王 欣,湯智慧,劉晨光,李春志,趙振業(yè)
(1.中國(guó)航發(fā)北京航空材料研究院,北京100095;2.航空材料先進(jìn)腐蝕與防護(hù)航空重點(diǎn)實(shí)驗(yàn)室,北京100095;3.先進(jìn)高溫結(jié)構(gòu)材料國(guó)防科技重點(diǎn)實(shí)驗(yàn)室,北京100095)
鎳基單晶合金中溫疲勞性能應(yīng)力集中敏感性
王 欣1,2,湯智慧1,2,劉晨光1,3,李春志1,趙振業(yè)1
(1.中國(guó)航發(fā)北京航空材料研究院,北京100095;2.航空材料先進(jìn)腐蝕與防護(hù)航空重點(diǎn)實(shí)驗(yàn)室,北京100095;3.先進(jìn)高溫結(jié)構(gòu)材料國(guó)防科技重點(diǎn)實(shí)驗(yàn)室,北京100095)
疲勞是渦輪葉片的一種主要失效模式.本文開(kāi)展了DD11單晶合金在650℃中溫條件下2種應(yīng)力集中系數(shù)(Kt=1(光滑狀態(tài))、Kt=3(缺口狀態(tài)))的旋轉(zhuǎn)彎曲疲勞性能研究,對(duì)比了2種應(yīng)力集中系數(shù)下的疲勞強(qiáng)度,并開(kāi)展了相關(guān)斷口分析.結(jié)果表明:應(yīng)力集中系數(shù)由Kt=1增大到Kt=3時(shí),疲勞極限由446 MPa降低為311 MPa,說(shuō)明DD11單晶合金疲勞性能存在應(yīng)力集中敏感性;疲勞壽命由105提高到107時(shí),光滑狀態(tài)由600 MPa降低為420 MPa,疲勞強(qiáng)度降低幅度為180 MPa,而缺口狀態(tài)由370 MPa降低為290 MPa,降低幅度為80 MPa,說(shuō)明應(yīng)力集中條件下DD11單晶合金的疲勞壽命對(duì)于外載變化較敏感.斷口分析表明,光滑試樣斷口(應(yīng)力500 MPa/疲勞壽命9.7×105)由幾個(gè)相交的光滑晶體學(xué)平面組成,疲勞源萌生在距表面100 μm左右的鑄造孔洞;缺口試樣斷口(應(yīng)力340 MPa/疲勞壽命8.1×105試樣)呈平面狀,與應(yīng)力軸垂直,為多源疲勞模式,疲勞源觀察到小刻面,在加工刀痕不連續(xù)位置萌生.
鎳基單晶合金;旋轉(zhuǎn)彎曲疲勞;應(yīng)力集中;敏感性;中溫
鎳基單晶合金具有蠕變抗力優(yōu)越、高溫氧化性能好等優(yōu)點(diǎn)[1-3],是目前國(guó)內(nèi)外發(fā)動(dòng)機(jī)高壓渦輪轉(zhuǎn)子部件的主要材料.渦輪轉(zhuǎn)子葉片在服役過(guò)程中受到高壓燃?xì)鉀_擊和高速轉(zhuǎn)動(dòng)過(guò)程的離心作用、發(fā)動(dòng)機(jī)的振動(dòng)作用等,處于較復(fù)雜的交變應(yīng)力狀態(tài).因此,在研究鎳基單晶合金性能時(shí),除了蠕變性能[4-5]外,疲勞性能也是研究重點(diǎn)之一,包括取向影響、疲勞損傷分析、數(shù)值模擬與模型等.在取向影響方面,岳珠峰等[6]研究發(fā)現(xiàn),取向?qū)τ贒D3合金低循環(huán)疲勞具有重要的影響;Kum等[7]的研究結(jié)果建立了彈塑性形變與取向的關(guān)系.在疲勞損傷方面,F(xiàn)leury等[8]研究了多溫度下AM1單晶的低循環(huán)疲勞損傷模式;劉昌奎等[9]對(duì)多種力學(xué)破壞模式開(kāi)展研究認(rèn)為,軸向高周疲勞的單疲勞源,在大應(yīng)力下斷口由多個(gè)相交的特定晶體學(xué)平面組成,應(yīng)力較小時(shí),斷口由1個(gè)大的晶體學(xué)平面和瞬斷區(qū)組成.數(shù)值模擬與模型方面,李影等[10]最早開(kāi)始了單晶合金疲勞性能的估算;石多奇等[11]和潘冬等[12]等為預(yù)測(cè)高溫低循環(huán)疲勞建立了多力學(xué)因素的模型,并在2種單晶合金上進(jìn)行了符合性良好的驗(yàn)證.
在轉(zhuǎn)子葉片實(shí)際服役過(guò)程中,葉片的榫頭是典型的強(qiáng)度薄弱部位[13],榫頭存在的接觸疲勞、微動(dòng)磨損和疲勞、振動(dòng)作用產(chǎn)生的機(jī)械疲勞均有可能導(dǎo)致其疲勞失效[14].作為應(yīng)力集中結(jié)構(gòu),榫頭受到的中溫缺口疲勞性能研究就特別值得關(guān)注.然而,在這方面除了研究表面強(qiáng)化技術(shù)對(duì)于單晶缺口疲勞性能影響[15-17]外,湯海斌[18]研究了結(jié)構(gòu)突變對(duì)于單晶疲勞性能影響,該領(lǐng)域其他相關(guān)的研究較少.
本文針對(duì)一種質(zhì)量分?jǐn)?shù)3%Re的DD11單晶合金,采用650℃模擬榫頭服役溫度,研究在該條件下不同應(yīng)力集中系數(shù)的單晶合金疲勞壽命增益曲線,說(shuō)明該合金的疲勞性能應(yīng)力集中敏感性,并對(duì)斷口特征進(jìn)行了分析研究.
研究采用 DD11單晶合金,其化學(xué)成分見(jiàn)表1,原始組織狀態(tài)如圖1所示.單晶合金組織的主要相為通道內(nèi)的γ相(白色)和立方化的γ′相(黑色).合金的熱處理狀態(tài)為固溶+高溫時(shí)效+中溫時(shí)效的完全熱處理狀態(tài).
表1 單晶高溫合金DD11的化學(xué)成分(質(zhì)量分?jǐn)?shù)/%)Table 1 Chemical composition of DD11 single crystal superalloy(mass fraction/%)
選用光滑(Kt=1)與缺口(Kt=3)旋轉(zhuǎn)彎曲疲勞試樣如圖2所示.鑄棒已知取向?yàn)椋?01],最大偏離不超過(guò)3°.在鑄棒上取樣,將試樣切成Φ8 mm×55 mm圓棒.55 mm的長(zhǎng)度方向與[001]平行.光滑疲勞試樣的加工過(guò)程為:線切割下料—半精車加工—精車加工—半精磨加工—精磨加工.缺口疲勞試樣的加工過(guò)程為:線切割下料—半精車加工—精車加工—螺紋磨加工.要求試樣加工過(guò)程不能出現(xiàn)燒傷,旋轉(zhuǎn)離心不大于0.02 mm.
圖1 單晶合金組織Fig.1 Micro?structure of single?crystal superalloy
圖2 光滑(a)和缺口(b)旋轉(zhuǎn)彎曲疲勞試樣Fig.2 Smooth(a)and notch(b)rotating?bending fatigue specimens
采用旋轉(zhuǎn)彎曲疲勞試驗(yàn)機(jī),按照HB 5153—1996,對(duì)Kt=1和Kt=3的疲勞試樣進(jìn)行了疲勞S-N曲線試驗(yàn),應(yīng)力比R=-1,頻率83.3 Hz.每組試樣 22件,對(duì)比了長(zhǎng)壽命(106~107)、中壽命(105~106)和短壽命(<105)下的疲勞強(qiáng)度,并采用升降法計(jì)算了存活率50%條件下107條件疲勞極限.
采用JSM 6010SL鎢燈絲型掃描電鏡觀察了疲勞試驗(yàn)后幾個(gè)典型壽命下的斷口特征,并采用30°傾轉(zhuǎn)的方法,觀察了疲勞源區(qū)與表面加工狀態(tài)的關(guān)系.
2.1 疲勞S-N曲線和疲勞極限
圖3為2種應(yīng)力集中狀態(tài)下DD11單晶合金的疲勞S-N曲線.由圖3可知,光滑試樣和缺口試樣均有5對(duì)斷裂-越出對(duì).
由升降法計(jì)算DD11單晶合金Kt=1條件下650℃旋彎疲勞極限:
同理,由升降法計(jì)算Kt=3條件下650℃旋彎疲勞極限為311 MPa.由此可知,在應(yīng)力集中系數(shù)Kt=3條件下,其疲勞極限較光滑試樣下降達(dá)31%,說(shuō)明DD11單晶合金具有較高的應(yīng)力集中敏感性.采用該合金制造渦輪葉片時(shí),需要考慮應(yīng)力集中對(duì)葉片榫頭疲勞的不利影響.應(yīng)力集中包括設(shè)計(jì)結(jié)構(gòu)(溝、鍵、槽、倒角等)應(yīng)力集中和加工引入(不連續(xù)的刀痕、燒傷、較深的吃刀等)的表面微觀應(yīng)力集中.應(yīng)力集中是航空零件疲勞的主要原因[19],是限制關(guān)鍵構(gòu)件服役的主要因素.
渦輪葉片的榫頭部位為典型的缺口應(yīng)力集中結(jié)構(gòu).在工程上,缺口敏感度因子q反映缺口對(duì)于疲勞性能的影響,表達(dá)式為
式中,Kf為光滑疲勞極限σsmooth與缺口疲勞極限σnotch的比值.一般認(rèn)為,q表征疲勞過(guò)程中表面層金屬發(fā)生應(yīng)力重新分布,降低應(yīng)力集中的能力.計(jì)算可得,DD11單晶合金的缺口敏感性因子q為0.217.
圖3 2種應(yīng)力集中狀態(tài)下DD11合金的疲勞S-N曲線Fig.3 The S-N curve of DD11 alloy on stress concentration coefficientKt=1 andKt=3
2.2 疲勞強(qiáng)度
繼續(xù)觀察圖3,在光滑試樣的疲勞曲線中可知,疲勞壽命由 105提高到 107時(shí),疲勞強(qiáng)度由600 MPa降低為420 MPa,降低幅度為180 MPa;相比之下,應(yīng)力集中系數(shù)Kt=3條件下,疲勞壽命105對(duì)應(yīng)的疲勞強(qiáng)度約為370 MPa,而107對(duì)應(yīng)的疲勞強(qiáng)度約290 MPa,降低幅度僅為80 MPa.由此可見(jiàn),隨著應(yīng)力集中系數(shù)的提高,疲勞壽命由105到107對(duì)應(yīng)的疲勞強(qiáng)度范圍變小,體現(xiàn)在疲勞曲線上即為曲線高度差ΔPKt變小.
這說(shuō)明,當(dāng)存在結(jié)構(gòu)應(yīng)力集中的條件下,外加載荷的細(xì)小變化都可能達(dá)到構(gòu)件壽命的巨大變化.在本例中,對(duì)于Kt=3狀態(tài)下的疲勞試樣,外加載荷從290 MPa增大25%后,疲勞壽命即從“越出”狀態(tài)的107降低到105,這對(duì)于強(qiáng)度設(shè)計(jì)是很不利的,應(yīng)采用緩和結(jié)構(gòu)應(yīng)力集中的設(shè)計(jì)或者采用降低表面應(yīng)力集中的表面形變強(qiáng)化技術(shù)[15-17](如噴丸、滾壓或激光沖擊強(qiáng)化等)來(lái)保障應(yīng)力集中部位的疲勞性能.
此外,由圖3還可得,在光滑結(jié)構(gòu)的DD11單晶合金疲勞壽命為105、106和107時(shí)對(duì)應(yīng)的疲勞強(qiáng)度分別為550、500、446 MPa;而Kt=3結(jié)構(gòu)下的疲勞強(qiáng)度分別為370、340和311 MPa,相比于光滑結(jié)構(gòu),分別降低32.7%、32%、30.7%:說(shuō)明DD11單晶合金應(yīng)力集中結(jié)構(gòu)對(duì)于疲勞強(qiáng)度的弱化作用隨疲勞周次的變化不敏感.
2.3 疲勞斷口
為方便對(duì)比,分析了光滑試樣應(yīng)力500 MPa/疲勞壽命9.7×105(圖4)以及缺口試樣應(yīng)力340 MPa/疲勞壽命8.1×105試樣(圖5)的斷口形態(tài).
觀察圖4可以發(fā)現(xiàn),光滑試樣的斷面由多個(gè)相交的光滑平面組成,與文獻(xiàn)[9]中報(bào)道的接近.光滑平面應(yīng)為單晶的主滑移面(如(011)面族)在最大切應(yīng)力作用下滑移開(kāi)裂形成[7].疲勞源位于圖4(a)下方位置,觀察到疲勞源附近存在細(xì)小鑄造孔洞,鑒于疲勞擴(kuò)展線匯聚于孔洞位置,認(rèn)為鑄造孔洞產(chǎn)生的微觀應(yīng)力集中是該件試樣疲勞裂紋產(chǎn)生的主因.
觀察圖5,與光滑試樣疲勞壽命接近的缺口試樣的斷口平面基本與應(yīng)力軸垂直,斷面比較平整,呈現(xiàn)多源疲勞模式,可以觀察到明顯的裂紋擴(kuò)展區(qū)和瞬斷區(qū),擴(kuò)展區(qū)表面平整,瞬斷區(qū)呈單晶合金典型的“溝壑”狀模樣.放大后觀察,疲勞裂紋源萌生于加工刀痕位置,呈現(xiàn)小刻面形態(tài),這與文獻(xiàn)[16]和[20]報(bào)道的近似.
圖4 光滑試樣斷口(應(yīng)力500 MPa/疲勞壽命9.7×105)Fig.4 Fatigue fracture of smooth sample(500 MPa/9.7×105):(a) fracture morphology;(b) single fatigue source;(c)magnified source;(d)casting hole in the source
圖5 缺口試樣斷口(應(yīng)力340 MPa/疲勞壽命8.1×105)Fig.5 Fatigue fracture of notched sample(340 MPa/8.1×105):(a)fracture morphology;(b)multiple fatigue source;(c)focus on main source;(d)magnified main source
1)應(yīng)力集中系數(shù)由Kt=1增大到Kt=3,疲勞極限由446 MPa降低到311 MPa,說(shuō)明DD11單晶合金疲勞性能存在應(yīng)力集中敏感性.
2)疲勞壽命由105提高到107的疲勞強(qiáng)度變化,光滑狀態(tài)由600 MPa降低到420 MPa,降低幅度為180 MPa,而缺口狀態(tài)由370 MPa降低到290 MPa,降低幅度為80 MPa,說(shuō)明應(yīng)力集中條件下DD11單晶合金的疲勞壽命對(duì)于外載變化較敏感.
3)斷口分析表明:由幾個(gè)相交的晶體學(xué)平面組成,疲勞源萌生在距表面100 μm左右的鑄造孔洞;缺口試樣斷口與應(yīng)力軸垂直,為多源疲勞模式,疲勞源觀察到小刻面,在加工刀痕不連續(xù)位置萌生.
參考文獻(xiàn):
[1]唐定中,葉國(guó)勝,吳仲堂,等.DD3單晶合金的評(píng)估[J].材料工程,1997(9):6-8.TANG Dingzhong,YE Guosheng,WU Zhongtang,et al.Evaluation for DD3 SC superalloy[J].Journal of Materials Engineering,1997(9):6-8.
[2]李嘉榮,史振學(xué),袁海龍,等.單晶高溫合金DD6拉伸性能各向異性[J].材料工程,2008(12):6-10.LI Jiarong,SHI Zhenxue,YUAN Hailong,et al.Tensile anisotropy of single crystal superalloy DD6[J].Journal of Materials Engineering,2008(12):6-10.
[3]LI Jiarong,JIN Haipeng,LIU Shizhong.Stress rupture properties and microstructures of the second generation single crystal superalloy DD6 after long term aging at 980℃[J].Rare Metal Materials and Engineering,2007,36(10):1784-1787.
[4]D'SOUZA N,KELLEHER J,QIU C,et al.The role of stress relaxation and creep during high temperature deformation in Ni?base single crystalsuperalloys :implications to strain build?up during directional solidification[J].Acta Materialia,2016,106:322-332.
[5]SEMENOV S G,GETSOV L B,TIKHOMIROVA E A,et al.Special features of creep and long?term strength of single?crystal refractory nickel?base alloys[J].Metal Science and Heat Treatment,2016,57(11):731-738.
[6]岳珠峰,陶仙德,尹澤勇,等.一種鎳基單晶超合金高溫低周疲勞的晶體取向相關(guān)性模型[J].應(yīng)用數(shù)學(xué)和力學(xué),2000,21(4):373-381.YUE Zhufeng,TAO Xiande,YIN Zeyong,et al.A crystallographic model for the orientation dependence of low cyclic fatigue property of a nickel?base single crystalsuperalloy[J].Applied Mathematics and Mechanics,2000,21(4):373-381.
[7]KUM O.Orientation effects of elastic?plastic deformation at surfaces:nanoindentation of nickel single crystals[J].Molecular Simulation,2005,31(2/3):115-121.
[8]FLEURY E,RéMY L.Low cycle fatigue damage in nickel?base superalloy single crystalsatelevated temperature[J].Materials Science&Engineering A,1993,167(1/2):23-30.
[9]劉昌奎,楊勝,何玉懷,等.單晶高溫合金斷裂特征[J].失效分析與預(yù)防,2010,05(4):225-230.LIU Changkui,YANG Sheng,HE Yuhuai,et al.Fracture features of single crystal superlloys[J].Failure Analysis and Prevention,2010,5(4):225-230.
[10]李影,蘇彬,吳學(xué)仁.DD6單晶高溫合金的低周疲勞壽命估算[J].航空材料學(xué)報(bào),2001,21(3):43-45.LI Ying,SU Bing,WU Xueren.Low cycle fatigue behavior ofDD6 single crystal[J].Journalof Aeronautical Materials,2001,21(3):43-45.
[11]石多奇,楊曉光,于慧臣,等.一種鎳基單晶和定向結(jié)晶合金的疲勞壽命模型[J].航空動(dòng)力學(xué)報(bào),2010,25(8):1871-1875.SHI Duoqi,YANG Xiaoguang,YU Huichen,et al.A fatigue life model of nickel base single crystal and oriented crystalline alloy[J].Journal of Aerospace Power,2010,25(8):1871-1875.
[12]潘冬,楊曉光,胡曉安,等.鎳基單晶合金葉片疲勞壽命預(yù)測(cè)方法研究[J].航空發(fā)動(dòng)機(jī),2014,40(3):45-48.PAN Dong,YANG Xiaoguang,HU Xiaoan,et al.Study on fatigue life prediction of nickel based single crystal superalloy blade[J].Aero?engine,2014,40(3):45-48.
[13]ZHOU G C,PEI H Q.The analysis of contact fatigue behavior in Ni?base single crystal superalloy turbine blade rabbet[J].Applied Mechanics& Materials,2014,633-634(6):1104-1110.
[14]YANG Q,ZHOU W,GAI P,et al.Investigation on the fretting fatigue behaviors of Ti-6Al-4V dovetail joint specimens treated with shot?peening[J].Wear,2017,372-373:81-90.
[16]王欣,尤宏德,趙金乾,等.噴丸對(duì)DD6單晶合金高溫疲勞性能的影響[J].中國(guó)表面工程,2013,26(3):21-24.WANG Xin,YOU Hongde,ZHAO Jinqian,et al.Effect of shot peening on high?temperature fatigue property of DD6 single crystal superalloy[J].China Surface Engineering,2013,26(3):21-24.
[17]王欣,尤宏德,李嘉榮,等.陶瓷彈丸噴丸強(qiáng)化對(duì)DD6單晶高溫合金表面完整性的影響[J].材料工程,2014(4):53-57.WANG Xin,YOU Hongde,LI Jiarong,et al.Effect of ceramic?shot?peening on surface integrity of DD6 single crystal superalloy[J].Materials Engineering,2014(4):53-57.
[18]湯海斌.結(jié)構(gòu)幾何突變對(duì)單晶合金疲勞行為影響研究[D].南京:南京航空航天大學(xué),2015.
[19]趙振業(yè).高強(qiáng)度合金抗疲勞應(yīng)用技術(shù)研究與發(fā)展[J].中國(guó)工程科學(xué),2005,7(3):90-94.ZHAO Zhenye.Research and development of anti fatigue technology for high strength alloy[J].China Engineering Science,2005,7(3):90-94.
[20]劉昌奎,楊勝,何玉懷等.單晶高溫合金斷裂特征[J].失效分析與預(yù)防,2010,5(4):225-230.LIU Changkui,YANG Sheng,HE Yuhuai,et al.Fracture characteristics of single crystal superalloy[J].Failure Analysis and Prevention, 2010, 5(4):225-230.
(編輯 程利冬)
Stress?concentration sensitivity of fatigue performance of nickel?based single crystal superalloy at medium temperature
WANG Xin1,2,TANG Zhihui1,2,LIU Chenguang1,3,LI Chunzhi1,ZHAO Zhenye1
(1.AECC Beijing Institute of Aeronautical Material,Beijing 100095,China;2.Aviation Key Laboratory of Advanced Corrosion and Protection on Aviation Materials,Beijing 100095,China;3.National Key laboratory of Advance High Temperature Structural Material,Beijing 100095,China)
The fatigue is one of the important failure modes of turbine blades.Rotating?bending fatigue performance of DD11 single crystal superalloy with two stress?concentration coefficients(SCs)(smooth:Kt=1,Notch:Kt=3)at 650℃ was investigated.Fatigue strengths of two SCs were compared and the fracture morphologies of fatigue were analyzed.The results show that fatigue limit declines from 446 MPa to 311 MPa when SC rises fromKt=1 toKt=3,indicating that the clear stress concentration sensitivity exists in the fatigue performance of single crystal superalloys.Fatigue strength of smooth statue decreases from 600 MPa to 420 MPa when fatigue cycle increases from 105to 107,in which the amplitude of smooth statue is 180 MPa while the one of notched statue is 80 MPa.It indicates that the change of applied load exert a crucial role on the fatigue cycle of DD11 single crystal superalloy.Fatigue fracture surface of the smooth specimens(stress:500 MPa/cycle:9.7×105) was composed of several smooth crystallographic plane,initiated by a casting hole 100 μm from the surface,whereasfatigue fracture surface of the notched specimens(stress:340 MPa/cycle:8.1×105)is plane and perpendicular to the applied force axis,which is a multi?source fatigue model.Moreover,the main source initiated as the small facet on the discontinuous machine marks.
nickel?based single crystal superalloy;rotating?bending fatigue;stress?concentration;sensitivity;medium temperature
V232.4;TG113.25
A
1005-0299(2017)03-0058-05
2016-09-08.< class="emphasis_bold">網(wǎng)絡(luò)出版時(shí)間:
時(shí)間:2017-05-05.
航空科學(xué)基金資助項(xiàng)目(2015Z02117).
王 欣(1983—),男,高級(jí)工程師.
王 欣,E?mail:rasheed990918@163.com.
10.11951/j.issn.1005-0299.20160286