具體分析并得出結論。
3.1 Petri網(wǎng)模型的定性分析
由圖6可知,應急物流系統(tǒng)的Petri網(wǎng)模型的結構中含有順序、并發(fā)、循環(huán)等結構,其中T3和T4,T5、T6和T7是并發(fā)選擇結構關系,T9和T4是循環(huán)結構關系,其他的多為順序結構關系。而且在此過程中,每一個變遷都有自己的輸入、輸出庫所,表明每一項應急救援工作的完成都需要一定的條件。同時在該過程中沒有死任務,即整個應急救援過程的各任務都能發(fā)生,應急救援工作可以順利完成。
3.2 Petri網(wǎng)模型的定量分析
定量分析是基于馬爾可夫鏈進行的,根據(jù)圖6的Petri網(wǎng)模型同構MC,把各個實施變遷Ti換成實施速率λi,依次為λ1,λ2,…,λ12。同時將該Petri網(wǎng)模型的初始標識設為M0=(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),表示P1中有一個托肯,為了書寫方便,將M0記為(1),由此經(jīng)過不同變遷得到可達集,進而有如下的狀態(tài)集:M1=(2),M2=(3),M3=(4),M4=(5),M5=(12),M6=(6,7,8,9),M7=(6,7,8,9,10,11),M8=(13),M9=(14),M10=(15),M11=(16),M12=(17)。
根據(jù)M0,M1,…,M12這些狀態(tài)集,可以得出其同構的馬爾可夫鏈,如圖7所示,其中有向弧表示在應急物流救援系統(tǒng)模型中從一個狀態(tài)轉換到另一個狀態(tài)[15]。
由圖7所示的馬爾可夫鏈,可得到以下結論:
1)整個過程中沒有阻塞發(fā)生,且過程中沒有無限地等待某個任務,說明應急救援過程的每一項工作在一定時間之內都會完成,每個任務的完成都是下一個任務順利完成的基礎,應急物流救援過程最重要的因素是時間因素,可以根據(jù)具體情況或者根據(jù)以往的數(shù)據(jù)調查分析對每個實施速率進行賦值。
圖6 應急物流救援系統(tǒng)隨機Petri網(wǎng)模型Fig.6 Stochastic Petri net model of emergency logistics rescue system
圖7 應急物流救援系統(tǒng)Petri網(wǎng)模型馬爾可夫鏈Fig.7 Markov chain of the Petri net model
2)在整個流程中,每個狀態(tài)都是可達的,也就是說每個狀態(tài)都會在相應變遷發(fā)生條件下發(fā)生,因此模型不存在死鎖,是具有活性的。
3)在整個流程下,由狀態(tài)M12→M0,托肯數(shù)沒有發(fā)生變化,說明該模型是安全的。
由所建馬爾可夫鏈建立線性方程,如式(1)[16]所示:
(1)
根據(jù)式(1)以及以上速率矩陣,解線性方程組,得到的各可達標識達到穩(wěn)定狀態(tài)的概率依次為P(M0)=P(M6)= 0.039 8,P(M1)=P(M33)= 0.019 9,P(M2)= 0.026 5,P(M3)= 0.013 3,P(M4)= 0.015 9,P(M5)= 0.159 2,P(M7)= 0.318 4,P(M8)=P(M9)= 0.059 7,P(M10)= 0.008 0,P(M11)=P(M12)= 0.119 4。
根據(jù)計算所得概率,計算系統(tǒng)的性能指標:庫所繁忙概率、庫所空閑概率以及變遷利用率,以此分析系統(tǒng)的效率[18]。分析指標如下:
1)庫所繁忙概率 庫所繁忙指的就是各部門、各應急中心、各指揮中心、各救援隊等處于忙碌狀態(tài),所以可以根據(jù)各可達狀態(tài)的概率求得各庫所實體忙碌狀態(tài)的概率[19]。依次為
P[M(P1)=1]=P(M0)=0.039 8,
P[M(P2)=1]=P(M1)=0.019 9,
P[M(P3)=1]=P(M2)=0.026 5,
P[M(P4)=1]=P(M3)=0.013 3,
P[M(P5)=1]=P(M4)=0.015 9,
P[M(P6)=1]=P[M(P7)=1]=P[M(P8)=1]=P[M(P9)=1]=P(M6)+P(M7)=0.358 2,
P[M(P10)=1]=P[M(P11)=1]=P(M7)=0.318 4,
P[M(P12)=1]=P(M5)=0.159 2,
P[M(P13)=1]=P(M8)=0.059 7,
P[M(P14)=1]=P(M9)=0.059 7,
P[M(P15)=1]=P(M10)=0.008 0,
P[M(P16)=1]=P(M11)=0.119 4,
P[M(P17)=1]=P(M12)=0.119 4。
從以上的所得概率可以看出庫所P6,P7,P8,P9,P10,P11繁忙的概率較大,即應急物流中心、各救援隊包括醫(yī)療部、道路搶險、專家協(xié)助等實施救援工作非常容易產(chǎn)生信息堆積的情況。由于各救援部門實施應急救援是整個流程的關鍵,救援工作的速率直接影響整體流程的速率,在災害救援過程中,每個救援隊的工作都會相互影響,要提高整體流程的速率必須保證這一環(huán)節(jié)速率有所提升,因此要將這一環(huán)節(jié)作為優(yōu)化的重點,在保證各應急救援人員技術水平、道德水平等整體素質提高的基礎上能夠相互協(xié)調、相互促進,以提高救援環(huán)節(jié)的速率。
2)庫所空閑概率 庫所空閑概率可根據(jù)庫所繁忙概率得出,即為1減去庫所繁忙概率,所得結果就是庫所空閑概率,根據(jù)上述所得繁忙概率可知,庫所P2,P3,P4,P5等較為空閑,根據(jù)其庫所意義可知,在自然災害事件突發(fā)時,相關部門能夠及時處理信息并做出及時響應,這方面應繼續(xù)保持,做好應急響應工作。
3)變遷利用率 變遷利用率反映的是每項活動占整個應急響應過程的時間長短,它是使各個變遷可以實施的所有標識的穩(wěn)定概率之和[20],即
U(T1)=P(M0)=0.039 8,
U(T2)=P(M1)=0.019 9,
U(T3)=P(M3)=0.013 3,
U(T4)=P(M4)+P(M10)=0.023 9,
U(T5)=P(M2)=0.026 5,
U(T6)=P(M6)=0.039 8,
U(T7)=P(M7) =0.318 4,
U(T8)=P(M5)=0.159 2,
U(T9)=P(M8)=0.059 7,
U(T10)=P(M9)=0.059 7,
U(T11)=P(M11)=0.119 4,
U(T12)=P(M12)=0.119 4。
從以上數(shù)據(jù)可以看出,變遷T7,T8,T11,T12的利用率較高,從表2變遷所表示的意義上來看,主要是信息的實時監(jiān)控、信息總結分析及反饋環(huán)節(jié)耗時較多,因為在應急救援過程中,災害的影響導致信息不能及時收集、傳遞,從而影響信息的分析評估,進而影響到應急決策,所以要保證應急工作達到預期目標,必須有完善的應急決策方案做為基礎保證,變遷T7,T8的發(fā)生對整個救援系統(tǒng)影響很大,直接影響著后續(xù)的事件發(fā)生,任何一個變遷若不能實施,整個救援流程就不能圓滿完成,直接影響救援整體效率。
運用Petri網(wǎng)對應急物流救援系統(tǒng)進行建模是符合系統(tǒng)流程之間關系的,所建模型能夠通過定量的數(shù)據(jù)明確哪些環(huán)節(jié)對系統(tǒng)影響較大。Petri網(wǎng)所提供的性能分析方法可為發(fā)掘系統(tǒng)中關鍵環(huán)節(jié)提供理論支持,模型可為相關應急部門進一步優(yōu)化處理災害事件提供依據(jù),所得結果可為上級管理部門制定多方向優(yōu)化方案提供決策依據(jù)。通過上述算例數(shù)據(jù)分析,本文對系統(tǒng)優(yōu)化提出以下建議。
1)加強應急物流救援系統(tǒng)信息化建設
信息化處理速率的優(yōu)化是整個系統(tǒng)優(yōu)化的核心,信息傳遞的速率直接影響各部門進行相應救援措施的速率。拿地震來說,在地震災區(qū),因為不知道會不會發(fā)生余震的情況,若發(fā)生也不清楚什么時候發(fā)生。對于這類情況,救援隊應該做好預防準備,相關信息監(jiān)測部門應做好信息監(jiān)測,實時監(jiān)測,實時反饋,保障信息通道暢通。一方面多培養(yǎng)信息技術人才和經(jīng)驗決策專家,大力開發(fā)信息收集、多通道信息處理、實時跟蹤監(jiān)控等高科技系統(tǒng)設備,提高信息處理效率,高效快速制定精確的決策方案。另一方面,有效利用宣傳媒體,大力呼吁社會志愿人士參與救援工作,呼吁各界人士捐資捐助并集思廣益,為救援工作的高效實施提供幫助。
2)加強應急組織管理建設
各項具體救援流程操作速率對整個系統(tǒng)實施效率的影響較大,要提高整體效率,首先要提高各項救援工作的效率。為此,要培養(yǎng)專業(yè)的應急救護工作人員,包括醫(yī)療救護人員、疏散撤離受災人群的人員等;其次要妥善分工,合理配置資源,協(xié)調組織指揮應急救援工作,縮短各項工作時間。
3)建立專業(yè)的應急物流中心
救援工作的展開離不開救援物資以及救援人員,而物資的運輸配送以及人員的調配離不開物流中心,物流中心可直接反映應急救援系統(tǒng)的運轉情況。針對自然災害發(fā)生的不確定性,專門建立全國范圍內以應急物資和應急運輸工具為主體的應急物流中心,使其具備功能強大、適應性強、反應靈敏等特性,確保在最短的時間內,盡可能以較低的成本,把應急物資及時運送到災害區(qū),并合理分發(fā)到每個受災群眾手中。
在今后的研究中,可以將Petri網(wǎng)模型中的并發(fā)結構、循環(huán)結構、選擇結構進行等價化簡,突出主要環(huán)節(jié),再結合層次分析法的權重計算,找出對系統(tǒng)流程速率影響最大的關鍵環(huán)節(jié)。同時可結合具體事件進行仿真研究,為模型的優(yōu)化提供進一步的依據(jù)。
/References:
[1] 徐重岐,張濤,曾俊偉. 應急物流配送中心選址問題模型研究[J].物流科技,2015(1):1-3. XU Zhongqi, ZHANG Tao, ZENG Junwei. Study on modeling of distribution center location of emergency logistics[J]. Logistics Sci-Tech, 2015(1):1-3.
[2] 甘秋明,趙道致,王敏.供應鏈視角下應急物流中心選址研究[J].綜合運輸,2015, 37(10):68-72. GAN Qiuming, ZHAO Daozhi, WANG Min. Study on the location of emergency logistics centers from the perspective of the supply chain[J]. China Transportation Review, 2015,37(10):68-72.
[3] 韋曉,常相全.動態(tài)需求條件下應急物流路徑優(yōu)化問題研究[J].價值工程,2015(6): 24-26. WEI Xiao, CHANG Xiangquan. On the emergency logistics path optimization under the condition of dynamic demand[J]. Value Engineering, 2015(6):24-26.
[4] 陳藝華,李大衛(wèi). 應急物流特點及我國應急物流配送機制研究[J].價值工程,2014(1): 22-23. CHEN Yihua, LI Dawei. Study on the characteristics of emergency logistics and distribution mechanism of emergency logistics in China [J]. Value Engineering, 2014(1):22-23.
[5] 朱佳翔,譚清美,蔡建飛, 等.基于雙重不確定性的應急物流配送策略[J].系統(tǒng)工程,2016, 34(3):1-8. ZHU Jiaxiang, TAN Qingmei, CAI Jianfei. et al. Emergency logistics distribution strategy based on double uncertainty[J]. Systems Engineering, 2016, 34(3):1-8.
[6] 周愉峰,馬祖軍,王恪銘. 應急物資儲備庫的可靠性P-中位選址模型[J].管理評論,2015, 27(5):198-208. ZHOU Yufeng, MA Zujun, WANG Keming. A reliabilityP-median location model for relief supplies reserve bases[J]. Management Review,2015,27(5):198-208.
[7] 戚孝娣,莊亞明.供需不平衡條件下的區(qū)域應急物資調配模型研究[J].中國安全科學學報,2016,26(3):169-174. QI Xiaodi, ZHUANG Yaming. Study on model for dispatching regional emergency materials under imbalance between supply and demand[J]. China Safety Science Journal,2016,26(3):169-174.
[8] 朱娜,鄭亞平. 復雜物流網(wǎng)絡下的應急物資分配模型[J].數(shù)學的實踐與認識,2016,46(19):133-141. ZHU Na, ZHENG Yaping. The distribution model of emergency materials under the complex logistics network[J]. Mathematics in Practice and Theory,2016,46(19):133-141.
[9] 崔政東,劉晉.基于廣義隨機Petri網(wǎng)的供應鏈建模與分析[J].系統(tǒng)工程理論與實踐,2005,25(12):18-24. CUI Zhengdong, LIU Jin. Supply chain modeling and analysis based on generalized stochastic Petri nets[J]. System Engineering Theory and Practice,2005,25(12):18-24.
[10]袁崇義.Petri網(wǎng)應用[M].北京:科學出版社,2013.
[11]艾厚文.基于隨機Petri網(wǎng)的鐵路應急預案流程化研究[D].北京:北京交通大學,2008. AI Houwen. Research on Flow of Railway Emergency Plan Based on Stochastic Petri Net[D]. Beijing: Beijing Jiaotong University,2008.
[12]鐘茂華,劉鐵民,劉功智.基于Petri網(wǎng)的城市突發(fā)事件應急聯(lián)動救援系統(tǒng)性能分析[J].中國安全科學學報,2003,13(11):17-20. ZHONG Maohua, LIU Tiemin, LIU Gongzhi. Performance analysis on urban emergency response system based on Petri net[J]. China Safety Science Journal, 2003,13(11):17-20.
[13]李遷,劉亞敏.基于廣義隨機Petri網(wǎng)的工程突發(fā)事故應急處置流程建模及效能分析[J].系統(tǒng)管理學報,2013,22(2):162-167. LI Qian, LIU Yamin. Modeling and simulation of emergency management of construction incident based on generalized stochastic Petri nets[J]. Journal of Systems & Management, 2013,22(2):162-167.
[14]薛晶晶.基于時間Petri網(wǎng)的內陸港集裝箱物流系統(tǒng)的建模與仿真[D].西安:長安大學,2012. XUE Jingjing. Modeling and Simulation of the Container Logistics System in Inland Port based on Time Petri Nets[D]. Xi’an: Chang’an University,2012.
[15]曾梅,郭均鵬.基于CPSO的基礎設施模糊投資組合優(yōu)化模型[J].河北工業(yè)科技,2016,33(1):1-5. ZENG Mei, GUO Junpeng.Fuzzy optimized investment portfolio model on infrastructure based on chaos particle swarm optimization[J].Hebei Journal of Industrial Science and Technology,2016,33(1):1-5.
[16]SERRAL E, SMEDT J D, SNOECK M, et al. Context-adaptive Petri nets: Supporting adaptation for the execution context[J]. Expert Systems with Applications, 2015,42(23):9307-9317.
[17]WANG Liewei, MAHULEA C, JULVEZ J,et al. ON/OFF strategy based minimum-time control of continuous Petri nets[J]. Nonlinear Analysis Hybrid Systems,2014,12(2):50-65.
[18]ZEE D J V D. Building insightful simulation models using Petri nets——A structured approach[J]. Decision Support Systems,2011,51(1):53-64.
[19]MILINKOVI S,MARKOVI M,VESKOVI S, et al. A fuzzy Petri net model to estimate train delays[J]. Simulation Modelling Practice and Theory, 2013,33: 144-157.
[20]KHODYREV I,POPOVA S. Discrete modeling and simulation of business processes using event logs[J]. Procedia Computer Science, 2014, 29:322-331.
[21]JOS C D A A,VILLANI E,JUNQUEIRA F. Coloured Petri nets and graphical simulation for the validation of a robotic cell in aircraft industry[J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(27):929-941.
Modeling and performance analysis of the emergency rescue logistics system based on Petri nets
YANG Mingxin, WANG Min, QU Ying
(School of Economics and Management, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China)
In order to more effectively analyze the performance of logistics emergency rescue system, based on analyzing the characteristics and main functions of the Petri net and its advantage of describing asynchronous concurrent random image system, this paper introduces stochastic Petri net modeling method to establish emergency system model on the basis of serious natural disasters or emergencies, and analyzes the performance. Firstly, according to the emergency rescue system of logistics flow chart, the Petri net model is built, and through the analysis of accessibility, activity and safety, the validity of the model is verified; Secondly, the Markov chain is constructed using the characteristics of isostructuralism with the Markov stochastic process, the linear equations is established, and a numerical example is introduced, reflecting the problems of the system through the quantitative analysis of main performance indexes. Finally, some suggestions are put forward about the problems. On the one hand, this modeling can vividly describe the sequential and asynchronous concurrent relationships between the processes; on the other hand, its mature performance analysis method can effectively explore the key links which have significant impacts on the operational efficiency of the system. The system analysis theory provides a feasible method for the analysis of system flow, and the proposal provides a theoretical basis for the optimization of the entire emergency logistics rescue system.
logistics systems management; system modeling; emergency rescue logistics; Petri nets; Markov chain; performance analysis
1008-1542(2017)03-0269-09
10.7535/hbkd.2017yx03009
2016-12-08;
2017-03-20;責任編輯:張 軍
國家自然科學基金(71301044);河北省教育廳科研項目(2017029,2014027)
楊明欣(1974—),女,河北武邑人,副教授,博士,主要從事信息管理、計算機應用方面的研究。
瞿 英教授。E-mail:quying1973@126.com
F252.14
A
楊明欣,王 敏,瞿 英.應急物流救援系統(tǒng)的Petri網(wǎng)建模與性能分析[J].河北科技大學學報,2017,38(3):269-277. YANG Mingxin, WANG Min, QU Ying.Modeling and performance analysis of the emergency rescue logistics system based on Petri nets[J].Journal of Hebei University of Science and Technology,2017,38(3):269-277.