于馨洋 邵寧匡 洪宇
[摘要] 非酒精性脂肪性肝病(NAFLD)是肝臟疾病進(jìn)展,2型糖尿?。═2DM)、心血管疾病的獨(dú)立危險(xiǎn)因素。T2DM與NAFLD具有共同發(fā)病機(jī)制而常合并出現(xiàn)。肝臟脂肪蓄積和線粒體功能障礙是T2DM合并NAFLD發(fā)病機(jī)制的重要環(huán)節(jié)。肝細(xì)胞脂質(zhì)自噬介導(dǎo)的脂代謝調(diào)節(jié)與線粒體自噬介導(dǎo)的線粒體質(zhì)量調(diào)控是疾病治療的潛在靶點(diǎn)。然而,自噬被認(rèn)為是一把雙刃劍,在疾病發(fā)展中自噬活性動(dòng)態(tài)變化,適度自噬介導(dǎo)肝臟保護(hù),但過(guò)度和衰竭的自噬加重肝臟損傷。自噬在疾病中的動(dòng)態(tài)調(diào)控機(jī)制亟待闡明。本文旨在探討調(diào)節(jié)自噬對(duì)T2DM合并NAFLD治療的潛在價(jià)值,以期為疾病防治提供新靶向。
[關(guān)鍵詞] 非酒精性脂肪性肝病;2型糖尿??;脂質(zhì)自噬;線粒體自噬
[中圖分類(lèi)號(hào)] R58 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2017)05(c)-0043-04
[Abstract] Non-alcoholic fatty liver disease (NAFLD) is an independent risk factor for advanced liver disease, type 2 diabetes mellitus (T2DM), and cardiovascular diseases. T2DM is always accompanied by NAFLD as result of a common pathogenesis. Hepatic lipid accumulation and mitochondrial dysfunction proved to be two essential mechanisms for the pathogenesis of T2DM with NAFLD. Regulation of lipophagy and mitophagy in hepatocyte are potential targets for disease therapy. However, autophagy is considered to be a double-edged sword. Moderate autophagy protects liver, yet excessive or failure one aggravates its injury. The evolution of NAFLD could be associated with dynamic regulation of autophagy and additional studies are required. This review aims to investigate the potential value of autophagy regulation in the treatment of NAFLD in type 2 diabetes mellitus, in order to provide innovative targets for therapeutic intervention.
[Key words] Non-alcoholic fatty liver disease; Type 2 diabetes mellitus; Lipophagy; Mitophagy
非酒精性脂肪性肝?。╪on-alcoholic fatty liver disease,NAFLD)是一種與胰島素抵抗(IR)、脂質(zhì)代謝紊亂、慢性炎癥以及遺傳易感性密切相關(guān)的獲得性代謝應(yīng)激性肝損傷,疾病譜包括單純性脂肪肝、脂肪性肝炎(steatohepatitis,NASH)及其相關(guān)纖維化、肝硬化[1]。NAFLD是肝臟疾病進(jìn)展,2型糖尿?。╰ype 2 diabetes mellitus,T2DM)、心血管疾病的獨(dú)立危險(xiǎn)因素[2]。T2DM與NAFLD因具有共同發(fā)病機(jī)制而常伴隨發(fā)生???cè)巳褐蠳AFLD發(fā)病率達(dá)20%~30%,T2DM人群中脂肪肝發(fā)病率高達(dá)60%~80%[3]。T2DM合并NAFLD發(fā)生,進(jìn)一步惡化糖代謝,增加NASH發(fā)病風(fēng)險(xiǎn),加速向肝硬化、肝癌進(jìn)展,形成惡性循環(huán),最終導(dǎo)致嚴(yán)重糖代謝紊亂和不良肝病結(jié)局。研究表明,肝臟脂肪蓄積和線粒體功能障礙是T2DM合并NAFLD發(fā)病機(jī)制的重要環(huán)節(jié)[4]。自噬是細(xì)胞實(shí)現(xiàn)自身代謝需要和細(xì)胞器更新的重要機(jī)制。近年研究證實(shí),肝細(xì)胞脂質(zhì)自噬介導(dǎo)肝脂代謝調(diào)節(jié)[5],線粒體自噬調(diào)控線粒體質(zhì)量以維持細(xì)胞穩(wěn)態(tài)[6]。細(xì)胞自噬與糖尿病和NAFLD密切相關(guān)[7]。自噬在疾病發(fā)展的動(dòng)態(tài)調(diào)控機(jī)制亟待闡明。基于細(xì)胞自噬途徑治療T2DM合并NAFLD具有潛在的應(yīng)用價(jià)值。
1 T2DM合并NAFLD的發(fā)病機(jī)制
遺傳易感性和環(huán)境因素作為T(mén)2DM和NAFLD發(fā)病的“共同土壤”,與T2DM代謝紊亂的機(jī)體內(nèi)環(huán)境相互作用加速NAFLD的發(fā)生發(fā)展,肝病發(fā)生進(jìn)一步惡化糖代謝,以此形成惡性循環(huán)[8]。在T2DM早期階段,IR及相對(duì)胰島素缺乏導(dǎo)致脂肪組織脂解增加,外周組織脂肪酸利用減少,進(jìn)而增加肝臟脂肪酸攝取;代償性高胰島素血癥和選擇性肝臟IR導(dǎo)致肝臟脂質(zhì)合成增加、脂肪氧化分解及脂肪肝外轉(zhuǎn)運(yùn)減弱,加重肝脂蓄積。疾病進(jìn)展,脂肪蓄積超負(fù)荷,引發(fā)脂毒性損傷,與高糖血癥、糖基化產(chǎn)物引發(fā)的糖毒性,共同導(dǎo)致細(xì)胞線粒體嚴(yán)重?fù)p傷。肝細(xì)胞線粒體受損,一方面使脂肪酸氧化分解和脂質(zhì)肝外轉(zhuǎn)運(yùn)功能障礙,進(jìn)一步加重肝臟脂肪蓄積;另一方面,誘導(dǎo)氧化應(yīng)激、內(nèi)質(zhì)網(wǎng)應(yīng)激、炎癥-免疫反應(yīng)甚至細(xì)胞死亡的發(fā)生。最終導(dǎo)致單純性脂肪肝向脂肪性肝炎、肝纖維化、肝壞死發(fā)展[9]。因此,肝臟脂肪蓄積和線粒體功能障礙是T2DM合并NAFLD發(fā)病機(jī)制的重要環(huán)節(jié)。
2 自噬及其作用
自噬是真核細(xì)胞高度保守的溶酶體降解途徑,藉以實(shí)現(xiàn)自身代謝需求和細(xì)胞器更新,維持細(xì)胞穩(wěn)態(tài)。主要分為巨自噬、微自噬和分子伴侶介導(dǎo)的自噬3種形式[10]。其中,巨自噬的過(guò)程大致分為3個(gè)階段:細(xì)胞感受內(nèi)外環(huán)境改變,胞質(zhì)中形成雙層膜結(jié)構(gòu)的自噬前體,并逐漸延長(zhǎng)以包繞欲降解成分形成自噬體;自噬體與溶酶體融合成自噬溶酶體,降解內(nèi)成分;自噬體膜脫落循環(huán)再利用。這一過(guò)程受到多種營(yíng)養(yǎng)、生長(zhǎng)因子、激素和應(yīng)激因素以及一系列信號(hào)分子的復(fù)雜調(diào)控[11]。自噬還具有一定的底物選擇性,“脂質(zhì)自噬”“線粒體自噬”“內(nèi)質(zhì)網(wǎng)自噬”“病原體自噬”等概念相繼出現(xiàn)。自噬已被證實(shí)參與了炎癥、腫瘤、神經(jīng)退行性變及心臟病等多種重要過(guò)程[12]。近年研究發(fā)現(xiàn),自噬還參與肝臟多種生理病理過(guò)程。自噬與NAFLD發(fā)病機(jī)制密切相關(guān),調(diào)控自噬潛在重要治療價(jià)值[7]。肝細(xì)胞脂質(zhì)自噬調(diào)節(jié)肝脂代謝,線粒體自噬維持線粒體質(zhì)量,二者靶向作用于兩大病理環(huán)節(jié)——肝臟脂肪蓄積和線粒體功能障礙,有望成為T(mén)2DM合并NAFLD治療新靶點(diǎn)[5,13-14]。
3 脂質(zhì)自噬與肝脂代謝調(diào)節(jié)
脂質(zhì)自噬是自噬泡包裹脂滴與溶酶體融合降解的過(guò)程,介導(dǎo)肝臟脂質(zhì)代謝調(diào)節(jié),改善肝內(nèi)脂肪蓄積[5]。Singh等[15]首次證實(shí)肝細(xì)胞內(nèi)自噬介導(dǎo)的脂滴分解過(guò)程——“脂質(zhì)自噬”概念應(yīng)運(yùn)而生。研究證實(shí),自噬作用縮小肝內(nèi)脂滴,減少肝內(nèi)脂肪含量,藥物抑制或特異性敲除肝自噬基因,加重肝內(nèi)脂肪蓄積[5,15]。藥物阻斷自噬可使肝內(nèi)脂肪酸氧化減弱、極低密度脂蛋白產(chǎn)出減少,激活自噬則效果相反[16]。另有實(shí)驗(yàn)顯示,肝細(xì)胞特異性自噬缺陷的小鼠模型,禁食處理后未表現(xiàn)明顯的肝脂肪變性,肝內(nèi)殘余脂滴及脂肪含量較野生型小鼠反減少[17-18]。自噬標(biāo)志蛋白LC3與脂滴共定位于禁食的野生型小鼠肝臟[17]。給予該模型小鼠限制性飲食,可緩解禁食誘導(dǎo)的肝脂肪變性,肝內(nèi)脂肪合成、脂肪酸氧化、脂質(zhì)輸出轉(zhuǎn)運(yùn)的相關(guān)蛋白表達(dá)均減少[18]。提出自噬的促進(jìn)肝脂肪合成作用。
值得注意的是,上述實(shí)驗(yàn)僅是應(yīng)用基因缺陷模型和禁食的干預(yù)方法,可能存在局限性。自噬是白色脂肪組織產(chǎn)生特征性大脂滴不可或缺的機(jī)制[19],實(shí)驗(yàn)誘導(dǎo)肝自噬基因缺陷過(guò)程中可能對(duì)脂肪組織潛在影響,進(jìn)而減少肝臟脂酸來(lái)源,影響實(shí)驗(yàn)結(jié)果。自噬促肝脂合成還是脂解尚存爭(zhēng)議。當(dāng)然,自噬是細(xì)胞一種環(huán)境適應(yīng)性反應(yīng),調(diào)節(jié)脂代謝同時(shí),受細(xì)胞內(nèi)外脂代謝水平影響。自噬促肝脂合成還是分解,亦或二者共存而隨細(xì)胞內(nèi)外環(huán)境動(dòng)態(tài)變化,待進(jìn)一步闡明。
4 線粒體自噬與肝細(xì)胞保護(hù)
線粒體自噬是細(xì)胞特異性自噬降解線粒體的過(guò)程,是調(diào)控線粒體質(zhì)量平衡和維持細(xì)胞穩(wěn)態(tài)的重要機(jī)制[6],分為3種:I型線粒體自噬類(lèi)似于經(jīng)典自噬,需PI3K-Ⅲ激活及自噬體裝配;Ⅱ型始于線粒體去極化,繼而PTEN誘導(dǎo)激酶1(PINK1)和Parkin活化,Bcl2/腺病毒E1B 19 kDa互作蛋白3(BNIP 3)表達(dá),和/或FUNDC 1激活。Ⅲ型稱為微線粒體自噬,有賴于線粒體源性囊泡的形成。前兩型去除整個(gè)受損線粒體,Ⅲ型選擇性清除線粒體受損區(qū)域或過(guò)氧化組分[20]。
NAFLD可能是一種線粒體疾病[4]。NASH的肝臟病理特點(diǎn)表現(xiàn)為異常線粒體的大量蓄積,提示線粒體損傷過(guò)多以及受損線粒體清除減弱,在疾病進(jìn)展中可能發(fā)揮重要作用。線粒體功能障礙影響肝臟脂質(zhì)代謝、促進(jìn)氧自由基生產(chǎn)和脂質(zhì)過(guò)氧化、誘導(dǎo)細(xì)胞因子釋放、觸發(fā)線粒體凋亡途徑。線粒體自噬清除受損線粒體,調(diào)節(jié)線粒體質(zhì)量平衡[6]。肝細(xì)胞特異性敲除自噬基因Atg 5,可致敏細(xì)胞易于發(fā)生甲萘醌誘導(dǎo)的氧化應(yīng)激損傷和死亡,可能與能量耗竭和線粒體細(xì)胞色素c釋放密切相關(guān)[21]。另外,氧化應(yīng)激可誘導(dǎo)炎性因子產(chǎn)生,引發(fā)炎癥和纖維化反應(yīng),加速NASH進(jìn)展[22]。《Nature》曾發(fā)表研究成果:線粒體來(lái)源的活性氧(ROS)是調(diào)控NLRP 3炎癥小體活化的關(guān)鍵信號(hào),自噬及選擇性線粒體自噬調(diào)控線粒體質(zhì)量,減少受損線粒體蓄積,防止ROS誘導(dǎo)的NLRP3炎癥小體活化;自噬缺失加劇NLRP 3炎癥小體活化[23]。目前,NASH發(fā)病機(jī)制尚未被完全闡明,線粒體自噬參與NASH調(diào)節(jié)的機(jī)制研究有待深入展開(kāi)。
藥物增強(qiáng)線粒體自噬,減輕肝細(xì)胞損傷,對(duì)NAFLD潛在治療價(jià)值[5]。應(yīng)用二甲雙胍治療肥胖小鼠(NAFL遺傳模型),可能通過(guò)抑制胞漿蛋白P53對(duì)Parkin線粒體易位的阻礙作用,增強(qiáng)線粒體自噬途徑促肝細(xì)胞存活[24]。調(diào)控Parkin蛋白表達(dá)和/或線粒體易位可能是NAFLD的潛在治療靶點(diǎn)[14]。
5 自噬的動(dòng)態(tài)調(diào)控
自噬是細(xì)胞對(duì)代謝應(yīng)激和環(huán)境變化的一種適應(yīng)性反應(yīng),其活性易受到細(xì)胞內(nèi)外環(huán)境因素的影響。自噬活性在NAFLD發(fā)展中動(dòng)態(tài)變化,于疾病不同階段呈現(xiàn)不同效應(yīng)。疾病初期,肝細(xì)胞的基礎(chǔ)性自噬及早期誘導(dǎo)性自噬,清除過(guò)多蓄積的脂質(zhì)和受損細(xì)胞器,作為細(xì)胞重要保護(hù)機(jī)制,且自噬活性漸增強(qiáng)[15];疾病進(jìn)展,這種保護(hù)性自噬機(jī)制受損。肝細(xì)胞內(nèi)過(guò)多脂質(zhì)可阻礙自噬體與溶酶體融[25],高胰島素血癥可通過(guò)下調(diào)FOXO1抑制自噬相關(guān)基因轉(zhuǎn)錄[26]。當(dāng)T2DM合并NAFLD,自噬抑制更為明顯。肝細(xì)胞自噬性脂解作用減弱,加劇脂質(zhì)蓄積、脂毒性以及線粒體損傷,而線粒體自噬亦減弱,增強(qiáng)氧化應(yīng)激、炎性反應(yīng),肝細(xì)胞損傷、壞死進(jìn)行性加重。另外,脂質(zhì)蓄積、線粒體損傷、氧化應(yīng)激、內(nèi)質(zhì)網(wǎng)應(yīng)激、炎癥均可影響胰島素信號(hào)傳導(dǎo),誘發(fā)加重肝臟IR,進(jìn)一步加重脂質(zhì)蓄積,形成惡性循環(huán)[27]。肝細(xì)胞自噬作用缺陷,導(dǎo)致內(nèi)質(zhì)網(wǎng)應(yīng)激增強(qiáng)、胰島素信號(hào)傳導(dǎo)受阻,恢復(fù)自噬蛋白表達(dá),可改善肝臟IR[28]。隨疾病發(fā)展,細(xì)胞內(nèi)外多種因素復(fù)雜調(diào)控,保護(hù)性自噬受損,過(guò)度或衰竭的自噬增多,引發(fā)肝細(xì)胞自噬性凋亡。這種死亡又能夠誘導(dǎo)IL-6、IL-8、IL-10及腫瘤壞死因子(TNF)等炎性細(xì)胞因子的產(chǎn)生,促進(jìn)炎性反應(yīng)[29]。總之,自噬在疾病進(jìn)展中發(fā)揮動(dòng)態(tài)調(diào)控作用。自噬作為保護(hù)機(jī)制還是惡化因素,可能取決于疾病進(jìn)展的不同階段以及肝細(xì)胞內(nèi)外環(huán)境的變化。因此,疾病早期適度激活細(xì)胞自噬可能成為治療T2DM合并NAFLD的有效途徑。
6 靶向自噬治療
目前,研究證實(shí)了靶向自噬調(diào)控對(duì)NAFLD的潛在治療價(jià)值。應(yīng)用酰胺咪嗪或雷帕霉素處理NAFLD模型,可能通過(guò)增強(qiáng)脂質(zhì)自噬和線粒體自噬,減輕肝脂肪變性和肝細(xì)胞損傷[5,14]。咖啡因可通過(guò)抑制mTOR通路增強(qiáng)脂質(zhì)自噬并誘導(dǎo)線粒體β氧化相關(guān)基因表達(dá),最終減少肝內(nèi)脂肪含量[30]。甲狀腺激素可增強(qiáng)脂質(zhì)自噬以促進(jìn)肝內(nèi)脂肪分解,還可協(xié)同增強(qiáng)線粒體自噬和合成以維持平衡,改善NAFLD進(jìn)展[31]。薯蕷皂苷延緩NAFLD發(fā)展亦被證實(shí)與增強(qiáng)自噬相關(guān)[32]。異搏定降低肝細(xì)胞內(nèi)鈣離子水平,促進(jìn)自噬體與溶酶體融合,進(jìn)而減少肝脂含量,改善IR,延緩NASH進(jìn)展[33]。此外,某些降糖藥物也可表現(xiàn)肝臟獲益,其機(jī)制涉及自噬調(diào)節(jié)。胰高血糖素樣肽-1(GLP-1)類(lèi)似物能夠通過(guò)降低內(nèi)質(zhì)網(wǎng)應(yīng)激、增強(qiáng)細(xì)胞自噬,改善NAFLD[34];二甲雙胍也可通過(guò)增強(qiáng)自噬實(shí)現(xiàn)對(duì)NAFLD的緩解[35]。靶向細(xì)胞自噬調(diào)控治療T2DM合并NAFLD亟待深入探索。
7 小結(jié)
綜上,NAFLD與T2DM具有共同發(fā)病機(jī)制而常合并出現(xiàn)、相互促進(jìn)。肝臟脂肪蓄積和線粒體功能障礙是疾病發(fā)生發(fā)展的重要環(huán)節(jié)。肝細(xì)胞脂質(zhì)自噬調(diào)節(jié)肝脂代謝、線粒體自噬維持線粒體質(zhì)量,可減輕肝脂肪變、改善肝IR、保護(hù)肝細(xì)胞,延緩肝病進(jìn)展。自噬被認(rèn)為是一把雙刃劍,適當(dāng)?shù)淖允墒羌?xì)胞保護(hù)機(jī)制,過(guò)度或衰竭的自噬誘導(dǎo)細(xì)胞損傷、死亡。在T2DM合并NAFLD發(fā)展的不同階段,自噬活性動(dòng)態(tài)變化,呈現(xiàn)不同效應(yīng)。明確自噬途徑與疾病的動(dòng)態(tài)調(diào)控機(jī)制,關(guān)乎疾病靶向治療的可能性,有望為疾病的藥物研發(fā)開(kāi)辟新領(lǐng)域。
[參考文獻(xiàn)]
[1] Musso G,Gambino R,Cassader M,et al. Meta analysis:natural history of non-alcoholic fatty liver disease (NAFLD)and diagnostic accuracy of non-invasive tests for liver disease severity [J]. Ann Med,2011,43(8):617-649.
[2] Anstee QM,Targher G,Day CP. Progression of NAFLD to diabetes mellitus,cardiovascular disease or cirrhosis [J]. Nat Rev Gastroenterol Hepatol,2013,10(6):330-344.
[3] Vernon G,Baranova A,Younossi ZM. Systematic review:the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults [J]. Aliment Pharmacol Ther,2011,34(3):274-285.
[4] Nassir F,Ibdah JA. Role of mitochondria in nonalcoholic fatty liver disease [J]. Int J Mol Sci,2014,15(5):8713-8742.
[5] Lin CW,Zhang H,Li M,et al. Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice [J]. J Hepatol,2013,58(5):993-999.
[6] Rodriguez ES,Kai Y,Maldonado E, et al. Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes [J]. Autophagy,2009,5(8):1099-1106.
[7] Mao Y,Yu F,Wang J,et al. Autophagy:a new target for nonalcoholic fatty liver disease therapy [J]. Hepat Med,2016,8:27-37.
[8] Williams KH,Shackel NA,Gorrell MD,et al. Diabetes and nonalcoholic Fatty liver disease:a pathogenic duo [J]. Endocr Rev,2013,34(1):84-129.
[9] Bechmann LP,Hannivoort RA,Gerken G,et al. The interaction of hepatic lipid and glucose metabolism in liver diseases [J]. J Hepatol,2012,56(4):952-964.
[10] Klionsky DJ. Autophagy:from phenomenology to molecular understanding in less than a decade [J]. Nat Rev Mol Cell Biol,2007,8(11):931-937.
[11] Rabinowitz JD,White E. Autophagy and metabolism [J]. Science,2010,330(6009):1344-1348.
[12] Mehrpour M,Esclatine A,Beau I,et al. Autophagy in health and disease 1. Regulation and significance of autophagy:an overview [J]. Am J Physiol Cell Physiol,2010,298(4):C776-C785.
[13] Zhang Q,Li Y,Liang T,et al. ER stress and autophagy dysfunction contribute to fatty liver in diabetic mice [J]. Int J Biol Sci,2015,11(5):559-568.
[14] Eid N,Ito Y,Otsuki Y. Triggering of parkin mitochondrial translocation in mitophagy:implications for liver diseases [J]. Front Pharmacol,2016,7(18):100.
[15] Singh R,Kaushik S,Wang Y,et al. Autophagy regulates lipid metabolism [J]. Nature,2009,458(7242):1131-1135. [16] Skop V,Cahová M,Papácková Z,et al. Autophagy-lysosomal pathway is involved in lipid degradation in rat liver [J]. Physiol Res,2012,61(3):287-297.
[17] Shibata M,Yoshimura K,F(xiàn)uruya N,et al. The MAP1-LC3 conjugation system is involved in lipid droplet formation [J]. Biochem Biophys Res Commun,2009,382(2):419-423.
[18] Ma D,Molusky MM,Song J,et al. Autophagy deficiency by hepatic FIP200 deletion uncouples steatosis from liver injury in NAFLD [J]. Mol Endocrinol,2013,27(10):1643-1654.
[19] Zhang Y,Zeng X,Jin S. Autophagy in adipose tissue biology [J]. Pharmacol Res,2012,66(6):505-512.
[20] Lemasters JJ. Variants of mitochondrial autophagy:types 1 and 2 mitophagy and micromitophagy(Type 3) [J]. Redox Biol,2014,2:749-754.
[21] Wang Y,Singh R,Xiang Y,et al. Macroautophagy and chaperone-mediated autophagy are required for hepatocyte resistance to oxidant stress [J]. Hepatology,2010,52(1):266-277.
[22] Rolo AP,Teodoro JS,Palmeira CM. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis [J]. Free Radic Biol Med,2012,52(1):59-69.
[23] Zhou R,Yazdi AS,Menu P,et al. A role for mitochondria in NLRP3 inflammasome activation [J]. Nature,2011,469(7329):221-225.
[24] Song YM,Lee WK,Lee YH,et al. Metformin restores parkin-mediated mitophagy,suppressed by cytosolic p53 [J]. Int J Mol Sci,2016,17(1):E122.
[25] Koga H,Kaushik S,Cuervo AM. Altered lipid content inhibits autophagic vesicular fusion [J]. Faseb J,2010,24(8):3052-3065.
[26] Liu HY,Han J,Cao SY,et al. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia:inhibition of FoxO1-dependent expression of key autophagy genes by insulin [J]. J Biol Chem,2009,284(45):31484-31492.
[27] Yang L,Li P,F(xiàn)u S,et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance [J]. Cell Metab, 2010,11(6):467-478.
[28] Kim KH,Jeong YT,Oh H,et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf 21 as a mitokine [J]. Nat Med,2013,19(1):83-92.
[29] Petrovski G,Zahuczky G,Májai G,et al. Phagocytosis of cells dying through autophagy evokes a pro-inflammatory response in macrophages [J]. Autophagy,2007,3(5):509-511.
[30] Sinha RA,F(xiàn)arah BL,Singh BK,et al. Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice [J]. Hepatology,2014,59(4):1366-1380.
[31] Sinha RA,Yen PM. Thyroid hormone-mediated autophagy and mitochondrial turnover in NAFLD [J]. Cell Biosci,2016,6(1):46.
[32] Liu M,Xu L,Yin L,et al. Potent effects of dioscin against obesity in mice [J]. Sci Rep,2015,5:7973.
[33] Park HW,Lee JH. Calcium channel blockers as potential therapeutics for obesity-associated autophagy defects and fatty liver pathologies [J]. Autophagy,2014,10(12):2385-2386.
[34] Sharma S,Mells JE,F(xiàn)u PP,et al. GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy [J]. PLoS One,2011,6(9):e25269.
[35] Song YM,Lee YH,Kim JW,et al. Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway [J]. Autophagy,2015,11(1):46-59.
(收稿日期:2017-02-12 本文編輯:李岳澤)