• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      化療藥物在腫瘤免疫微環(huán)境調(diào)節(jié)中的應(yīng)用*

      2017-07-03 15:40:34譚松巍
      關(guān)鍵詞:免疫抑制抗原分子

      孔 苗, 譚松巍

      華中科技大學(xué)同濟(jì)醫(yī)學(xué)院藥學(xué)院藥劑學(xué)系,武漢 430030

      綜 述

      化療藥物在腫瘤免疫微環(huán)境調(diào)節(jié)中的應(yīng)用*

      孔 苗, 譚松巍△

      華中科技大學(xué)同濟(jì)醫(yī)學(xué)院藥學(xué)院藥劑學(xué)系,武漢 430030

      癌癥; 化療; 免疫抑制; 腫瘤微環(huán)境

      盡管腫瘤的診療技術(shù)在不斷的探索中進(jìn)步,我國(guó)惡性腫瘤患者死亡率仍然呈現(xiàn)持續(xù)增長(zhǎng)的趨勢(shì),癌癥已經(jīng)超過(guò)心血管疾病成為威脅人類(lèi)健康的第一大殺手。腫瘤的形成需經(jīng)歷一個(gè)復(fù)雜的過(guò)程,是機(jī)體內(nèi)癌基因活化、抑癌基因失活以及穩(wěn)定性基因發(fā)生改變的綜合結(jié)果。但實(shí)際上,在腫瘤的整個(gè)發(fā)生發(fā)展過(guò)程中,腫瘤微環(huán)境和免疫系統(tǒng)同時(shí)發(fā)揮著重要的作用?!澳[瘤免疫監(jiān)視”學(xué)說(shuō)認(rèn)為,一旦細(xì)胞發(fā)生癌變,免疫系統(tǒng)能夠?qū)ζ溥M(jìn)行識(shí)別、消滅,阻止腫瘤的發(fā)生[1]。但是腫瘤細(xì)胞的異質(zhì)性和高突變性決定了腫瘤細(xì)胞會(huì)發(fā)生各種突變,從而逃脫免疫監(jiān)視[2-3]。隨著腫瘤細(xì)胞的不斷進(jìn)化和腫瘤微環(huán)境的逐步建立,有些腫瘤細(xì)胞最終將擺脫機(jī)體的免疫監(jiān)視,不斷增殖并在臨床上形成腫瘤[4]。腫瘤發(fā)展與免疫系統(tǒng)的相互作用是一個(gè)長(zhǎng)期的動(dòng)態(tài)變化過(guò)程,腫瘤的突變往往伴隨著對(duì)腫瘤特異性免疫反應(yīng)的抑制,最終建立起一個(gè)腫瘤免疫抑制的微環(huán)境[5-6]。

      傳統(tǒng)的治療方式都單純地將目標(biāo)集中于腫瘤細(xì)胞,無(wú)論是手術(shù)切除、化療、放療還是免疫治療等方式都是以直接攻擊腫瘤細(xì)胞為主要手段來(lái)治療腫瘤,卻忽略了腫瘤免疫微環(huán)境的作用。盡管這些治療方式在初期有所成效,腫瘤生長(zhǎng)會(huì)受到一定程度的抑制,但不斷發(fā)展的腫瘤微環(huán)境仍然會(huì)為腫瘤提供更加有利的條件以對(duì)抗腫瘤治療,從而導(dǎo)致腫瘤的耐藥、復(fù)發(fā)和轉(zhuǎn)移。調(diào)節(jié)腫瘤免疫抑制微環(huán)境將有利于增強(qiáng)機(jī)體內(nèi)在的抗腫瘤反應(yīng),并能與外來(lái)的治療手段協(xié)同產(chǎn)生更強(qiáng)的腫瘤抑制效果。傳統(tǒng)觀點(diǎn)認(rèn)為,化療藥物治療主要依賴(lài)于直接的細(xì)胞毒性殺傷腫瘤細(xì)胞,這種非選擇性的殺傷往往使抗腫瘤免疫細(xì)胞也受到了一定的損傷。隨著研究的深入,越來(lái)越多的研究表明,一些化療藥物在一定劑量下,不僅不會(huì)抑制免疫系統(tǒng),還會(huì)參與腫瘤免疫抑制微環(huán)境的調(diào)節(jié),促進(jìn)抗腫瘤免疫應(yīng)答,協(xié)同免疫系統(tǒng)增強(qiáng)抗腫瘤作用[5-7]。尤其在單一免疫治療效果尚不能令人滿(mǎn)意的背景下,這種協(xié)同增效更顯得意義重大。因此,本文將從腫瘤免疫抑制微環(huán)境的研究現(xiàn)狀和化療藥物免疫調(diào)節(jié)的機(jī)制兩個(gè)方面展開(kāi)綜述。

      1 腫瘤免疫抑制微環(huán)境產(chǎn)生的原因

      腫瘤微環(huán)境是一個(gè)復(fù)雜多變的網(wǎng)絡(luò)體系,主要由腫瘤細(xì)胞、免疫細(xì)胞、基質(zhì)細(xì)胞和細(xì)胞外基質(zhì)等組成[8],為腫瘤的生長(zhǎng)、侵襲和轉(zhuǎn)移提供有利的發(fā)展條件。腫瘤免疫系統(tǒng)受到腫瘤微環(huán)境的抑制,浸潤(rùn)的免疫效應(yīng)細(xì)胞多數(shù)表現(xiàn)為免疫功能低下,甚至嚴(yán)重缺陷[7-9],這種腫瘤免疫抑制微環(huán)境的形成是腫瘤長(zhǎng)期發(fā)展過(guò)程中多種抑制途徑共同導(dǎo)致的結(jié)果。

      1.1 腫瘤抗原呈遞過(guò)程異常

      1.1.1 腫瘤抗原表達(dá)異常 免疫系統(tǒng)對(duì)腫瘤細(xì)胞的清除依賴(lài)于免疫效應(yīng)細(xì)胞對(duì)腫瘤細(xì)胞表面抗原的識(shí)別,然而腫瘤細(xì)胞會(huì)低表達(dá)甚至不表達(dá)腫瘤抗原,影響樹(shù)突狀細(xì)胞(dendritic cell,DC)對(duì)T細(xì)胞的激活,躲避細(xì)胞毒性T細(xì)胞(cytotoxic T lymphocyte,CTL)的識(shí)別和殺傷。研究發(fā)現(xiàn),腫瘤細(xì)胞在與單克隆和多克隆的轉(zhuǎn)基因CTL(可特異性識(shí)別腫瘤抗原P1A)體外共培養(yǎng)后,會(huì)發(fā)生抗原突變,使得P1A不易被CTL識(shí)別[10]。除發(fā)生抗原突變外,腫瘤細(xì)胞還可通過(guò)丟失抗原以逃避免疫系統(tǒng)的識(shí)別。如癌胚抗原(carcinoma embryonic antigen,CEA)可從腫瘤細(xì)胞表面脫落,導(dǎo)致免疫效應(yīng)細(xì)胞無(wú)法識(shí)別腫瘤細(xì)胞。類(lèi)似于腫瘤抗原丟失,腫瘤細(xì)胞也可脫落自然殺傷細(xì)胞2家族成員D(natural killer cell group-2 ligand D,NKG2D)配體,以此逃避NK細(xì)胞的識(shí)別和攻擊。

      1.1.2 主要組織相容性復(fù)合體(major histocompability complex,MHC)表達(dá)下調(diào) 腫瘤抗原往往要與MHC-Ⅰ類(lèi)分子結(jié)合后,才能被呈遞至腫瘤細(xì)胞表面,進(jìn)而被免疫效應(yīng)細(xì)胞所識(shí)別,因此抗原呈遞相關(guān)MHC-Ⅰ類(lèi)分子表達(dá)異常的腫瘤細(xì)胞更易躲避免疫系統(tǒng)的監(jiān)視[11]。一般來(lái)說(shuō),腫瘤細(xì)胞可通過(guò)缺失MHC-Ⅰ類(lèi)基因結(jié)構(gòu)或抑制MHC-Ⅰ類(lèi)基因轉(zhuǎn)錄來(lái)下調(diào)MHC-Ⅰ類(lèi)分子的表達(dá)。人類(lèi)的MHC編碼的分子表達(dá)于白細(xì)胞上,稱(chēng)為人類(lèi)白細(xì)胞抗原(human leucocyte antigen,HLA)。在人類(lèi)腫瘤中,多數(shù)惡性腫瘤如黑色素瘤、乳腺癌、胃癌、卵巢癌等,它們的HLA-Ⅰ類(lèi)抗原表達(dá)下調(diào),其下調(diào)程度與腫瘤的惡性程度及轉(zhuǎn)移呈正相關(guān)。

      1.1.3 缺乏共刺激信號(hào) T細(xì)胞的活化不僅需要T細(xì)胞受體與抗原肽-MHC分子復(fù)合物結(jié)合產(chǎn)生的第一信號(hào),還需要抗原呈遞細(xì)胞或腫瘤細(xì)胞上的共刺激分子(costimulating molecules,CM)與T細(xì)胞上的CM受體結(jié)合提供的第二信號(hào)。僅表達(dá)MHC-Ⅰ類(lèi)抗原而缺乏共刺激分子的腫瘤細(xì)胞所參與的抗原呈遞過(guò)程仍然不能激活T細(xì)胞、產(chǎn)生有效的免疫反應(yīng),反而導(dǎo)致免疫耐受[12]。B7家族分子及其相應(yīng)受體是參與T細(xì)胞活化最重要的共刺激分子對(duì),各個(gè)分子與其受體的結(jié)合對(duì)T細(xì)胞的活化和增殖起重要作用。研究表明,多數(shù)惡性腫瘤細(xì)胞下調(diào)B7-1、B7-2分子的表達(dá),無(wú)法產(chǎn)生足夠的T細(xì)胞激活信號(hào),使T細(xì)胞克隆無(wú)能,同時(shí)還能上調(diào)B7-H1、B7-H4分子的表達(dá),這些抑制性共刺激分子與受體結(jié)合后會(huì)產(chǎn)生抑制性信號(hào),誘導(dǎo)T細(xì)胞凋亡,抑制機(jī)體的抗腫瘤免疫反應(yīng)[13-14]。

      1.2 腫瘤細(xì)胞免疫抑制性分子的表達(dá)

      自殺相關(guān)因子(factor associated suicide,F(xiàn)as)是一種重要的誘導(dǎo)細(xì)胞凋亡的死亡受體。通常情況下,T細(xì)胞可通過(guò)Fas/FasL介導(dǎo)的促凋亡作用抑制Fas陽(yáng)性靶細(xì)胞,但腫瘤細(xì)胞不僅可以主動(dòng)減少Fas表達(dá)或進(jìn)行Fas突變以避免T細(xì)胞的攻擊作用,還能高表達(dá)FasL,與T細(xì)胞的Fas結(jié)合來(lái)引起T細(xì)胞的凋亡[15]。腫瘤細(xì)胞除了Fas/FasL分子表達(dá)異常、抵抗凋亡之外,還會(huì)高表達(dá)其他一些免疫抑制性的分子,誘導(dǎo)免疫效應(yīng)細(xì)胞凋亡。例如,腫瘤細(xì)胞高表達(dá)的吲哚胺2,3-雙加氧酶(indoleamine 2,3-dioxygenase,IDO)可以促進(jìn)色氨酸降解。一方面,色氨酸的缺乏會(huì)使T細(xì)胞停滯于細(xì)胞周期G1期,抑制T細(xì)胞的增殖;另一方面,色氨酸降解會(huì)產(chǎn)生具有細(xì)胞毒性和促凋亡作用的代謝物,這些產(chǎn)物對(duì)T細(xì)胞和NK細(xì)胞均產(chǎn)生抑制和誘導(dǎo)凋亡的作用[16]。此外,腫瘤細(xì)胞表面高表達(dá)的B7-H1分子(又稱(chēng)程序性死亡配體programmed death ligand 1,PD-L1),與T細(xì)胞抑制性受體PD-1結(jié)合后,能產(chǎn)生T細(xì)胞耐受,促進(jìn)白細(xì)胞介素10(interleukin-10,IL-10)分泌,誘導(dǎo)T細(xì)胞凋亡[14,17-18]。

      1.3 免疫抑制性因子的分泌

      丁柔走了之后,周橋就抱怨:“以前我一窮二白的時(shí)候嫌我沒(méi)斗志分得干脆,現(xiàn)在有事業(yè)有人脈就回頭找我?guī)兔α?,什么世道嘛?”周橋的言語(yǔ)之間竟有一絲嫌惡。

      腫瘤微環(huán)境中存在許多免疫抑制性的細(xì)胞因子,如轉(zhuǎn)化生長(zhǎng)因子β(transforming growth factor-β,TGF-β)、IL-10、IL-6等,均可以通過(guò)直接或間接的方式抑制抗腫瘤免疫反應(yīng)。TGF-β能阻礙免疫效應(yīng)細(xì)胞的增殖,阻斷DC的成熟,從而抑制CTL和NK細(xì)胞的活化,同時(shí)也能減少抗腫瘤免疫細(xì)胞因子干擾素γ(interferon-γ,IFN-γ)和腫瘤壞死因子α(tumor necrosis factor,TNF-α)的產(chǎn)生,還能抑制IFN-γ誘導(dǎo)黑色素瘤細(xì)胞MHC-Ⅱ類(lèi)抗原表達(dá)[19]。IL-10能降低DC上共刺激分子的表達(dá),抑制腫瘤抗原呈遞,還可改變T細(xì)胞表型和抑制T細(xì)胞活性,阻斷T細(xì)胞對(duì)腫瘤細(xì)胞的攻擊。此外,TNF可引起部分腫瘤血管出血性壞死,特異性殺傷腫瘤細(xì)胞,調(diào)節(jié)機(jī)體的免疫功能,而腫瘤能表達(dá)可溶性TNF結(jié)合蛋白,阻斷TNF的殺傷作用[20]。

      除了細(xì)胞因子之外,血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)也在腫瘤免疫逃逸的多個(gè)環(huán)節(jié)中發(fā)揮重要作用。VEGF作為特異的內(nèi)皮細(xì)胞刺激因子,能夠促進(jìn)腫瘤新生血管的生成,增加血管的滲透性,促進(jìn)腫瘤細(xì)胞的浸潤(rùn)和轉(zhuǎn)移;還能抑制DC的熟化,影響其抗原呈遞功能,并誘導(dǎo)成熟DC表達(dá)PD-L1,進(jìn)而影響T細(xì)胞的活化和CTL的產(chǎn)生[21-22]。

      1.4 免疫抑制性細(xì)胞的富集

      腫瘤在生長(zhǎng)過(guò)程中會(huì)誘導(dǎo)免疫抑制細(xì)胞分化、增殖并向腫瘤部位聚集,主要包括髓系來(lái)源的免疫抑制細(xì)胞(myeloid-derived suppressor cell,MDSC)、調(diào)節(jié)性T細(xì)胞(regulatory T cell,Treg)、M2型腫瘤相關(guān)巨噬細(xì)胞(tumor-associated macrophage,TAM),還包括腫瘤相關(guān)樹(shù)突狀細(xì)胞(tumor-associated dendritic cell,TADC),調(diào)節(jié)性B細(xì)胞(Breg)和外泌體(exosome)等。MDSC主要由巨噬細(xì)胞、DC和粒細(xì)胞的前體細(xì)胞組成,其數(shù)量在腫瘤微環(huán)境中異常增加。MDSC的聚集可以釋放多種促血管生成因子,直接促進(jìn)腫瘤血管生成,還可以上調(diào)免疫抑制性因子的表達(dá),如精氨酸酶1、活性氧簇和誘導(dǎo)型一氧化氮合成酶,誘導(dǎo)已活化的T細(xì)胞凋亡[23-25]。Treg已經(jīng)被證明可以通過(guò)產(chǎn)生IL-10、TGF-β和IL-35以抑制DC,分泌顆粒酶和穿孔素直接殺傷效應(yīng)細(xì)胞,還能與T細(xì)胞競(jìng)爭(zhēng)消耗IL-2,抑制效應(yīng)細(xì)胞增殖。同時(shí),Treg高表達(dá)CD39和CD73分子,能促進(jìn)腺苷產(chǎn)生,進(jìn)而與效應(yīng)細(xì)胞表面的腺苷受體結(jié)合而發(fā)揮抑制作用[26]。巨噬細(xì)胞在腫瘤部位可分化為抑制腫瘤生長(zhǎng)的M1型和促腫瘤生長(zhǎng)的M2型。M2型巨噬細(xì)胞(即TAM)與腫瘤血管生成和淋巴管生成密切相關(guān),直接參與腫瘤增殖和轉(zhuǎn)移的過(guò)程,誘導(dǎo)腫瘤耐藥,還能分泌IL-10、TGF-β等細(xì)胞因子抑制免疫應(yīng)答[27],分泌PD-L1、CTL相關(guān)抗原4(cytotoxic T lymphocyte-associated antigen-4,CTLA-4)等分子促使CTL凋亡、抑制CTL活化[28],引起免疫抑制。此外,許多證據(jù)表明,腫瘤能干擾單核細(xì)胞向正常DC的分化,并促使其向同系的其它單核細(xì)胞分化,在腫瘤微環(huán)境發(fā)揮免疫抑制的功能,這類(lèi)細(xì)胞稱(chēng)為腫瘤相關(guān)樹(shù)突狀細(xì)胞(TADC)。TADC的表面抗原呈遞相關(guān)分子MHC-Ⅰ、MHC-Ⅱ以及活化分子CD80、CD86等表達(dá)極低,抗原處理呈遞能力低下,同時(shí)高表達(dá)信號(hào)轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活蛋白3(signal transducers and activators of transcription protein 3,STAT3),抑制IL-12的轉(zhuǎn)錄、DC的成熟和T細(xì)胞的激活[29-30]。還有B淋巴細(xì)胞的一種特殊亞型——Breg,能分泌IL-10、TGF-β和IL-35,并促進(jìn)Treg生成,同樣也發(fā)揮免疫抑制的作用[31]。另外,最近比較受關(guān)注的一個(gè)研究熱點(diǎn)——exosome,它作為細(xì)胞間交流的重要物質(zhì),具有廣泛的免疫調(diào)節(jié)功能,部分腫瘤細(xì)胞分泌的exosome參與了MDSC、Treg和TAM等免疫抑制性細(xì)胞的生存和分泌效應(yīng)物質(zhì)的過(guò)程,也為形成免疫抑制微環(huán)境提供了有利條件[32]。

      2 化療藥物的免疫調(diào)節(jié)作用

      2.1 增加免疫殺傷敏感性

      2.1.1 增加腫瘤細(xì)胞免疫原性 化療藥物可以提高腫瘤細(xì)胞的免疫原性以促進(jìn)抗原呈遞和效應(yīng)細(xì)胞識(shí)別,包括:①誘導(dǎo)細(xì)胞表面暴露抗原和抗原呈遞相關(guān)分子。如吉西他濱(gemcitabine,GEM)能通過(guò)DNA去甲基化作用誘導(dǎo)癌睪抗原(cancer testis antigen,CTA)和MHC-Ⅰ類(lèi)分子的表達(dá)上調(diào);氟尿嘧啶(fluorouracil,5-Fu)能增強(qiáng)CEA在結(jié)腸癌細(xì)胞和乳腺癌細(xì)胞上的表達(dá);馬法蘭和絲裂霉素能上調(diào)腫瘤細(xì)胞共刺激分子B7的表達(dá),促進(jìn)腫瘤細(xì)胞向淋巴細(xì)胞呈遞抗原[33-34]。②促進(jìn)表達(dá)具有免疫調(diào)節(jié)作用的蛋白。如替莫唑胺(temozolomide,TMZ)和蒽環(huán)類(lèi)藥物等能夠促使腫瘤細(xì)胞內(nèi)質(zhì)網(wǎng)的鈣網(wǎng)蛋白(calreticulin,CRT)轉(zhuǎn)運(yùn)至細(xì)胞表面,釋放吞噬信號(hào),促使DC對(duì)腫瘤細(xì)胞的識(shí)別和吞噬[35-36];多數(shù)化療藥物還能誘導(dǎo)腫瘤細(xì)胞表面暴露熱休克蛋白(heat shock proteins,HSP),HSP能與腫瘤抗原肽形成肽-HSP復(fù)合物,有利于DC對(duì)腫瘤細(xì)胞的識(shí)別和抗原呈遞[37];蛋白酶體抑制劑硼替佐米、組蛋白去乙?;敢种苿┑瓤缮险{(diào)腫瘤細(xì)胞NKG2D配體的表達(dá),增強(qiáng)NK細(xì)胞對(duì)腫瘤細(xì)胞的識(shí)別和殺傷作用[38-39]。③促進(jìn)釋放免疫活性物質(zhì)。一些化療藥物如奧沙利鉑(oxaliplatin,OXA)、阿霉素(doxorubicine,DOX)可促使凋亡腫瘤細(xì)胞釋放內(nèi)源性危險(xiǎn)信號(hào)三磷酸腺苷(adenosine triphosphate,ATP)和高遷移率蛋白B1(high mobility group box-1 protein,HMGB1),ATP可與DC的嘌呤P2X7受體作用,促進(jìn)DC熟化并增強(qiáng)CTL活性,HMGB1能募集并激活未成熟的DC,增強(qiáng)DC抗原處理和呈遞能力[40-42]。事實(shí)上,化療藥物引起腫瘤凋亡并產(chǎn)生免疫原性物質(zhì),從而促進(jìn)抗腫瘤免疫反應(yīng)的這一現(xiàn)象又被稱(chēng)為免疫原性細(xì)胞死亡(immunogenic cell death,ICD)。具有ICD效應(yīng)的化療藥物可誘導(dǎo)DC的增殖和熟化,促進(jìn)抗原呈遞給T細(xì)胞,增強(qiáng)抗腫瘤免疫反應(yīng),這一類(lèi)化療藥物在傳統(tǒng)化療的基礎(chǔ)上為免疫治療策略提供了新的思路[42-44]。

      2.1.2 促進(jìn)DC功能 化療藥物除了可以提高腫瘤細(xì)胞的免疫原性之外,還可以直接促進(jìn)DC的數(shù)量和功能。研究表明,胰腺癌晚期患者在給予GEM治療2個(gè)月后發(fā)現(xiàn)體內(nèi)CD11c+DC的數(shù)目明顯增加[45];低劑量的DOX、絲裂霉素C和甲氨蝶呤可以上調(diào)DC的CD40、CD80和CD86表達(dá)而誘導(dǎo)DC熟化,增強(qiáng)腫瘤抗原向CD8+T細(xì)胞的呈遞過(guò)程,同時(shí)增加IL-12p70的表達(dá),減少I(mǎi)L-10的表達(dá)[42];大部分拓?fù)洚悩?gòu)酶抑制劑和抗微管藥物如長(zhǎng)春新堿、長(zhǎng)春花堿以及紫杉醇(paclitaxel,PTX)除了上調(diào)黑色素瘤細(xì)胞、腦膠質(zhì)瘤細(xì)胞抗原的表達(dá),也可以在低劑量下促進(jìn)CD40、CD83表達(dá),誘導(dǎo)DC熟化[42,46-47]。

      2.1.3 促進(jìn)CTL殺傷作用 CTL主要通過(guò)釋放穿孔素、顆粒酶(granzyme,Grz)殺傷腫瘤細(xì)胞和通過(guò)Fas/FasL介導(dǎo)靶細(xì)胞凋亡。早期研究表明,甘露糖-6-磷酸受體(mannose-6-phosphate receptor,MPR)可以與GrzB結(jié)合,并在GrzB所引起的細(xì)胞殺傷中起促進(jìn)作用。化療藥物PTX、DOX和順鉑(cisplatin,CIS)可以上調(diào)腫瘤細(xì)胞表面MPR的表達(dá),增加GrzB的滲透作用,從而促進(jìn)GrzB介導(dǎo)的CTL殺傷作用[48]。有研究進(jìn)一步發(fā)現(xiàn),當(dāng)使用PTX、DOX或CIS處理腫瘤細(xì)胞后,針對(duì)特異性抗原的CTL除了殺傷表達(dá)特異性抗原的腫瘤細(xì)胞之外,還能誘導(dǎo)鄰近未表達(dá)特異性抗原的腫瘤細(xì)胞發(fā)生凋亡,這說(shuō)明化療藥物上調(diào)腫瘤細(xì)胞表面MPR的表達(dá)導(dǎo)致腫瘤細(xì)胞對(duì)CTL的殺傷更加敏感,小量的CTL在化療作用的協(xié)同下即可發(fā)揮強(qiáng)大的抗腫瘤殺傷效果[41]。此外,蒽環(huán)類(lèi)藥物可下調(diào)腫瘤細(xì)胞表面B7-H1分子的表達(dá),減少其對(duì)T細(xì)胞的抑制[49];亦可促進(jìn)腫瘤中能特異性分泌IFN-γ的CD8+αβ T細(xì)胞的表達(dá),刺激腫瘤浸潤(rùn)淋巴結(jié)中CD8+T細(xì)胞的增殖[50-51]。

      2.2 清除免疫抑制性細(xì)胞

      免疫抑制性細(xì)胞作為腫瘤微環(huán)境中的一大群體,對(duì)免疫抑制網(wǎng)絡(luò)的形成起重要作用,化療藥物可通過(guò)各種機(jī)制清除或抑制免疫抑制性細(xì)胞,從而解除免疫抑制。

      2.2.1 MDSC 近年來(lái)針對(duì)MDSC靶向消除的方式主要分為:①直接清除MDSC,如低劑量GEM、5-Fu可直接誘導(dǎo)MDSC凋亡[52-53];②促進(jìn)MDSC分化,如多西他賽(docetaxel,DTX)可抑制MDSC的STAT3磷酸化,促進(jìn)MDSC向M1型巨噬細(xì)胞轉(zhuǎn)化,全反式維甲酸(all-trans retinoic acid,ATRA)可促使MDSC向巨噬細(xì)胞、DC、粒細(xì)胞分化[54-56];③阻斷MDSC功能,如環(huán)氧合酶2(cyclooxygenase-2,COX-2)抑制劑、磷酸二酯酶5抑制劑能夠下調(diào)MDSC的精氨酸1基因和誘導(dǎo)型一氧化氮合成酶的表達(dá),從而減少M(fèi)DSC對(duì)T細(xì)胞的抑制。

      2.2.2 Treg 清除Treg以解除免疫抑制也是當(dāng)前調(diào)節(jié)免疫微環(huán)境的主要策略。臨床研究表明,慢性B型淋巴細(xì)胞性白血病患者在接受氟達(dá)拉濱治療之后Treg水平明顯降低[57];在一項(xiàng)TMZ治療大鼠腦膠質(zhì)瘤模型的實(shí)驗(yàn)中,研究者依據(jù)人類(lèi)TMZ的用藥方案,對(duì)大鼠分別采用了30、10、2、0.5 mg/kg的口服劑量,在連續(xù)灌胃21 d后,發(fā)現(xiàn)低劑量組(2和0.5 mg/kg)大鼠脾臟中的Treg數(shù)量明顯降低,而高劑量組(30和10 mg/kg)并無(wú)此作用[58]。此外,低劑量環(huán)磷酰胺(cyclophosphamide,CTX)可直接抑制Treg的功能,還能通過(guò)抑制Treg生存所需的重要分子來(lái)選擇性地清除Treg[59];PTX可通過(guò)影響凋亡調(diào)節(jié)蛋白Bcl-2/Bax的表達(dá)誘導(dǎo)Treg凋亡,促進(jìn)CTL的增殖[60]。

      2.2.3 TAM 針對(duì)TAM的治療研究也越來(lái)越多,主要包括抑制巨噬細(xì)胞的募集、逆轉(zhuǎn)TAM表型改變和清除TAM等方式。根據(jù)目前化療藥物影響TAM的相關(guān)研究,大部分化療藥物的使用均會(huì)導(dǎo)致巨噬細(xì)胞在腫瘤組織的浸潤(rùn),進(jìn)而引起抗腫瘤效果下降[61-63],因此抑制巨噬細(xì)胞的募集主要依賴(lài)于多種招募因子(CCL2、CSF-1等)分泌抑制劑或相應(yīng)受體阻斷劑來(lái)實(shí)現(xiàn)?;熕幬镝槍?duì)TAM的抑制作用主要發(fā)揮于后兩者。例如,白藜蘆醇類(lèi)似物HS-1793可促進(jìn)M2型向M1型的轉(zhuǎn)化,并誘導(dǎo)M1型釋放IFN-γ[64];COX-2抑制劑依托度酸可降低CD14和CD163的表達(dá),從而抑制M2型巨噬細(xì)胞的分化[65];洛伐他丁通過(guò)降低血小板生長(zhǎng)因子的表達(dá),引起M2型TAM極化異常[66];曲貝替定通過(guò)腫瘤壞死因子相關(guān)凋亡誘導(dǎo)配體(tumor necrosis factor related apoptosis inducing ligand,TRAIL)受體激活外源性凋亡通路,從而特異性抑制TAM[67];氯膦酸鹽脂質(zhì)體表現(xiàn)出清除TAM的作用,從而增強(qiáng)索拉非尼對(duì)腫瘤血管生成、生長(zhǎng)和轉(zhuǎn)移的抑制[68]。

      2.3 促進(jìn)腫瘤血管正?;?/p>

      近年來(lái)抗血管生成藥物的促進(jìn)抗腫瘤免疫作用成為一個(gè)研究熱點(diǎn)。由于腫瘤促血管生成因子的過(guò)度表達(dá),腫瘤血管生成功能紊亂,最終導(dǎo)致腫瘤微環(huán)境的血液灌注不足、缺氧、酸度增高以及組織間隙壓升高。這種不正常的微環(huán)境改變同時(shí)也影響了免疫效應(yīng)細(xì)胞的浸潤(rùn)、增殖和功能的發(fā)揮。阻斷促血管生成因子,如VEGF將有利于改善腫瘤血管的結(jié)構(gòu)化和功能化的異常,從而促進(jìn)抗腫瘤免疫反應(yīng)[69]。一項(xiàng)研究顯示,使用抗血管生成藥物西地尼布治療腦膠質(zhì)瘤可以延長(zhǎng)患者存活率,這與西地尼布促使腫瘤血管趨于正常化、改善血液灌注和供氧增加有關(guān)[70-71],由于血管的功能恢復(fù),免疫效應(yīng)細(xì)胞向腫瘤部位的浸潤(rùn)增加,同時(shí)缺氧環(huán)境的緩解也使得腫瘤微環(huán)境的免疫抑制狀態(tài)得到改善。此外,針對(duì)VEGF的抗血管生成藥物還可以促進(jìn)DC成熟,并增強(qiáng)DC抗原呈遞功能,從而促進(jìn)T細(xì)胞的活化[72-73]。舒尼替尼、內(nèi)皮抑制素等均可減少腫瘤微環(huán)境中Treg及其分泌的IL-10和TGF-β的表達(dá)水平[74-75]。

      綜上,化療藥物參與腫瘤微環(huán)境免疫系統(tǒng)的調(diào)節(jié)作用主要概括為增加免疫殺傷敏感性、清除免疫抑制性細(xì)胞以及促進(jìn)腫瘤血管正?;C糠N化療藥物對(duì)于免疫微環(huán)境的作用各有不同,在此將一些主要的化療藥物的免疫調(diào)節(jié)機(jī)制總結(jié)在表1中。

      3 結(jié)語(yǔ)

      傳統(tǒng)的化療具有較強(qiáng)的毒副作用,并伴隨復(fù)發(fā)和轉(zhuǎn)移的問(wèn)題。近年來(lái),免疫治療作為一種新興的技術(shù)引起了人們的廣泛關(guān)注。免疫治療一般依賴(lài)于疫苗免疫、抗體治療或者T細(xì)胞過(guò)繼治療等手段,誘導(dǎo)機(jī)體產(chǎn)生增強(qiáng)的抗腫瘤免疫。但面對(duì)腫瘤細(xì)胞的免疫逃逸行為,僅增強(qiáng)抗腫瘤免疫而不改善免疫抑制的問(wèn)題,治療效果依然不能令人滿(mǎn)意。越來(lái)越多的研究將靶向、調(diào)節(jié)腫瘤免疫抑制微環(huán)境作為關(guān)鍵,與免疫治療相結(jié)合以實(shí)現(xiàn)更好的抗腫瘤效果,并在化療聯(lián)合免疫治療的領(lǐng)域取得了一些進(jìn)展。例如,在治療胰腺癌時(shí),先注射DC疫苗,再給予GEM化療作用,可顯著抑制腫瘤、提高存活率[98];低劑量的CTX可與IL-2基因修飾的腫瘤疫苗、IL-1聯(lián)合,引起的協(xié)同抗腫瘤效果高于單一的疫苗治療效果;Pfirschke等[9]利用OXA聯(lián)合CTX治療條件遺傳性肺腺癌,提高腫瘤免疫原性,增加腫瘤對(duì)于聯(lián)合的PD-L1抗體治療的敏感性;Zhao等[99]借助納米載體將化療藥物CDDO-Me轉(zhuǎn)運(yùn)至黑色素瘤,減少Treg和MDSC的數(shù)量,從而增強(qiáng)了Trp2疫苗的抗腫瘤作用。這一系列的結(jié)果均表明腫瘤免疫抑制微環(huán)境的改造對(duì)于抑制腫瘤發(fā)展和提高抗腫瘤效果有著重要的意義。

      表1 部分化療藥物的免疫調(diào)節(jié)機(jī)制

      化療藥物靶向作用于腫瘤免疫抑制微環(huán)境是當(dāng)前腫瘤聯(lián)合治療的一個(gè)研究熱點(diǎn)。聯(lián)合化療藥物的免疫治療將會(huì)進(jìn)一步改善免疫耐受和免疫抑制的現(xiàn)狀,維持有效、持久的抗腫瘤免疫應(yīng)答。但在聯(lián)合治療方案中化療藥物劑量、給藥途徑和給藥時(shí)機(jī)等問(wèn)題都需要在對(duì)化療藥物免疫調(diào)節(jié)機(jī)制的詳盡研究的基礎(chǔ)上進(jìn)行設(shè)計(jì),需要開(kāi)展更多相關(guān)的臨床研究,以便早日讓化療免疫聯(lián)合治療的方式廣泛用于惡性腫瘤的治療。

      [1] 文亞平,高麗華,黎明.腫瘤與免疫系統(tǒng)的相互作用及腫瘤免疫治療新策略[J].中國(guó)腫瘤,2011,20(2):103-107.

      [2] Hanahan D,Weinberg R A.Hallmarks of cancer:The next generation[J].Cell,2011,144(5):646-674.

      [3] Greaves M,Maley C C.Clonal evolution in cancer[J].Nature,2012,481(7381):306-313.

      [4] 王盛典,賈明明.腫瘤免疫微環(huán)境在腫瘤常規(guī)治療效應(yīng)中的作用[J].中國(guó)腫瘤生物治療雜志,2012,19(3):229-238.

      [5] Galluzzi L,Buqué A,Kepp O,et al.Immunological effects of conventional chemotherapy and targeted anticancer agents[J].Cancer Cell,2015,28(6):690-714.

      [6] Da Silva C G,Rueda F,L?wik C W,et al.Combinatorial prospects of nano-targeted chemoimmunotherapy[J].Biomaterials,2016,83:308-320.

      [7] Galluzzi L,Senovilla L,Zitvogel L,et al.The secret ally:Immunostimulation by anticancer drugs[J].Nat Rev Drug Discov,2012,11(3):215-233.

      [8] Zou W P.Immunosuppressive networks in the tumour environment and their therapeutic relevance[J].Nat Rev Cancer,2005,5(4):263-274.

      [9] Pfirschke C,Engblom C,Rickelt S,et al.Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy[J].Immunity,2016,44(2):343-354.

      [10] Bai X F,Liu J,Li O,et al.Antigenic drift as a mechanism for tumor evasion of destruction by cytolytic T lymphocytes[J].J Clin Invest,2003,111(10):1487-1496.

      [11] Algarra I,García-Lora A,Cabrera T,et al.The selection of tumor variants with altered expression of classical and nonclassical MHC class Ⅰ molecules:Implications for tumor immune escape[J].Cancer Immunol Immunother,2004,53(10):904-910.

      [12] Wang S D,Li H Y,Li B H,et al.The role of CTLA-4 and PD-1 in anti-tumor immune response and their potential efficacy against osteosarcoma[J].Int Immunopharmacol,2016,38:81-89.

      [13] Cheng C,Qu Q X,Shen Y,et al.Overexpression of B7-H4 in tumor infiltrated dendritic cells[J].J Immunoassay Immunochem,2011,32(4):353-364.

      [14] Blank C,Kuball J,Voelkl S,et al.Blockade of PD-L1(B7-H1)augments human tumor-specific T cell responsesinvitro[J].Int J Cancer,2006,119(2):317-327.

      [15] Rabinovich G A,Gabrilovich D,Sotomayor E M.Immunosuppressive strategies that are mediated by tumor cells[J].Annu Rev Immunol,2007,25:267-296.

      [16] Zulfiqar B,Mahroo A,Nasir K,et al.Nanomedicine and cancer immunotherapy:Focus on indoleamine 2,3-dioxygenase inhibitors[J].Onco Targets Ther,2017,10:463-476.

      [17] Makkouk A,Weiner G.Cancer immunotherapy and breaking immune tolerance-new approaches to an old challenge[J].Cancer Res,2015,75(1):5-10.

      [18] Joyce J A,F(xiàn)earon D T.T cell exclusion,immune privilege,and the tumor microenvironment[J].Science,2015,348(6230):74-80.

      [19] Zheng Y,Tang L,Mabardi L,et al.Enhancing adoptive cell therapy of cancer through targeted delivery of small-molecule immunomodulators to internalizing or non-internalizing receptors[J].ACS Nano,2017,Doi:10.1021/acsnano.7b00078.

      [20] Balkwill F.Tumour necrosis factor and cancer[J].Nat Rev Cancer,2009,9(5):361-371.

      [21] Pardoll D M.The blockade of immune checkpoints in cancer immunotherapy[J].Nat Rev Cancer,2012,12(4):252-264.

      [22] Gavalas N G,Tsiatas M,Tsitsilonis O,et al.Vegf directly suppresses activation of T cells from ascites secondary to ovarian cancer via vegf receptor type 2[J].Br J Cancer,2012,107(11):1869-1875.

      [23] Haque A,Banik N L,Ray S K.Emerging role of combination of all-trans retinoic acid and interferon-gamma as chemoimmunotherapy in the management of human glioblastoma[J].Neurochem Res,2007,32(12):2203-2209.

      [24] Kullberg M,Martinson H,Mann K,et al.Complement C3 mediated targeting of liposomes to granulocytic myeloid derived suppressor cells[J].Nanomedicine,2015,11(6):1355-1363.

      [25] Gabrilovich D I,Nagaraj S.Myeloid-derived suppressor cells as regulators of the immune system[J].Nat Rev Immunol,2009,9(3):162-174.

      [26] Larmonier N,Marron M,Zeng Y,et al.Tumor-derived CD4(+)CD25(+)regulatory T cell suppression of dendritic cell function involves TGF-beta and IL-10.[J].Cancer Immunol Immunother,2007,56(1):48-59.

      [27] Wu A,Wei J,Kong L,et al.Glioma cancer stem cells induce immunosuppressive macrophages/microglia[J].Neuro Oncol,2010,12(11):1113-1125.

      [28] Bloch O,Crane C A,Kaur R,et al.Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages[J].Clin Cancer Res,2013,19(12):3165-3175.

      [29] Gottfried E,Kreutz M,Mackensen A.Tumor-induced modulation of dendritic cell function[J].Cytokine Growth Factor Rev,2008,19(1):65-77.

      [30] Iwata-Kajihara T,Sumimoto H,Kawamura N,et al.Enhanced cancer immunotherapy using STAT3-depleted dendritic cells with high Th1-inducing ability and resistance to cancer cell-derived inhibitory factors[J].J Immunol,2011,187(1):27-36.

      [31] 沈夢(mèng),任秀寶.B淋巴細(xì)胞參與腫瘤免疫抑制機(jī)制的研究進(jìn)展[J].中國(guó)腫瘤生物治療雜志,2016,23(1):135-139.

      [32] 王運(yùn)剛,王勝軍.外泌體在免疫抑制性腫瘤微環(huán)境形成中的作用[J].細(xì)胞與分子免疫學(xué)雜志,2015,31(10):1417-1420.

      [33] Adair S J,Hogan K T.Treatment of ovarian cancer cell lines with 5-aza-2′-deoxycytidine upregulates the expression of cancer-testis antigens and class Ⅰ major histocompatibility complex-encoded molecules[J].Cancer Immunol Immunother,2009,58(4):589-601.

      [34] Natsume A,Wakabayashi T,Tsujimura K,et al.The DNA demethylating agent 5-aza-2′-deoxycytidine activatesNY-ESO-1 antigenicity in orthotopic human glioma[J].Int J Cancer,2008,122(11):2542-2553.

      [35] Kim T G,Kim C H,Park J S,et al.Immunological factors relating to the antitumor effect of temozolomide chemoimmunotherapy in a murine glioma model[J].Clin Vaccine Immunol,2010,17(1):143-153.

      [36] Ma Y,Adjemian S,Mattarollo S R,et al.Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells[J].Immunity,2013,38(4):729-741.

      [37] Spisek R,Charalambous A,Mazumder A,et al.Bortezomib enhances dendritic cell(DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells:therapeutic implications[J].Blood,2007,109(11):4839-4845.

      [38] Armeanu S,Krusch M,Baltz K M,et al.Direct and natural killer cell-mediated antitumor effects of low-dose bortezomib in hepatocellular carcinoma[J].Clin Cancer Res,2008,14(11):3520-3528.

      [39] Soriani A,Zingoni A,Cerboni C,et al.ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype[J].Blood,2009,113(15):3503-3511.

      [40] Liu W M,F(xiàn)owler D W,Smith P,et al.Pre-treatment with chemotherapy can enhance the antigenicity and immunogenicity of tumours by promoting adaptive immune responses[J].Br J Cancer,2010,102(1):115-123.

      [41] Ramakrishnan R,Assudani D,Nagaraj S,et al.Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice[J].J Clin Invest,2010,120(4):1111-1124.

      [42] Shurin G V,Tourkova I L,Kaneno R,et al.Chemotherapeutic agents in noncytotoxic concentrations increase antigen presentation by dendritic cells via an IL-12-dependent mechanism[J].J Immunol,2009,183(1):137-144.

      [43] Krysko D V,Garg A D,Kaczmarek A,et al.Immunogenic cell death and damps in cancer therapy[J].Nat Rev Cancer,2012,12(12):860-875.

      [44] Kroemer G,Galluzzi L,Kepp O,et al.Immunogenic cell death in cancer therapy[J].Annu Rev Immunol,2013,31(1):51-72.

      [45] Soeda A,Morita-Hoshi Y,Makiyama H,et al.Regular dose of gemcitabine induces an increase in CD14+monocytes and CD11c+dendritic cells in patients with advanced pancreatic cancer[J].Jpn J Clin Oncol,2009,39(12):797-806.

      [46] Haggerty T J,Dunn I S,Rose L B,et al.Topoisomerase inhibitors modulate expression of melanocytic antigens and enhance T cell recognition of tumor cells[J].Cancer Immunol Immunother,2011,60(1):133-144.

      [47] Pinzon-Charry A,Schmidt C W,Lopez J A.The key role of CD40 ligand in overcoming tumor-induced dendritic cell dysfunction[J].Breast Cancer Res,2006,8(1):402.

      [48] Motyka B,Korbutt G,Pinkoski M J,et al.Mannose 6-phosphate/insulin-like growth factor Ⅱ receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis[J].Cell,2000,103(3):491-500.

      [49] Ghebeh H,Lehe C,Barhoush E,et al.Doxorubicin downregulates cell surface B7-H1 expression and upregulates its nuclear expression in breast cancer cells:role of B7-H1 as an anti-apoptotic molecule[J].Breast Cancer Res,2010,12(4):R48.

      [50] Sistigu A,Yamazaki T,Vacchelli E,et al.Cancer cell-autonomous contribution of typeI interferon signaling to the efficacy of chemotherapy[J].Nat Med,2014,20(11):1301-1309.

      [51] Ma Y,Aymeric L,Locher C,et al.Contribution of IL-17-producing γδ T cells to the efficacy of anticancer chemotherapy[J].J Exp Med,2011,208(3):491-503.

      [52] Ishizaki H,Manuel E R,Song G Y,et al.Modified vaccinia ankara expressing survivin combined with gemcitabine generates specific antitumor effects in a murine pancreatic carcinoma model[J].Cancer Immunol Immunother,2011,60(1):99-109.

      [53] Kanterman J,Sade-Feldman M,Biton M,et al.Adverse immunoregulatory effects of 5FU and CPT11 chemotherapy on myeloid-derived suppressor cells and colorectal cancer outcomes[J].Cancer Res,2014,74(21):6022-6035.

      [54] Kodumudi K N,Woan K,Gilvary D L,et al.A novel chemoimmunomodulating property of docetaxel:Suppression of myeloid-derived suppressor cells in tumor bearers[J].Clin Cancer Res,2010,16(18):4583-4594.

      [55] Kusmartsev S,Cheng F,Yu B,et al.All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination[J].Cancer Res,2003,63(15):4441-4449.

      [56] Mirza N,F(xiàn)ishman M,F(xiàn)ricke I,et al.All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients[J].Cancer Res,2006,66(18):9299-9307.

      [57] Beyer M,Kochanek M,Darabi K,et al.Reduced frequencies and suppressive function of CD4+CD25hiregulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine[J].Blood,2005,106(6):2018-2025.

      [58] Banissi C,Ghiringhelli F,Chen L,et al.Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model[J].Cancer Immunol Immunother,2009,58(10):1627-1634.

      [59] Lutsiak M E C,Semnani R T,De Pascalis R,et al.Inhibition of CD4+25+T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide[J].Blood,2005,105(7):2862-2868.

      [60] Liu N,Zheng Y,Zhu Y,et al.Selective impairment of CD4+CD25+Foxp3+regulatory T cells by paclitaxel is explained by Bcl-2/Bax mediated apoptosis[J].Int Immunopharmacol,2011,11(2):212-219.

      [61] Shree T,Olson O C,Elie B T,et al.Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer[J].Genes Dev,2011,25(23):2465-2479.

      [62] Mitchem J B,Brennan D J,Knolhoff B L,et al.Targeting tumor-infiltrating macrophages decreases tumor-initiating cells,relieves immunosuppression and improves chemotherapeutic responses[J].Cancer Res,2013,73(3):1128-1141.

      [63] Hughes R,Qian B Z,Rowan C,et al.Perivascular M2 macrophages stimulate tumor relapse after chemotherapy[J].Cancer Res,2015,75(17):3479-3491.

      [64] Jeong S K,Yang K,Park Y S,et al.Interferon gamma induced by resveratrol analog,HS-1793,reverses the properties of tumor associated macrophages[J].Int Immunopharmacol,2014,22(2):303-310.

      [65] Na Y R,Yoon Y N,Son D I,et al.Cyclooxygenase-2 inhibition blocks m2 macrophage differentiation and suppresses metastasis in murine breast cancer model[J].PLoS One,2013,8(5):e63451.

      [66] Mira E,Carmona-Rodríguez L,Tardáguila M,et al.A lovastatin-elicited genetic program inhibits M2 macrophage polarization and enhances T cell infiltration into spontaneous mouse mammary tumors[J].Oncotarget,2013,4(12):2288-2301.

      [67] Germano G,F(xiàn)rapolli R,Belgiovine C,et al.Role of macrophage targeting in the antitumor activity of trabectedin[J].Cancer Cell,2013,23(2):249-262.

      [68] Zhang W,Zhu X D,Sun H C,et al.Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects[J].Clin Cancer Res,2010,16(13):3420-3430.

      [69] Huang Y,Goel S,Duda D G,et al.Vascular normalization as an emerging strategy to enhance cancer immunotherapy[J].Cancer Res,2013,73(10):2943-2948.

      [70] Emblem K E,Mouridsen K,Bjornerud A,et al.Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy[J].Nat Med,2013,19(9):1178-1183.

      [71] Sorensen A G,Emblem K E,Polaskova P,et al.Increased survival of glioblastoma patients who respond to anti-angiogenic therapy with elevated blood perfusion[J].Cancer Res,2012,72(2):402-407.

      [72] Voron T,Marcheteau E,Pernot S,et al.Control of the immune response by pro-angiogenic factors[J].Front Oncol,2014,4:70.

      [73] 李星宇,梁婧,李巖.血管內(nèi)皮抑素協(xié)同腫瘤特異性DC-T細(xì)胞的抗腫瘤效應(yīng)[J].山東大學(xué)學(xué)報(bào):醫(yī)學(xué)版,2015,(7):19-23,28.

      [74] 李莎,李巖,梁婧,等.DC-CIK聯(lián)合化療治療結(jié)腸癌的臨床研究[J].中國(guó)免疫學(xué)雜志,2012,(9):835-839.

      [75] Tartour E,Pere H,Maillere B,et al.Angiogenesis and immunity:A bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy[J].Cancer Metastasis Rev,2011,30(1):83-95.

      [76] Lesterhuis W J,Punt C J A,Hato S V,et al.Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice[J].J Clin Invest,2011,121(8):3100-3108.

      [77] Tesniere A,Schlemmer F,Boige V,et al.Immunogenic death of colon cancer cells treated with oxaliplatin[J].Oncogene,2009,29(4):482-491.

      [78] Alizadeh D,Trad M,Hanke N T,et al.Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer[J].Cancer Res,2014,74(1):104-118.

      [79] Sevko A,Michels T,Vrohlings M,et al.Antitumor effect of paclitaxel is mediated by inhibition of myeloid-derived suppressor cells and chronic inflammation in the spontaneous melanoma model[J].J Immunol,2013,190(5):2464-2471.

      [80] Hu J,Kinn J,Zirakzadeh A A,et al.The effects of chemotherapeutic drugs on human monocyte-derived dendritic cell differentiation and antigen presentation[J].Clin Exp Immunol,2013,172(3):490-499.

      [81] Kang T H,Mao C P,Lee S Y,et al.Chemotherapy acts as an adjuvant to convert the tumor microenvironment into a highly permissive state for vaccination-induced antitumor immunity[J].Cancer Res,2013,73(8):2493-2504.

      [82] Chang C L,Hsu Y T,Wu C C,et al.Dose-dense chemotherapy improves mechanisms of antitumor immune response[J].Cancer Res,2013,73(1):119-127.

      [83] Bruchard M,Mignot G,Derangere V,et al.Chemotherapy-triggered cathepsinB release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth[J].Nat Med,2013,19(1):57-64.

      [84] Mundy-Bosse B L,Lesinski G B,Jaime-Ramirez A C,et al.Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice[J].Cancer Res,2011,71(15):5101-5110.

      [85] Geary S M,Lemke C D,Lubaroff D M,et al.The combination of a low-dose chemotherapeutic agent,5-fluorouracil,and an adenoviral tumor vaccine has a synergistic benefit on survival in a tumor model system[J].PLoS One,2013,8(6):e67904.

      [86] Hodge J W,Garnett C T,F(xiàn)arsaci B,et al.Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death[J].Int J Cancer,2013,133(3):624-636.

      [87] Schiavoni G,Sistigu A,Valentini M,et al.Cyclophosphamide synergizes with type Ⅰ interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis[J].Cancer Res,2011,71(3):768-778.

      [88] Liu J Y,Wu Y,Zhang X S,et al.Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine[J].Cancer Immunol Immunother,2007,56(10):1597-1604.

      [89] Kaneno R,Shurin G V,Tourkova I L,et al.Chemomodulation of human dendritic cell function by antineoplastic agents in low noncytotoxic concentrations[J].J Transl Med,2009,7:58.

      [90] Desar I M E,Jacobs J F M,Hulsbergen-van de Kaa C A,et al.Sorafenib reduces the percentage of tumour infiltrating regulatory T cells in renal cell carcinoma patients[J].Int J Cancer,2011,129(2):507-512.

      [91] Hipp M M,Hilf N,Walter S,et al.Sorafenib,but not sunitinib,affects function of dendritic cells and induction of primary immune responses[J].Blood,2008,111(12):5610-5620.

      [92] Ko J S,Zea A H,Rini B I,et al.Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients[J].Clin Cancer Res,2009,15(6):2148-2157.

      [93] Xin H,Zhang C,Herrmann A,et al.Sunitinib inhibition ofSTAT3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells[J].Cancer Res,2009,69(6):2506-2513.

      [94] Dalton J E,Maroof A,Owens B M J,et al.Inhibition of receptor tyrosine kinases restores immunocompetence and improves immune-dependent chemotherapy against experimental leishmaniasis in mice[J].J Clin Invest,2010,120(4):1204-1216.

      [95] Thomas-Schoemann A,Batteux F,Mongaret C,et al.Arsenic trioxide exerts antitumor activity through regulatory T cell depletion mediated by oxidative stress in a murine model of colon cancer[J].J Immunol,2012,189(11):5171-5177.

      [96] Deaglio S,Canella D,Baj G,et al.Evidence of an immunologic mechanism behind the therapeutical effects of arsenic trioxide(As2O3)on myeloma cells[J].Leuk Res,2001,25(3):227-235.

      [97] Baj G,Arnulfo A,Deaglio S,et al.Arsenic trioxide and breast cancer:Analysis of the apoptotic,differentiative and immunomodulatory effects[J].Breast Cancer Res Treat,2002,73(1):61-73.

      [98] Ghansah T,Vohra N,Kinney K,et al.Dendritic cell immunotherapy combined with gemcitabine chemotherapy enhances survival in a murine model of pancreatic carcinoma[J].Cancer Immunol Immunother,2013,62(6):1083-1091.

      [99] Zhao Y,Huo M,Xu Z,et al.Nanoparticle delivery of CDDO-Me remodels the tumor microenvironment and enhances vaccine therapy for melanoma[J].Biomaterials,2015,68:54-66.

      (2017-03-03 收稿)

      *湖北省自然科學(xué)基金資助項(xiàng)目(No.2015CFB492)

      R979.1

      10.3870/j.issn.1672-0741.2017.03.023

      孔 苗,女,1993年生,醫(yī)學(xué)碩士,E-mail:459893009@qq.com

      △通訊作者,Corresponding author,E-mail:tansongwei@gmail.com

      猜你喜歡
      免疫抑制抗原分子
      豬免疫抑制性疾病的病因、發(fā)病特點(diǎn)及防控措施
      分子的擴(kuò)散
      防控豬群免疫抑制的技術(shù)措施
      “精日”分子到底是什么?
      新民周刊(2018年8期)2018-03-02 15:45:54
      米和米中的危險(xiǎn)分子
      丹參總酚酸對(duì)大鼠缺血性腦卒中后免疫抑制現(xiàn)象的改善作用
      梅毒螺旋體TpN17抗原的表達(dá)及純化
      臭氧分子如是說(shuō)
      結(jié)核分枝桿菌抗原Lppx和MT0322人T細(xì)胞抗原表位的多態(tài)性研究
      APOBEC-3F和APOBEC-3G與乙肝核心抗原的相互作用研究
      新绛县| 河津市| 遵义市| 五河县| 华亭县| 辽宁省| 遵义市| 古浪县| 牙克石市| 洪洞县| 凤阳县| 鹤庆县| 沁源县| 项城市| 陕西省| 灵寿县| 革吉县| 平原县| 蒙自县| 罗平县| 蒲城县| 深州市| 瓦房店市| 康平县| 凌源市| 西乌珠穆沁旗| 平邑县| 新野县| 汝南县| 邓州市| 洪雅县| 揭阳市| 邹城市| 荆州市| 通化县| 西宁市| 井研县| 武陟县| 年辖:市辖区| 沈丘县| 扶绥县|