常象春,趙萬春,徐佑德,王 濤,崔 晶
(1.山東科技大學(xué) 山東省沉積成礦作用與沉積礦產(chǎn)重點(diǎn)實(shí)驗(yàn)室,山東 青島 266590; 2.海洋國家實(shí)驗(yàn)室海洋礦產(chǎn)資源評價(jià)與探測技術(shù)功能實(shí)驗(yàn)室,山東 青島 266071; 3.中國石化 勝利油田 勘探開發(fā)研究院,山東 東營 257001;4.中國石化 勝利油田 魯明油田公司,山東 東營 257001)
注水開發(fā)過程中原油的生物降解與水洗作用
常象春1,2,趙萬春1,徐佑德3,王 濤4,崔 晶4
(1.山東科技大學(xué) 山東省沉積成礦作用與沉積礦產(chǎn)重點(diǎn)實(shí)驗(yàn)室,山東 青島 266590; 2.海洋國家實(shí)驗(yàn)室海洋礦產(chǎn)資源評價(jià)與探測技術(shù)功能實(shí)驗(yàn)室,山東 青島 266071; 3.中國石化 勝利油田 勘探開發(fā)研究院,山東 東營 257001;4.中國石化 勝利油田 魯明油田公司,山東 東營 257001)
注水開發(fā)是提高原油采收率的常用方法。為了探索注水開發(fā)過程中原油遭受的次生蝕變作用和組分變化規(guī)律,對典型注水開發(fā)的濟(jì)陽坳陷曲堤油田曲9油藏進(jìn)行了動態(tài)跟蹤和地球化學(xué)對比分析。研究結(jié)果表明,隨著注水開發(fā)過程的推進(jìn),原油族組成中飽和烴相對含量呈升高趨勢,而芳烴相對含量呈降低趨勢,體現(xiàn)出典型的水洗作用效應(yīng)。Pr/nC17和Ph/nC18比值呈現(xiàn)出先降低后升高,或先升高后降低的復(fù)雜變化,推測不僅受到水洗作用或生物降解的影響,還有類似地質(zhì)色層效應(yīng)的加入。C158β(H)-補(bǔ)身烷/C168β(H)-升補(bǔ)身烷逐漸升高,指向生物降解抑或水洗作用的蝕變,尚無法區(qū)分。三環(huán)萜烷/17α(H)-藿烷、C27重排/C27規(guī)則甾烷和甾烷/17α(H)-藿烷均呈現(xiàn)明顯增高趨勢, C31藿烷22R/C30藿烷(C31R/C30H)則呈現(xiàn)幅度較小的降低趨勢,均指示生物降解作用的結(jié)果。甲基菲指數(shù)(MPI1)、二苯并噻吩/菲(DBT/P)、C26三芳甾烷20S/(20S+20R)與C26/C28三芳甾烷(20S)基本保持不變,表明水驅(qū)過程中三芳甾烷并不受影響,菲系列和二苯并噻吩系列未表現(xiàn)出顯著的水溶性或抗生物降解能力差異。
注水開發(fā);水洗作用;生物降解;次生變化;原油;油藏地球化學(xué);曲堤油田,濟(jì)陽坳陷
原油的組成差異除受控于烴源巖有機(jī)相和成熟度外,運(yùn)聚成藏過程和成藏后經(jīng)歷的地球化學(xué)變化也會導(dǎo)致原油成分發(fā)生較大變化[1-3]。生物降解對原油的物理和分子特性的影響已眾所周知[4-7]。水洗作用通過地下水溶解并帶走原油中相對分子質(zhì)量低、溶解度高的化合物,導(dǎo)致輕烴的選擇性損失,特別是苯、甲苯和其他芳烴化合物的損失,從而改變了剩余原油的化學(xué)組分[5,8-10]。這二者通常伴隨發(fā)生,均對原油組成產(chǎn)生重要影響,且難以清晰區(qū)別開來[2,11-12]。
目前對于注水開發(fā)過程中原油遭受的次生蝕變作用研究較少,且主要集中對水洗效應(yīng)的闡述。水驅(qū)過程中原油發(fā)生什么樣的變化,與原油流動運(yùn)移效應(yīng)間有何聯(lián)系,只受水洗作用,還是同時(shí)存在生物降解影響?都需要進(jìn)一步研究。本文選擇曲堤油田曲9塊這一典型注水開發(fā)油藏,進(jìn)行動態(tài)跟蹤和系統(tǒng)的地球化學(xué)分析,以期探索注水開發(fā)過程中原油的蝕變過程和規(guī)律。
曲堤油田位于濟(jì)陽坳陷惠民凹陷臨南斜坡的曲堤鼻狀構(gòu)造上,北界是夏口斷層,南界為曲堤斷層,東靠白橋斷層,西部是夏南緩坡帶。曲9油藏是曲堤油田主力油藏,位于曲堤鼻狀構(gòu)造帶的東南部,受曲堤Ⅱ、Ⅲ號斷層控制,呈構(gòu)造平緩的狹長地壘式反向屋脊斷塊(圖1)。儲層為館三段砂質(zhì)辮狀河沉積的灰褐色油浸、油斑粉細(xì)砂巖,平均孔隙度為29.0%,平均滲透率為39210-3m2,屬高孔中滲儲層。油藏埋深1 175~1 250 m,地溫梯度32 ℃/km,壓力系數(shù)為1.0,含油面積是5.5 km2,地質(zhì)儲量是537.4×104t。
1995年2月曲斜9井館三段試油獲得日產(chǎn)16.0 t/d的工業(yè)油流,發(fā)現(xiàn)了曲9館三段油藏,隨即投入新建產(chǎn)能階段,經(jīng)歷了1997年1月至2005年7月天然能量開采后,2005年8月起投入注水開發(fā),進(jìn)行了二次差異化調(diào)整,并適時(shí)提液,2012年實(shí)施注采綜合調(diào)整,水驅(qū)開發(fā)效果逐步變好。至2013年11月,油井開井52口,注水井開井22口,日產(chǎn)油185 t/d,日注水平674 m3/d,綜合含水達(dá)79.1%。
圖1 曲堤油田區(qū)構(gòu)造位置(a)及采樣井位(b)Fig.1 Structural location of Quti oilfield (a) and distribution of sampling wells (b)
2.1 樣品采集
選擇了曲9油藏的12口注水開發(fā)井為研究對象,自2013年11月12日起,以每3~4個(gè)月為一采樣周期,動態(tài)采集井口原油。對于采集的36個(gè)原油樣品,首先采用正己烷沉淀脫去瀝青質(zhì),再在硅膠/氧化鋁固相層析柱上分離原油各組分,依次用正己烷、正己烷/二氯甲烷(1 ∶1)混合劑、二氯甲烷,洗脫出飽和烴、芳烴和非烴餾分,以備色譜-質(zhì)譜分析使用。
2.2 實(shí)驗(yàn)方法
1) 色譜/質(zhì)譜分析
色譜/質(zhì)譜分析使用Finnigan SSQ-710四極桿分析系統(tǒng),配置DB-5熔硅彈性柱(30 m×0.32 mm 內(nèi)徑)和IAIS數(shù)據(jù)處理系統(tǒng)。色譜條件:①對脂肪族餾分,色譜柱初始溫度為100 ℃,恒溫1min,以4 ℃/min升至220 ℃,再以2 ℃/min從220 ℃升至300 ℃,然后恒溫5min;②對于芳烴餾分,色譜柱初始溫度為80 ℃,恒溫1min,以3 ℃/min升至300 ℃,恒溫15min。載氣為He。質(zhì)譜條件:離子源采用電子轟擊(EI),電離電壓70 eV,發(fā)射電流300 μA,掃描范圍50~550 amu/s。
2) 穩(wěn)定碳同位素分析
穩(wěn)定碳同位素分析儀器為FLASH 2000 EA-MAT 253 IRMS,分析方法是將原油及其餾分在氧化反應(yīng)爐中燒成純CO2氣(980 ℃),用雙進(jìn)樣法與GBW04405參考?xì)獗容^測試給出相對PDB的值,誤差范圍為±0.1‰。
3.1 原油族組成
相同碳數(shù)的芳烴在水中的溶解度要比飽和烴高出幾個(gè)數(shù)量級,所以更容易通過水洗作用被地下水溶解帶走[22-23],進(jìn)而導(dǎo)致原油中芳烴含量降低[2]。微生物作用下,盡管支鏈烷烴最終也會被完全降解,但其抵抗生物降解的能力較直鏈烷烴要略強(qiáng)一些,具有兩個(gè)及以上芳環(huán)結(jié)構(gòu)和兩個(gè)以上碳取代基的芳烴具有更強(qiáng)的抗生物降解能力[24],生物降解的結(jié)果是使原油中飽和烴含量降低[2,25]。隨著注水開發(fā)的進(jìn)行,除Q9-P20井和Q9-NX44井原油表現(xiàn)出飽和烴和芳烴相對含量呈現(xiàn)降低趨勢外,其余的原油族組成中飽和烴百分含量升高0.77%~11.28%,芳烴百分含量降低3.06%~11.15%,呈現(xiàn)典型的水洗效應(yīng)[2],非烴與瀝青質(zhì)百分含量分別呈現(xiàn)先升高后降低、先降低后升高的變化特征(圖2;表1),表明一些重質(zhì)的極性化合物也在水驅(qū)過程中受到了次生改變。
3.2 生物標(biāo)志物參數(shù)
3.2.1 正構(gòu)烷烴和支鏈烷烴
曲9油藏注水采出的原油氣相色譜中,正構(gòu)烷烴損失嚴(yán)重,基線呈現(xiàn)顯著“UCM”鼓包,且原油中檢出豐富的25-降藿烷系列化合物,表明原油遭受到較強(qiáng)的生物降解蝕變[7,25-26]。不同時(shí)期采出的原油飽和烴豐度呈現(xiàn)減小趨勢,展示了注水開發(fā)對原油組成帶來的次生蝕變(圖3)。
圖2 曲堤油田注水開發(fā)過程中原油飽和烴(a)與芳烴(b)含量變化Fig.2 Variations of saturates (a) and aromatics (b) content in oil during water flooding of Quti oilfield
一般來說,正構(gòu)烷烴較類異戊二烯烷烴有較高的水溶解度,水洗作用下更易于被移除,從而導(dǎo)致Pr/nC17與Ph/nC18比值升高[27-28]。同時(shí)實(shí)驗(yàn)研究證實(shí),純細(xì)菌培養(yǎng)物最初只消耗正構(gòu)烷烴,當(dāng)其濃度降低到一定閾值時(shí),正構(gòu)烷烴和類異戊二烯烷烴才同時(shí)被消耗[29],含多甲基基團(tuán)的無環(huán)類戊二烯烷烴比洗脫時(shí)間相近的正構(gòu)烷烴具有更強(qiáng)的抗生物降解能力[7]??梢姛o論水洗作用還是生物降解作用,蝕變結(jié)果都會導(dǎo)致原油具有更高的Pr/nC17和Ph/nC18比值。從曲9油藏注水開發(fā)動態(tài)來看,采出原油中的Pr/nC17和Ph/nC18比值呈現(xiàn)出先降低后升高,或先升高后降低的變化特征。事實(shí)上,室內(nèi)水驅(qū)油物理模擬實(shí)驗(yàn)也發(fā)現(xiàn)隨著采出程度的增加,Pr/nC17和Ph/nC18比值會逐漸減小,這一現(xiàn)象被認(rèn)為是由于nC17與nC18呈直鏈?zhǔn)?,Pr與Ph則帶有規(guī)則側(cè)鏈,為使分子中原子之間的相互排斥力達(dá)到最小,在空間以最穩(wěn)定的構(gòu)型存在,這四個(gè)側(cè)鏈的空間指向使彼此之間相距最遠(yuǎn),從而使Pr與Ph形似圓柱體,其分子橫截面比nC17和nC18要大一些,它們在運(yùn)移過程中更容易沿著大孔隙排出,使Pr和Ph比nC17和nC18更容易被驅(qū)出[14,17]??梢娮⑺_發(fā)過程中不僅存在水洗作用或生物降解的影響,類似地質(zhì)色層效應(yīng)也發(fā)揮著作用,使得原油組分變化復(fù)雜化。
3.2.2 萜烷系列化合物
在沒有發(fā)生甾烷和藿烷被生物降解的原油中,與8β(H)-補(bǔ)身烷相比,8β(H)-升補(bǔ)身烷具有選擇性的消除[30]。實(shí)驗(yàn)室的水洗作用模擬也發(fā)現(xiàn)二環(huán)萜烷的分布可以發(fā)生變化,8β(H)-補(bǔ)身烷與8β(H)-升補(bǔ)身烷(C158β(H)-D/C168β(H)-HD)比值會在水洗作用下略微增加[2]。對比分析表明,曲9油藏隨著注水開發(fā)的進(jìn)行,采出原油的C158β(H)-D/C168β(H)-HD比值由0.26~0.40變化到0.46~0.54(表1;圖3),呈現(xiàn)明顯升高,體現(xiàn)出原油經(jīng)受了生物降解或水洗作用的次生蝕變。
圖3 曲堤油田注水開發(fā)過程中原油氣相色譜及25-降藿烷系列質(zhì)譜對比(Q9-X24井)Fig.3 Dynamic correlation of gas chromatograms and 25-norhopanes in samples from Quti oilfield during water flooding (Well Q9-X24)C28DNH.C2825,30-二降藿烷;C29NH—C32NH.C29~3225-降藿烷
三環(huán)萜烷具有高度抗生物降解的能力,甚至在藿烷消除之后仍能幸存。伽馬蠟烷和奧利烷要比藿烷更抗生物降解[7]。水洗作用除了由于分子量大小導(dǎo)致細(xì)微的消除差異外,基本上對萜烷沒有顯著影響[2,20]。從曲9油藏原油看,隨著注水開發(fā)的進(jìn)行,伽馬蠟烷/C30藿烷(G/C30H)保持在0.04~0.05,奧利烷/C30藿烷(Ol/C30H)保持在0.06~0.07,基本沒有改變(表1;圖4),充分展示了其抗生物降解及不受水洗作用影響的特性。三環(huán)萜烷/17α(H)-藿烷(TTs/17α(H)-H)則呈現(xiàn)由0.06至0.13的明顯增高趨勢(表1;圖4),反映出典型的生物降解作用影響。
升藿烷的生物降解及其相對易感性目前仍有爭議[7,31]。在大部分含有17α(H)-藿烷和25-降藿烷的生物降解原油中,明顯不存在單體升藿烷因碳數(shù)不同而發(fā)生的優(yōu)先生物降解[32]。但有些原油中單體藿烷似乎遭受了選擇性生物降解,如馬達(dá)加斯加瀝青質(zhì)中C31和C32升藿烷對生物降解的易感性要高于C30藿烷[33]。曲9油藏原油中C31R/C30H隨著注水開發(fā)的進(jìn)行,呈現(xiàn)0.25—0.24—0.21變化(表1;圖4),幅度雖然較小,但減小趨勢明顯,反映出生物降解的影響。
圖4 曲堤油田注水開發(fā)過程中原油生物標(biāo)志物參數(shù)動態(tài)變化(Q9-X24井)Fig.4 Dynamic correlation of biomarker parameters of samples from Quti oilfield during water flooding (Well Q9-X24)(R3-R13說明見表1。)
圖5 曲堤油田注水開發(fā)過程中原油萜烷與甾烷系列動態(tài)變化對比(Q9-X24井)Fig.5 Dynamic correlation of terpanes and steranes of samples from Quti oilfield during water flooding (Well Q9-X24)TTs.三環(huán)萜烷;Ol.奧利烷;G.伽馬蠟烷;C29H—C35H.C29-35藿烷;C21P.孕甾烷;C22P.升孕甾烷;C24.四環(huán)萜烷;a—h.C19-C26TTs;i.C24;j-k.C28-C29TTs;o.Ol3.13β,17α-重排膽甾烷20S;4.13β,17α-重排膽甾烷20R;5.13α,17β-重排膽甾烷20S;6.13α,17β-重排膽甾烷20R;7.5α, 14α,17α-膽甾烷20S;8.5α,14β,17β-膽甾烷20R;9.5α,14β,17β-甾烷20S;10.5α,14α,17α-膽甾烷20R
3.2.3 甾烷系列化合物
甾烷對生物降解的易感性通常隨每個(gè)同分異構(gòu)體構(gòu)型中碳數(shù)的增加而降低,C27>C28>C29甾烷的選擇性降解可發(fā)生在地下原油中[34],和實(shí)驗(yàn)室培養(yǎng)實(shí)驗(yàn)中[35]。重排甾烷抗生物降解的能力特別強(qiáng),在重排甾烷蝕變前C27-C29甾烷往往已被完全破壞[7,12,34]。水洗作用對甾烷系列的影響甚微[2]。隨著曲9油藏注水開發(fā)的進(jìn)行,原油中C27-重排/C27-規(guī)則甾烷(C27-DS/RS)總體呈現(xiàn)0.13—0.16—0.18變化(表1;圖4),變化幅度雖然微小,但升高趨勢明顯,指示生物降解作用的影響。
圖6 曲堤油田注水開發(fā)過程中原油芳烴化合物動態(tài)變化對比(Q9-X24井)Fig.6 Dynamic correlation of aromatic fractions of samples from Quti oilfield during water flooding(Well Q9-X24)
原油中甾烷與藿烷的生物降解相對程度取決于生物降解類型、環(huán)境條件及微生物種群[7,34],在有25-降藿烷生成時(shí),細(xì)菌先于甾烷侵蝕17α(H)-藿烷[7,36]。水洗作用因較低的分子量,會優(yōu)先于C3017α(H)-藿烷而移除C27甾烷[2]。規(guī)則甾烷/17α(H)-藿烷[RS/17α(H)-H]比值隨著注水開發(fā)的進(jìn)行,總體上由0.21—0.28—0.34變化(表1;圖3),呈上升趨勢,反映生物降解的蝕變效應(yīng)。
3.2.4 三芳甾烷化合物
芳構(gòu)化甾族烴在生物降解最強(qiáng)烈的原油(等級為10)之外幾乎在所有原油中保持不變[7]。C20-C21三芳甾類化合物(TAS)屬于在原油生物降解過程中首先損耗的芳香甾類化合物,但是尚不清楚其原因是由于水洗或蒸發(fā)作用還是生物降解作用的緣故[39]。曲9油藏隨著注水開發(fā)的進(jìn)行,原油中三芳甾烷系列化合物表現(xiàn)出總體含量減小,但各化合物的相對豐度并沒有改變(圖5),C28TAS 20S/(20S+20R)基本保持在0.51~0.54,C26-/C28-TAS(20S)基本保持在0.58~0.60(表1;圖3),展示了其抗生物降解強(qiáng)且不受水洗作用影響能力。
3.2.5 多環(huán)芳烴化合物
在水溶性方面,25℃時(shí),芳香烴在水中的溶解度呈現(xiàn)苯>甲苯>二甲基苯>三甲基苯>甲基萘>二甲基萘>菲的變化規(guī)律[37]。帶有甲基支鏈的芳烴水溶能力和抗生物降解要高于未帶的。芳香烴的生物降解序列為烷基苯、萘、苯并噻吩、菲(P),最后為二苯并噻吩(DBT)[38]。對比三個(gè)不同開采時(shí)期的原油,甲基菲指數(shù)MPI1與DBT/P在注水開采過程中基本保持不變(表1;圖3),表明在水驅(qū)過程,與菲相比較,甲基菲系列并沒因帶有甲基支鏈而顯示出顯著的水溶或抗生物降解能力,二苯并噻吩亦沒表現(xiàn)出明顯的不同。
1) 動態(tài)監(jiān)測表明,隨著注水開發(fā)過程的推進(jìn),原油遭受到水洗作用和生物降解作用的影響,原油組成呈現(xiàn)明顯的蝕變。
2) 水洗作用導(dǎo)致族組成中飽和烴相對含量逐漸增加,芳烴相對含量逐漸減小。生物降解作用造成三環(huán)萜烷/17α(H)-藿烷、C27-重排/C27-規(guī)則甾烷、甾烷/17α(H)-藿烷明顯增高;C31R/C30H小幅度減小。
3) 地質(zhì)色層效應(yīng)的加入使得原油組分變化更加復(fù)雜化,Pr/nC17和Ph/nC18比值隨注水開發(fā)的推進(jìn)呈現(xiàn)出先降低后升高,或先升高后降低的變化。
4) 水驅(qū)過程中保持相對穩(wěn)定的甾烷、萜烷、菲、二苯并噻吩、三芳甾烷生標(biāo)參數(shù)仍可有效用于油氣地質(zhì)地球化學(xué)解釋中。
[1] Lafargue E,Barker C.Effect of water washing on crude oil compositions [J].AAPG Bulletin,1988,72:263-276.
[2] Kuo L.An experimental study of crude oil alteration in reservoir rocks by water washing [J].Organic Geochemistry,1994,21:465-479.
[3] 張枝煥,鄧祖佑,吳水平,等.石油成藏過程中的地球化學(xué)變化及控制因素的綜合評述[J].高校地質(zhì)學(xué)報(bào),2003,9(3):484-494. Zhang Zhihuan,Deng Zuyou,Wu Shuiping,et al.Geochemical alteration of hydrocarbon compositions during migration and accumulation and its controlling factors [J].Geological Journal of China Universities,2003,9(3):484-494.
[4] Volkman J K,Alexander R,Kagi R I ,et al.Demethylated hopanes in crude oils and their application in petroleum geochemistry [J].Geochimica et Cosmochimica Acta,1983,47:785-794.
[5] Palmer S E,Effect of biodegradation and water washing on crude oil composition [C].In:Organic Geochemistry.New York:Plenum Press,1993:511-533.
[6] Peters K E,Moldowan J M,McCaffrey M A,et al.Selective biodegradation of extended hopanes to 25-norhopanes in petroleum reservoirs.Insights from molecular mechanics [J].Organic Geochemistry,1996,24:765-783.
[7] Peters K E,Walters C C,Moldowan J M.The Biomarker Guide (Volume 2).London:Cambridge University Press,2005.
[8] Bailey N J L,Krouse H R,Evans C R,et al.Alteration of crude oils by waters and bacteria-Evidence from Geochemical and isotope studies [J].AAPG Bulletin,1973,57:1276-1290.
[9] Palmer S E.Effect of water washing on C15+hydrocarbon fraction of crude oils from Northwest Palawan,Philippines [J].AAPG Bulletin,1984,68:137-149.
[10] Hemptinne J-C,Peumery R,Ruffier-Merary V,et al.Compositional changes resulting from the water-washing of a petroleum fluid [J].Journal of Petroleum Science and Engineering,2001,29:39-51.
[11] Milner C W D,Rogers M A,Evans C R.Petroleum transformations in reservoirs [J].Journal of Geochemical Exploration,1977,7:101-153.
[12] Connan J.Biodegradationof crude oils in reservoirs [C].In:Advance in Petroleum Geochemistry.London:Academic Press,1984:299-335.
[13] Zhu Y,Weng H,Chen Z.Compositional modification of crude oil during oil recovery [J].Journal of Petroleum Science and Engineering,2003,38:1-11.
[14] 陳祖林,朱揚(yáng)明,陳奇.油層不同開采時(shí)期原油組分變化特征[J].沉積學(xué)報(bào),2002,20(1):169-173. Chen Zulin,Zhu Yangming,Chen Qi.The change of crude oil components in different production Stages [J].Acta Sedimentologica Sinica,2002,20(1):169-173.
[15] 郭建軍,陳踐發(fā),李粉麗,等.注水開發(fā)過程中原油的水洗作用初探[J].地球化學(xué),2007,36(2):215-221. Guo Jianjun,Chen Jianfa,Li Fenli,et al.Influence of water washing on crude oils during water flooding [J].Geochimica,2007,36(2):215-221.
[16] Chang Xiangchun,Li Zengxue.Geochemical surveillance of the Linan Oil Field with oil fingerprinting [J].Energy Exploration and Exploitation,2010,28:279-294
[17] 常象春,薛圣同,崔晶,等.油藏注水開發(fā)過程中原油芳烴成熟度參數(shù)變化特征及意義[J].山東科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,35(4):21-27. Chang Xiangchun,Xue Shengtong,Cui Jing,et al.Variation and implications of aromatic hydrocatbon maturity parameters in waterflooded oil reservoir[J].Journal of Shandong University of Suence and Technology(Natural Suence),2016,35(4):21-27.
[18] 徐志明,王廷棟,姜平,等.原油水洗作用與高凝固點(diǎn)原油的成因探討[J].地球化學(xué),2000,29(6):556-561. Xu Zhiming,Wang Tingdong,Jiang Ping,et al.Probe on the water washing with genesis of high solidifying point crude oil [J].Geochimica,2000,29(6):556-561.
[19] 常象春,王明鎮(zhèn),郭海花,等.注水開發(fā)過程中原油組成的動態(tài)變化特征[J].中國礦業(yè)大學(xué)學(xué)報(bào),2009,38(3):373-379. Chang Xiangchun,Wang Mingzhen,Guo Haihua,et al.Dynamic variations of oil compositions during the course of waterflood development [J].Journal of China University of Mining and Technology,2009,38(3):373-379.
[20] Lafargue E ,Le T P.Effect of water washing on light ends compositional heterogeneity[J].Organic Geochemistry,1996,24:1141-1150.
[21] 徐耀輝,王鐵冠,陳能學(xué),等.二苯并噻吩參數(shù)與油藏動態(tài)監(jiān)測、剩余油分布預(yù)測——以南堡凹陷柳北沙三3油藏為例[J].中國科學(xué)(D),2013,43(7):1141-1148. Xu Yaohui,Wang Tieguan,Chen Nengxue,et al.DBT parameters and dynamic monitoring during reservoir development,and distribution region prediction of remaining oil:A case study on the Sha-33oil reservoir in the Liubei region,Nanpu sag [J].Science China:Earth Sciences,2013,43(7):1141-1148.
[22] McAuliffe C D.Solubility in water of C1-C9hydrocarbons [J].Nature,1963,200:1092-1093.
[23] McAuliffe C D.Solubility in water of normal C9and C10 alkane hydrocarbons [J].Science,1969,83:478-479.
[24] Kennicutt II M C.The effect of biodegradation on crude oil bulk and molecular composition [J].Oil Chemistry Bulletin,1988,4:89-112.
[25] ZhangShuichang,Huang Haiping,Su Jin,et al.Geochemistry of Paleozoic marine oils from the Tarim Basin,NW China.Part 4:Paleobiodegradation and oil charge mixing [J].Organic Geochemistry,2014,67:41-57.
[26] 席偉軍,張枝煥,徐新宇,等.流體包裹體技術(shù)在春風(fēng)油田特超稠油成藏研究中的應(yīng)用[J].石油與天然氣地質(zhì),2014,35(3):350-358. Xi Weijun,Zhang Zhihuan,Xu Xinyu,et al.Application of fluid inclusion techniques to the study of super-heavyoil accumulation in Chunfeng oilfield,Junggar Basin [J].Oil & Gas Geology,2014,35(3):350-358.
[27] McAuliffe C D.1Solubility in water of paraffin,cycloparaffin,olefin,acetylene,cycloolefin and aromatic hydrocarbons [J].Journal of Physical Chemistry,1966,70:1267-1275.
[28] Price L C.Aqueous solubility of petroleum as applied to its origin and primary migration [J].AAPG Bulletin,1976,60:213-244.
[29] Prink M P,Atlas R,Bartha R.Hydrocarbon metabolism byBrevibacteriumerythrogenes:normal and brached alkanes [J].Journal of Bacteriology,1974,119:868-878.
[30] Williams J A,Bjor?y M,Dolcater D L,et al.Biodegradation in South Texas Eocene oils-effects on aromatic and biomarkers [J].Organic Geochemistry,1986,10:451-461.
[31] 李寧熙,黃海平,孫晶晶,等.松遼盆地西部圖牧吉油砂地球化學(xué)特征[J].石油與天然氣地質(zhì),2014,36(4):581-586. Li Ningxi,Huang Haiping,Sun Jingjing,et al.Geochemical characteristics of Tumuji oil sands in western Songliao Basin [J].Oil & Gas Geology,2014,36(4):581-586.
[32] Chosson P,Connan J,Dessort D,et al.In vitro biodegradation of steranes and terpanes:a clue to understanding geological situations [C].In:Biological Markers in Sediments and Petroleum Englewood Cliffs,N.J.:Prentice-Hall,1992:320-349.
[33] Rullk?tter J,Wendisch D.Microbial alternation of 17(H)-hopane in Madagascar asphalts:removal of C-10 methyl group and ring opening[J].Geochimica et Cosmochimica Acta,1982,46:1543-1553.
[34] Seifert W K,Moldowan J M,Demaison G J.Source correlation of biodegraded oils[J].Organic Geochemistry,1984,6:633-643.
[35] Chosson P,Lanau C,Connan J,et al.Biodegradation of refractory hydrocarbon biomarkers from petroleum under laboratory conditions [J].Nature,1991,351:640-642.
[36] Brooks J R,Fowler M.G,Macqueen R W.Biological marker and conventional organic geochemistry of oil sands/heavy oils,Western Canada Basin [J].Organic Geochemistry,1988,12:519-538.
[37] McAuliffe C D.Oil and gas migration-Chemical and physical constraints [J].AAPG Bulletin,1979,63:767-781.
[38] Connan J,Nissenbaum A,Dessort D.Molecular archaeology:export of Dead Sea asphalt to Canaan and Egypt in thr Chalcolothic-Early Bronze Age (4th3rdmillennium BC) [J].Geochimica et Cosmochimica Acta,1992,56:2743-2759.
[39] Wardroper A M K,Hoffmann C F,Maxwell J R,et al.Crude oil biodegradation under simulated and natural conditions-2.Aromatic steroid hydrocarbons [J].Organic Geochemistry,1984,6:605-617.
(編輯 董 立)
Biodegradation and water washing effects on oil during water flooding
Chang Xiangchun1,2,Zhao Wanchun1,Xu Youde3,Wang Tao4,Cui Jing4
(1.ShandongProvincialKeyLaboratoryofDepositionalMineralizationandSedimentaryMinerals,ShandongUniversityofScienceandTechnology,Qingdao,Shandong266590,China;2.LaboratoryforMarineMineralResources,QingdaoNationalLaboratoryforMarineScienceandTechnology,Qingdao,Shandong266071,China;3.ResearchInstituteofPetroleumExplorationandDevelopment,SINOPECShengliOilfieldCompany,Dongying,Shandong257001,China;4.LumingOilfieldBranchofSINOPECShengliOilfieldCompany,Dongying,Shandong257001,China)
Water flooding is one of the most commonly used methods for enhancing oil recovery.About 36 oil samples from 12 waterflooded wells in Quti-9 oil reservoir of Jiyang Depression were investigated for dynamic tracking and geochemical measurements,to characterize their quality alterations and component changing patterns during the water flooding production.The results show increasing saturates and decreasing aromatics in the samples through the progress of water flooding,the typical effect of water washing during water flooding.The Pr/n-C17and Ph/n-C18ratios change in two different ways: decrease first and increase later or increase first and decrease later,indicating an effect of a strata chromatography adsorption,along with the water washing effect or biodegradation.The increasing C158β(H)-drimane/C168β(H)-homodrimane ratio can equally suggest an alteration by biodegradation or water washing.The obvious increase of tricyclic terpanes/17α(H)-hopane,C27-diasterane/C27-sterane,sterane/17α(H)-hopane ratios,and subtle decrease of C31R/C30Hratios,all indicate biodegradation.TheMPI1,and DBT/P,C28TAS 20S/(20S+20R) and C26-/C28TAS(20S) ratios are constant,suggesting triaromatic steroid(TAS) is unaffected by water flooding.And the phenanthrene and dibenzothiophene show no clear signs of difference in solubility or biodegradation during the waterflooding.
water flooding,water washing,biodegradation,petroleum alteration,crude oil,reservoir geochemistry,Quti oilfield,Jiyang Depression
2015-11-16;
2017-01-22。
常象春(1974—),男,教授、博士生導(dǎo)師,油氣地質(zhì)與地球化學(xué)。E-mail:xcchang@sina.com。
國家自然科學(xué)基金項(xiàng)目(41272139);山東省自然科學(xué)基金杰出青年基金項(xiàng)目(JQ201311);山東科技大學(xué)科技計(jì)劃項(xiàng)目(2015TDJH101)。
0253-9985(2017)03-0617-09
10.11743/ogg20170322
TE122.1
A