• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      基于TOPSIS—模糊綜合評(píng)判的模糊推理模型在開(kāi)河預(yù)報(bào)中的應(yīng)用

      2017-07-29 18:37雷冠軍殷峻暹劉惠敏張麗麗
      南水北調(diào)與水利科技 2017年4期
      關(guān)鍵詞:主成分分析法

      雷冠軍+殷峻暹+劉惠敏+張麗麗

      摘要:冰凌開(kāi)封河受到較多自然和人為因素的影響,具有較高的不確定性,為了進(jìn)一步提高冰凌開(kāi)封河預(yù)測(cè)的精度,考慮各因素的綜合作用成為解決問(wèn)題的關(guān)鍵。先采用主成分分析法初步確定冰凌開(kāi)封河歷時(shí)影響因子的權(quán)重,運(yùn)用模糊推理模型依據(jù)影響因子矩陣的相似性進(jìn)行初步預(yù)測(cè),進(jìn)而采用TOPSIS-模糊綜合評(píng)判模型對(duì)預(yù)報(bào)因子進(jìn)行識(shí)別,篩選出合理的預(yù)報(bào)因子進(jìn)行二次預(yù)測(cè)。運(yùn)用實(shí)例對(duì)基于TOPSIS-模糊綜合評(píng)判模型冰凌預(yù)報(bào)因子識(shí)別的模糊推理模型的效果進(jìn)行了檢驗(yàn),同時(shí)與冰凌預(yù)報(bào)模糊優(yōu)選神經(jīng)網(wǎng)絡(luò)BP模型進(jìn)行對(duì)比,結(jié)果表明:在TOPSIS-模糊綜合評(píng)判模型因子進(jìn)行識(shí)別基礎(chǔ)上的模糊推理模型預(yù)測(cè)精度較高、效果較好,既能夠有效識(shí)別預(yù)報(bào)因子,又能夠較好地提高預(yù)報(bào)封河、開(kāi)河歷時(shí)的精度,為凌汛預(yù)測(cè)提供了新的途徑。

      關(guān)鍵詞:模糊推理;主成分分析法;TOPSIS-模糊綜合評(píng)判;凌汛

      中圖分類號(hào):P338;TV882 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1672-1683(2017)04-0007-06

      Abstract:The break-up and freeze-up of the river is under the influence of various natural and human factors,and is an issue of great uncertainty.To further improve the accuracy of break-up and freeze-up forecasts,the key is to consider the combined action of various factors.First,we used the principal component analysis to preliminarily determine the weight of each factor that affects the break-up and freeze-up duration,and used the fuzzy reasoning model to conduct preliminary prediction according to the similarity of the impact factor matrix.Then we identified forecast factors using the TOPSIS-fuzzy comprehensive evaluation model and selected reasonable forecast factors to conduct secondary prediction.The fuzzy reasoning model based on TOPSIS-fuzzy comprehensive evaluation and ice forecast factor identification was tested in a case study and was compared with the fuzzy optimization neural network BP model.The results showed that the fuzzy reasoning model in this paper had high precision and good effects in prediction.It can effectively identify forecast factors,and can well improve the accuracy of freeze-up and break-up duration forecasts.It provides a new approach for ice run prediction.

      Key words:fuzzy reasoning;principal component analysis;TOPSIS-fuzzy comprehensive evaluation;ice run

      1 模糊推理預(yù)測(cè)模型

      中長(zhǎng)期徑流預(yù)報(bào)的模糊推理預(yù)測(cè)模型能夠綜合考慮徑流過(guò)程較多的復(fù)雜的影響因素。冰凌開(kāi)封河影響因素復(fù)雜,因而開(kāi)封河預(yù)報(bào)模型預(yù)報(bào)因子較多,為了綜合考慮預(yù)報(bào)因子對(duì)冰凌開(kāi)封河的影響,采用模糊推理預(yù)測(cè)模型,根據(jù)冰凌開(kāi)封河與多個(gè)預(yù)報(bào)因子之間的相關(guān)關(guān)系綜合預(yù)測(cè),能夠在獲得預(yù)報(bào)結(jié)果的同時(shí)得出預(yù)測(cè)結(jié)果的不確定性,為管理者決策提供依據(jù)。模糊推理預(yù)測(cè)模型以預(yù)報(bào)因子級(jí)別特征值作為輸入,采用加權(quán)法計(jì)算待預(yù)報(bào)因子與預(yù)報(bào)因子之間的相似關(guān)系,選取相似關(guān)系最大的預(yù)報(bào)因子系列對(duì)應(yīng)的開(kāi)河日期作為輸出,輸出值即為待預(yù)報(bào)因子所對(duì)應(yīng)的開(kāi)河日期。

      模糊推理預(yù)測(cè)模型權(quán)重的確定采用主成分分析法,該方法是研究如何用多個(gè)指標(biāo)(因子)來(lái)描述研究單位(個(gè)體)的一種統(tǒng)計(jì)分析方法,把原來(lái)多個(gè)彼此相關(guān)的指標(biāo)(原變量)線性組合為少數(shù)幾個(gè)彼此獨(dú)立的綜合指標(biāo)(新變量),它提取出原指標(biāo)主要成分的統(tǒng)計(jì)信息,能夠有效反映該指標(biāo)值個(gè)體的變異。

      4.3 誤差評(píng)定與優(yōu)選判別

      由評(píng)分法和相對(duì)誤差法建立判斷矩陣,結(jié)果見(jiàn)表2,運(yùn)用TOPSIS-模糊綜合評(píng)判法進(jìn)行評(píng)判,評(píng)判結(jié)果見(jiàn)表3。將預(yù)測(cè)值的評(píng)價(jià)結(jié)果綜合列于表4,為了說(shuō)明累積貢獻(xiàn)率和因子個(gè)數(shù)在挑選因子組合方案時(shí)的作用,由表4作出預(yù)測(cè)結(jié)果的排名與因子個(gè)數(shù)和累積貢獻(xiàn)率的關(guān)系圖。

      相對(duì)誤差1代表第一個(gè)預(yù)測(cè)年份即1996年-1997年在各個(gè)組合方案中的相對(duì)誤差。以次類推。

      總排名數(shù)為該因子所在方案排名之和,總排名越靠后,說(shuō)明該因子的預(yù)測(cè)結(jié)果的精度越低,即因子的有效性越差。最大冰厚因子x1累積貢獻(xiàn)率最大,各個(gè)方案均予以考慮,不再計(jì)算其總排名數(shù)。

      本文在采用TOPSIS-模糊綜合評(píng)判法對(duì)影響因子進(jìn)行篩選識(shí)別后,采用模糊推理法對(duì)開(kāi)封河歷時(shí)進(jìn)行預(yù)報(bào),與陳守煜、冀鴻蘭[3]運(yùn)用模糊優(yōu)選神經(jīng)網(wǎng)絡(luò)BP模型進(jìn)行預(yù)報(bào)的結(jié)果對(duì)比表明,基于TOPSIS-模糊綜合評(píng)判法冰凌預(yù)報(bào)因子識(shí)別的模糊推理模型的5個(gè)預(yù)測(cè)值的誤差都在誤差允許范圍內(nèi),相對(duì)誤差較小,預(yù)報(bào)結(jié)果精度大大優(yōu)于模糊優(yōu)選神經(jīng)網(wǎng)絡(luò)模型,對(duì)比結(jié)果見(jiàn)表5。

      4.4 結(jié)果分析

      (1)冰凌開(kāi)封河歷時(shí)是個(gè)多因子綜合作用的過(guò)程,由表4、圖1可知,單一考慮最大冰厚因子,所得到的預(yù)測(cè)結(jié)果排名在第7位,考慮最大冰厚因子與其他因子相結(jié)合的方案,有6個(gè)排在前6位,說(shuō)明冰凌開(kāi)封河預(yù)報(bào)歷時(shí)應(yīng)該考慮多個(gè)因子的影響。

      (2)冰凌開(kāi)封河歷時(shí)預(yù)測(cè)的影響因子根據(jù)累積貢獻(xiàn)率初步確定后應(yīng)進(jìn)一步篩選:由表4、圖1可知,方案7、方案6的累積貢獻(xiàn)率大于方案5,而方案5的精度卻是最好的,同時(shí)方案累積貢獻(xiàn)率的排名和預(yù)測(cè)結(jié)果精度的排名并沒(méi)有對(duì)應(yīng)關(guān)系,說(shuō)明累積貢獻(xiàn)率確定后因子組合方案還需進(jìn)一步識(shí)別才能確定最優(yōu)的方案。

      (3)累積貢獻(xiàn)率相近的因子組合需進(jìn)一步深入探討:通過(guò)方案2,方案3和方案6,方案7的對(duì)比發(fā)現(xiàn),累積貢獻(xiàn)率相近的情形下,需要綜合評(píng)價(jià)因子組合以進(jìn)一步找到最佳的預(yù)測(cè)因子組合。

      5 結(jié)語(yǔ)

      冰凌開(kāi)封河歷時(shí)預(yù)測(cè)精度關(guān)系到防凌減災(zāi)工作的開(kāi)展,直接關(guān)系到人民生命財(cái)產(chǎn)安全。冰凌開(kāi)封河歷時(shí)受到眾多影響因素的制約,傳統(tǒng)的預(yù)測(cè)方法不能對(duì)影響因子進(jìn)行有效地識(shí)別,大大限制了冰凌預(yù)測(cè)的工作精度的提高。本文提出的基于TOPSIS-模糊綜合評(píng)判法冰凌預(yù)報(bào)因子識(shí)別的模糊推理模型能夠在對(duì)預(yù)報(bào)因子進(jìn)行識(shí)別的基礎(chǔ)上,運(yùn)用合理因子建立模型對(duì)冰凌開(kāi)封河歷時(shí)進(jìn)行預(yù)報(bào),與模糊優(yōu)選神經(jīng)網(wǎng)絡(luò)BP模型相比精度有了極大的提高,為凌汛預(yù)報(bào)提供了一個(gè)新的有效途徑。

      參考文獻(xiàn)(References):

      [1] 劉吉峰,楊健,霍世青,等.黃河寧蒙河段冰凌變化新特點(diǎn)分析[J].人民黃河,2012,34(11):12-14.(LIU Ji-feng,YANG Jian,HUO Shi-qing,et al.Analysis on some new ice characteristics in Ningxia-Inner Mongolia reach of the Yellow River[J].Yelow River,2012,34(11):12-14.(in Chinese))DOI:10.3969/j.issn.1000-1379.2012.11.004

      [2] 可素娟,王敏,饒素秋,等.黃河冰情研究[M].鄭州:黃河水利出版社,2005.(KE Su-juan,WANG Min,RAO Su-qiu,et al.The Yellow River ice stdy[M].Zhengzhou:The Yelow River Conservancy Press,2005.(in Chinese))

      [3] 陳守煜,冀鴻蘭.冰凌預(yù)報(bào)模糊優(yōu)選神經(jīng)網(wǎng)絡(luò)BP方法[J].水利學(xué)報(bào),2004,35(6):114-118.(CHEN Shou-yu,JI Hong-lan.Fuzzy optimization neural network BP approach for ice forecasting[J].Journal of Hydraulic Engineering,2004,35(6):114-118.(in Chinese))DOI:10.3321/j.issn:0559-9350,2004.06.020

      [4] 王濤,楊開(kāi)林,郭永鑫,等.神經(jīng)網(wǎng)絡(luò)理論在黃河寧蒙段冰情預(yù)報(bào)中的應(yīng)用[J].水利學(xué)報(bào),2005,36(10):1042-1208.(WANG Tao,YANG Kai-lin,GUO Yong-xin,et al.Appication of artificial neural networks to forecasting of river ic condition.Journal of Hydraulic Engineering,2005,36(10):1042-1208.(in Chinese))

      [5] 張傲妲.黃河內(nèi)蒙段冰情特點(diǎn)及預(yù)報(bào)模型研究[D].呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2011.(ZHANG Ao-da.Research on the characteristics and the prediction model of ice regime in the Inner Mongolia Reach of the Yellow River[D].Hohhot:Inner Mongolia Agricultural University,2011.(in Chinese))

      [6] 冀鴻蘭,張傲妲,高瑞忠,等.黃河內(nèi)蒙古段開(kāi)河日期預(yù)報(bào)模型及應(yīng)用[J].水利水電科技進(jìn)展.2012,4,32(2):42-45.(JI Hong-lan,ZHANG Ao-da,GAO Rui-zhong,et al.Application of the break up date prediction model in the Inner Monglia Reach of the Yellow River[J].Advances in Science and Techology of Water Resources,2012,4,32(2):42-45.(in Chinese))DOI:10.3880/j.issn.1006-7647.2012.02.010

      [7] 徐晶,冀鴻蘭,張寶森,等.基于可變模糊綜合分析的冰凌預(yù)測(cè)模型[J].水利水電科技進(jìn)展,2011,31(3):6-8,26.(XU Jing,JI Hong-lan,ZHANG Bao-sen.Ice forecast model based on variabe fuzzy synthetic analysis[J].Advances in Science and Techology of Water Resources,2011,31(3):6-8,26.(in Chinese))DOI:10.3880/j.issn.1006-7647.2011.03.002

      [8] 趙曉慎,李倩,王文川.基于成因綜合分析的冰凌預(yù)測(cè)模型[J].人民黃河,2011,33(1).(ZHAO Xiao-shen,LI Qian,WANG Wen-chuan.The ice prediction model based on the general analysis of the causes[J].Yellow River,2011,33(1).(in Chinese))

      [9] 韓宇平,藺冬,王富強(qiáng),等.基于粒子群算法的神經(jīng)網(wǎng)絡(luò)在冰凌預(yù)報(bào)中的應(yīng)用[J].水電能源科學(xué),2012,30(3).(HAN Yu-ping,LIN Dong,WANG Fu-qiang,et al.Application of neural networks to ice forecasting based on particle swarm optimization[J].Water Resources and Power,2012,30(3).(in Chinese)) DOI:10.3969/j.issn.1000-7709.2012.03.011

      [10] [ZK(#]陳守煜,薛志春,李敏,等.基于可變集的年凈流預(yù)測(cè)方法[J].水利學(xué)報(bào),2014,45(8).(CHEN Shou-yu,XUE Zhi-chun,LI Min,et al.Annual runoff prediction method based on the variable sets[J].Journal of Hydraulic Engineering,2014,45(8).(in Chinese))

      [11] 李敏.可變模糊近似推理方法在徑流中長(zhǎng)期預(yù)報(bào)中的應(yīng)用[J].水電能源科學(xué),2010,28(2):16-18.(LI Min.Variable fuzzy approximate reasoning metthod and its application in mid and long term runoff forecasting[J].Water Resources and Power,2010,28(2):16-18.(in Chinese)) DOI:10.3969/j.issn.1000-7709.2010.02.006

      [12] 王永縣,朱濤,李飛.基于相似關(guān)系的廣義近似推理方法[J].清華大學(xué)學(xué)報(bào):自然科學(xué)版,2002,42(10):128-1288,1308.(WANG Yong-xian,ZHU Tao,LI Fei.General similarity-based approximate reasoning method[J].Journal of Tsinghua University:Natural Science,2002,42(10):128-1288,1308.(in Chinese))DOI:10.3321/j.issn:1000-0054.2002.10.004

      [13] 陳守煜.基于可變模糊集的辯證法三大規(guī)律數(shù)學(xué)定理及其應(yīng)用[J].大連理工大學(xué)學(xué)報(bào),2010,50(5):838-844.(CHEN Shou-yu.Three mathematical theorems of dialectics based on variable fuzzy sets and their application[J].Journal of Dalian University of Technology,2010,50(5):838-844.(in Chinese))

      [14] 王文川,徐冬梅,陳守煜,等.可變模糊集理論研究進(jìn)展及其在水科學(xué)中的應(yīng)用[J].水利水電科技進(jìn)展,2012,32(5):89-94.(WANG Wen-chuan,XU Dong-mei,CHEN Shou-yu,et al.Research Advances and application in water science of variable fuzzy set theory[J].Advnces in Scienc and Technology of Water Resources,2012,32(5):89-94.(in Chinese))D OI:10.3880/j.issn.1006-7647.2012.05.023

      [15] 傅湘,紀(jì)昌明.區(qū)域水資源承載能力綜合評(píng)價(jià)-主成分分析法的應(yīng)用[J].長(zhǎng)江流域資源與環(huán)境,1999(2):168-173(FU Xiang,JI Chang-ming.A comprehensive evaluation of the regional water resource carrying capacity[J].Resources and Environment in the Yangtze River,1999(2):168-173 (in Chinese))

      [16] 盛周君,孫世群,王金城,等.基于主成分分析的河流水環(huán)境質(zhì)量評(píng)價(jià)研究[J].環(huán)境科學(xué)與管理,2007,32(12):172-175.(SHENG Zhou-jun,SUN Shi-qun,WANG Jin-cheng,et al.Comprehensive evaluation of river water environmental quality based on the principal component analysis[J].Environmental Science and Management,2007,32(12):172-175.(in Chinese)) DOI:10.3969/j.issn.1673-1212.2007.12.052

      [17] 歐陽(yáng)銘,白若男,朱國(guó)宇.成都市水資源承載能力動(dòng)態(tài)變化及成因[J].南水北調(diào)與水利科技,2012(6):110-114.(OUYANG Ming,BAI Ruo-nan,ZHU Guo-yu.Dynamic variation of water resources carrying capacity and its causes in Chengdu[J].South-to-North Water Transfers and Water Science & Technology,2012(6):110-114.(in Chinese))

      [18] 雷冠軍,王文川,劉寬,等.TOPSIS-模糊綜合評(píng)判法在優(yōu)選水文頻率參數(shù)估計(jì)方法中的應(yīng)用[J].水資源研究,2015(4):200-207.(LEI Guan-jun,WANG Wen-chuan,LIU Kuan,et al.The application of the TOPSIS-fuzzy comprehensive evaluation method used in the method of optimizing the hydrologic frequency parameter estimation[J].Journal of Water Resources Research,2015(4):200-207.(in Chinese))

      [19] 張曉華,畢生,曹永瀟.基于TOPSIS法的陜西省黃河流域干旱綜合評(píng)價(jià)模型[J].南水北調(diào)與水利科技,2015(2):211-213.(ZHANG Xiao-hua,BI Sheng,CAO Yong-xiao.Comprehensiveevaluation model model of drought in the Yellow River of Shaanxi province based on TOPSIS method[J].South-to-North Water Transfers and Water Science & Technology,2015(2):211-213.(in Chinese))

      [20] 許峰,秦成.地下水環(huán)境質(zhì)量評(píng)價(jià)—基于粗糙集理論和灰色關(guān)聯(lián)系數(shù)矩陣的TOPSIS模型[J].南水北調(diào)與水利科技,2015(6):1097-1100,1109.(XU Feng,QIN Cheng.Evalation of groundwater environment quality based on rough set and TOPSIS method gray correlation coefficient matrix[J].South-to-North Water Transfers and Water Science & Technology,2015(6):1097-1100,1109.(in Chinese))

      猜你喜歡
      主成分分析法
      山東省旅游產(chǎn)業(yè)競(jìng)爭(zhēng)力評(píng)價(jià)研究
      中國(guó)裝備制造業(yè)階段競(jìng)爭(zhēng)力研究
      陜西省各地區(qū)人力資本水平綜合評(píng)價(jià)與分析
      基于主成分分析的煤層氣賦存影響因素分析
      成都市中心城區(qū)商服用地基準(zhǔn)地價(jià)空間演變規(guī)律研究
      基于主成分分析法的高校財(cái)務(wù)風(fēng)險(xiǎn)評(píng)價(jià)指標(biāo)體系構(gòu)建
      太原市土地可持續(xù)利用研究
      基于主成分分析法的成都市房地產(chǎn)泡沫程度評(píng)價(jià)
      考察我國(guó)各省市自治區(qū)社會(huì)發(fā)展綜合狀況
      金華市服務(wù)外包產(chǎn)業(yè)科技創(chuàng)新能力研究
      佛教| 铁力市| 磐安县| 葵青区| 明星| 大安市| 南江县| 安陆市| 东乌| 宁波市| 延川县| 缙云县| 东方市| 景东| 塘沽区| 上虞市| 资溪县| 渑池县| 勐海县| 疏勒县| 南投市| 吉木萨尔县| 瑞昌市| 乡宁县| 巴中市| 多伦县| 九龙城区| 南开区| 旬阳县| 涟源市| 莒南县| 西乡县| 涪陵区| 吉安市| 韩城市| 大邑县| 巢湖市| 海盐县| 洛隆县| 右玉县| 漠河县|