• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      SOME OPERATOR INEQUALITIES OF MONOTONE FUNCTIONS CONTAINING FURUTA INEQUALITY

      2017-07-18 11:47:12YANGChangsenYANGChaojun
      數(shù)學(xué)雜志 2017年4期
      關(guān)鍵詞:河南師范大學(xué)信息科學(xué)乘積

      YANG Chang-sen,YANG Chao-jun

      (College of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)

      SOME OPERATOR INEQUALITIES OF MONOTONE FUNCTIONS CONTAINING FURUTA INEQUALITY

      YANG Chang-sen,YANG Chao-jun

      (College of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)

      In this paper,we study the relations between the operator inequalities and the operator monotone functions.By using the fundamental conclusions based on majorization,namely,product lemma and product theorem for operator monotone functions,we can give some operator inequalities.This result contains the Furuta inequality,which has a huge impact on positive operator theory.

      operator monotone function;product lemma;product theorem;majorization

      1 Introduction

      LetJbe an interval such thatJ/(-∞,∞).P(J)denotes the set of all operator monotone functions onJ.We setP+(J)={f∈P(J)|f(t)≥0,t∈J}.Iff∈P+(a,b)and-∞<a,thenfhas the natural extension to[a,b),which belongs toP+[a,b).We therefore identifyP+(a,b)withP+[a,b).

      It is well-known that iff(t)∈P+(0,∞),thenare both inP+(0,∞),and that iff(t),φ(t),φ(t)are all inP+(0,∞),then so are

      andf(t)αφ(t)1-αfor 0<α<1(see[1-5]).Throughout this work,we assume that a function is continuous and increasing means “strictly increasing”.Further more,for convenience,letB(H)denote theC?-algebra of all bounded linear operators acting on a Hilbert spaceH.A capital letterAmeans an element belongs toB(H),Φ means a positive linear map fromB(H)toB(H)and we assume Φ(I)=Ialways stand(see[7,8]).In this paper,we also assume thatJ=[a,b)orJ=(a,b)with-∞≤a<b≤+∞.

      De fi nition 1.1[9,10]Letdenote the following sets,respectively,

      whereh-1stands for the inverse function ofh.

      De fi nition 1.2Leth(t)andg(t)be functions defined onJ,andg(t)is increasing,thenhis said to be majorized byg,in symbolh≤gif the compositeh?g-1is operator monotone ong(J),which is equivalent to

      Lemma 1.1(Product lemma)(see[9,10])Leth,gbe non-negative functions defined onJ.Suppose the producthgis increasing,(hg)(a+0)=0 and(hg)(b-0)=∞.Then

      Moreover,for everyψ1,ψ2inP+[0,∞),

      Theorem 1.1(Product theorem)(see[9,10])

      Further,letgi(t)∈LP+(J)for 1≤i≤mandhj(t)∈P-1+(J)for 1≤j≤n.Then for everyψi,φj∈P+[0,∞),we have

      2 Main Results

      Before to prove our main results,we give the following lemmas.

      Lemma 2.1(L-H inequality)(see[2,12])If 0≤α≤1,A≥B≥0,thenAα≥Bα.

      Lemma 2.2(Furuta inequality)(see[6,9])LetA≥B≥0,then

      wherer≥0,p≥1 with

      Lemma 2.3(Hansen inequality)(see[13])LetXandAbe bounded linear operators onH,and such thatX≥ 0,‖A‖≤1.Iffis an operator monotone function on[0,∞),then

      Theorem 2.1PutJ/=(-∞,∞),,fi∈P+(J),i=1,2,···,n,,andkn(t)=f1(t)f2(t)···fn(t).Ifh(t)is defined onJsuch that,then

      (i)the functionφnon(0,∞)defined by

      belongs toP+(0,∞);

      (ii)ifA≤C≤B,then

      Proof(i)Sincef1(t)f1(t)h(t),by product lemmah(t)f1(t)h(t),thereforeh(t)is nondecreasing.When,since,we haveη(t)g(t).Now puttingψ0(s)=s,ψ1(g)=η,ψ2(f1h)=f1,obviously,we haveψ0,ψ1,ψ2∈P+(0,∞).By takingsinψ0(s)asf2···fn,and from product theorem,we obtain

      Therefore we haveφnbelongs toP+(0,∞)forφngiven in(i).

      Wheng(t)=f1(t),by takingψ0(s)=s,ψ1(g(t)h(t))=η(t),we haveψ0,ψ1∈P+(0,∞),and thenφn∈P+(0,∞)by product theorem.

      (ii)First we prove that

      Sinceφn,kn,h,gare all nonnegative,nondecreasing functions andJis a right open interval,by consideringC+?,B+?,we may assume that,h(C),h(B),g(C),g(B)are positive semi-de fi nite and invertible.Through(i),

      This implies the right part of(2.2)holds forn=1.Next we assume the right part of(2.2)holds forn-1.Sinceandand this means that there existssuch thatfn(t)= Ψn(kn-1(t)η(t)).Puts=kn-1(t)η(t),we can obtain.Since the following inequality holds

      Denote the left side of the upper inequalities asH,the right one asK,we have

      ByH=φn-1(kn-1(C)h(C)g(C))=kn-1(C)η(C),we obtain

      By Lemma 2.3 again,we obtain

      From the above inequalities and(2.4),we get

      Therefore the right part of(2.2)holds forn,one can proof the left part of(2.2)similarly.

      RemarkIn Theorem 2.1,letn=2,f1(t)=g(t)=1,f2(t)=tr(r≥0),h(t)=tp(p≥1),andη(t)=t,then we haveφ2(tp+r)=t1+r.So Furuta inequality can be obtained by(2.2)and L-H inequality.

      Lemma 2.4(see[10,11])PutJ(-∞,∞),theng∈LP+(J)if and only if there exists a sequence{gn}of a fi nite product of functions inP+(J)which converges pointwise togonJ,further more,{gn}converges uniformly togon every bounded closed subinterval ofJ.

      Theorem 2.2PutJ(-∞,∞),f(t)>0 fort∈Jandη(t),h(t),k(t),g(t)are nonnegative functions onJsuch that,then

      (i)the functionφon(0,∞)defined by

      belongs toP+(0,∞);

      (ii)IfA≤C≤B,then forφ∈P(0,∞)such thatφ≤φon(0,∞),

      Proof(i)First consider,thenk=lfand

      Letψ0(s)=s,ψ1(f(t)h(t))=f(t),ψ2(g(t))=η(t),thenψ0,ψ1,ψ2∈P+(0,∞).By takings=l(t)and applying product theorem,we get

      which equals tok(t)η(t)≤k(t)h(t)g(t).So we haveφ∈P+(0,∞)forφsuch that

      Ifg=f,takingψ0(s)=s,ψ1(h(t)g(t))=η(t),obviously,we haveψ0,ψ1∈P+(0,∞),and thenψ0(k)ψ1(hg).Hence we also haveφ∈P+(0,∞)from product theorem.

      (ii)From Lemma 2.4,we obtain there exists a sequence{ln},whereln(t)is a fi nite product of functions inP+(J),such thatln(t)converges ponitwise tol(t).Putkn(t)=f(t)ln(t)then we easily getkn(t)converges tok(t)=f(t)l(t).De fi neφn(kn(t)h(t)g(t))=kn(t)η(t)(t∈J),φn∈P+(0,∞).By Theorem 2.1,we have

      Lemma 2.5(Choi inequality)(see[6,7])Let Φ be a positive unital linear map,then

      (C1)whenA>0 and-1≤p≤0,then Φ(A)p≤Φ(Ap);

      (C2)whenA≥ 0 and 0≤p≤1,then Φ(A)p≥ Φ(Ap);

      (C3)whenA≥ 0 and 1≤p≤2,then Φ(A)p≤Φ(Ap).

      Corollary 2.1PutJ/=(-∞,∞),f(t)>0 fort∈Jandη(t),h(t),k(t),g(t)are nonnegative functions onJsuch that,the functionφon(0,∞)defined as(2.5),Φ is a positive unital

      linear map.If

      then forφ∈P(0,∞)such thatφ≤φ,

      ProofBy Choi inequality and L-H inequality,we obtain

      Corollary 2.2Put

      such that.Then(2.5)and(2.6)in Theorem 2.2 hold.

      ProofPutc=min{ 1,p},thenf(t)=t1-c∈P+(0,∞).Thus we get

      which means the conditions of Theorem 2.2 is satis fi ed.Therefore(2.5)and(2.6)in Theorem 2.2 hold.

      Corollary 2.3Put,p,r≥0 andp+r≥1,s≥1,we obtain

      ProofPutg(t)=ts(s≥1),η(t)=tin Corollary 2.2.Then we only need to show logs≤φ(s),s∈(0,∞).The de fi nition ofφis given in(2.5).The upper majorization relationship is equivalent to

      It is obviously that logk(t),logh(t),logtsare operator monotone on(0,∞)and,then

      Therefore(2.8)holds.

      [1]Bhatia R.Matrix analysis[M].New York:Springer,1996.

      [3]Horn R A,Johnson C R.Matrix analysis[M].Cambridge:Cambridge Univ.Press,1985.

      [4]Rosenblum M,Rovenyak J.Hardy classes and operator theory[M].Oxford:Oxford Univ.Press,1985.

      [5]Pedersen G K.Some operator monotone functions[J].Proc.Amer.Math.Soc.,1972,36:309-310.

      [6]Choi M D.Some assorted inequalities for positive linear map onC?-algebras[J].J.Oper.The.,1980,4:271-285.

      [7]Choi M D.A Schwarz inequality for positive linear maps onC?-algebras[J].Illinois.J.Math.,1974,18:565-574.

      [8]Ando T.Concavity of certain maps on postive de fi nite matrices and applications to hadamard products[J].Linear Alg.Appl.,1976,26:203-241.

      [9]Uchiyama M.A new majorization between functions,polynomials,and operator inequalities[J].J.Funct.Anal.,2006,231:221-244.

      [10]Uchiyama M.A new majorization between functions,polynomials,and operator inequalities II[J].J.Math.Soc.Japan,2008,60:291-310.

      [11]Uchiyama M.Operator inequalities:from a general theorem to concrete inequalities[J].Linear Alg.Appl.,2015,465:161-175.

      [12]Yang C.Inequalities relating to means of positive operators[J].J.Math.,1996,16(4):467-474.

      [13]Hensen F.An operator inequality[J].Math.Ann.,1980,246:249-250.

      一些蘊含F(xiàn)uruta不等式的算子單調(diào)函數(shù)的算子不等式

      楊長森,楊朝軍

      (河南師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,河南新鄉(xiāng) 453007)

      本文研究了算子不等式與算子單調(diào)函數(shù)之間的聯(lián)系.利用關(guān)于算子單調(diào)函數(shù)的乘積引理,乘積定理等基本控制原理,給出許多算子不等式,這些不等式可包含正算子理論中應(yīng)有十分廣泛的Furuta不等式.

      算子單調(diào)函數(shù);積引理;積定理;控制

      O177.1

      on:47A62;47A63

      A Article ID: 0255-7797(2017)04-0698-07

      date:2015-09-21Accepted date:2015-12-11

      Supported by National Natural Science Foundation of China(11271112;11201127)and Technology and the Innovation Team in Henan Province(14IRTSTHN023).

      Biography:Yang Changsen(1965-),male,born at Xinxiang,Henan,professor,major in functional analysis.

      猜你喜歡
      河南師范大學(xué)信息科學(xué)乘積
      河南師范大學(xué)作品精選
      聲屏世界(2024年1期)2024-04-11 07:51:08
      河南師范大學(xué)作品精選
      聲屏世界(2023年23期)2023-03-10 04:49:28
      裳作
      炎黃地理(2022年5期)2022-06-07 03:35:41
      山西大同大學(xué)量子信息科學(xué)研究所簡介
      河南師范大學(xué)美術(shù)學(xué)院作品選登
      乘積最大
      三元重要不等式的推廣及應(yīng)用
      Dirichlet級數(shù)及其Dirichlet-Hadamard乘積的增長性
      光電信息科學(xué)與工程專業(yè)模塊化課程設(shè)計探究
      基于文獻類型矯正影響因子在信息科學(xué)與圖書館學(xué)期刊中的實證分析
      承德市| 鄂托克旗| 精河县| 肥西县| 江安县| 定陶县| 连南| 阳西县| 房山区| 青铜峡市| 南通市| 苏尼特左旗| 莲花县| 宾川县| 确山县| 喀喇沁旗| 雅江县| 葫芦岛市| 安岳县| 古蔺县| 临汾市| 永定县| 山东| 安吉县| 张掖市| 西青区| 松滋市| 靖西县| 名山县| 碌曲县| 阳东县| 麻阳| 依兰县| 延津县| 沅陵县| 本溪市| 元谋县| 青河县| 嵊州市| 康马县| 固安县|