王建英+劉昭華+曹頂國(guó)+王金文+崔緒奎+張果平
摘要:生長(zhǎng)分化因子9(growth differentiation factor 9, GDF9)對(duì)哺乳動(dòng)物生殖活動(dòng)的調(diào)控至關(guān)重要。作為轉(zhuǎn)化生長(zhǎng)因子β(transforming growth factor beta, TGFβ)超家族成員之一,GDF9主要在卵巢的卵母細(xì)胞中表達(dá)。除通過(guò)經(jīng)典的GDF9/Smads信號(hào)轉(zhuǎn)導(dǎo)通路實(shí)施生物學(xué)應(yīng)答外,GDF9還能以不依賴(lài)Smads的方式實(shí)現(xiàn)其生理作用。GDF9在卵泡發(fā)育、卵母細(xì)胞發(fā)育、排卵、黃體形成、精子發(fā)生、受精和胚胎發(fā)育等生物學(xué)過(guò)程中都發(fā)揮重要作用。本文對(duì)GDF9基因表達(dá)、蛋白結(jié)構(gòu)、參與的信號(hào)通路及其在哺乳動(dòng)物生殖過(guò)程中可能的生物學(xué)功能進(jìn)行總結(jié)及探討。
關(guān)鍵詞:生長(zhǎng)分化因子9;哺乳動(dòng)物;生殖
中圖分類(lèi)號(hào):S814.1 文獻(xiàn)標(biāo)識(shí)號(hào):A 文章編號(hào):1001-4942(2017)07-0167-06
Abstract Growth differentiation factor 9 (GDF9) is essential for the regulation of mammalian reproduction. As a member of transforming growth factor beta (TGFβ) family, GDF9 is mainly expressed in ovarian oocytes. In addition to the classical GDF9/Smads signal transduction pathway to implement biological response, GDF9 can also achieve its physiological role by independent of Smads. GDF9 plays important roles in follicle and oocyte development, ovulation, corpus luteum formation, spermatogenesis, fertilization, embryo development and so on. In this paper, the gene expression, protein structure, signaling pathway of GDF9 and its possible biological functions in the process of mammalian reproduction were summarized and discussed.
Keywords Growth differentiation factor 9; Mammal; Reproduction
作為轉(zhuǎn)化生長(zhǎng)因子β (transforming growth factor beta, TGFβ)超家族成員之一,生長(zhǎng)分化因子9(growth differentiation factor 9, GDF9)與哺乳動(dòng)物生殖活動(dòng)密切相關(guān),廣泛參與卵泡發(fā)育[1]、卵母細(xì)胞發(fā)育、排卵、黃體形成、精子發(fā)生、受精和胚胎發(fā)育等生物學(xué)過(guò)程。因此,對(duì)GDF9的研究工作有利于揭示哺乳動(dòng)物繁殖機(jī)理、促進(jìn)生殖健康和利用分子標(biāo)記輔助選擇快速提高動(dòng)物的繁殖性能和生產(chǎn)效益。為了更好地理解GDF9與哺乳動(dòng)物生殖之間的關(guān)系,促進(jìn)生殖健康和提高動(dòng)物繁殖力,本文就GDF9在哺乳動(dòng)物生殖過(guò)程中的作用及對(duì)生殖過(guò)程的調(diào)控等方面的研究進(jìn)行回顧和總結(jié),以便于GDF9在動(dòng)物生殖方面的開(kāi)發(fā)和利用。
1 GDF9基因表達(dá)、蛋白結(jié)構(gòu)及其參與的信號(hào)通路
GDF9基因在進(jìn)化上比較保守,不同物種間的GDF9存在較高的同源性。物種間差異可能影響GDF9在人類(lèi)和各種動(dòng)物體內(nèi)表達(dá)的時(shí)間與定位。研究發(fā)現(xiàn),綿羊、牛、負(fù)鼠、倉(cāng)鼠的GDF9表達(dá)從原始卵泡階段開(kāi)始,而小鼠、大鼠和人的GDF9表達(dá)則從初級(jí)卵泡階段開(kāi)始[2]。GDF9主要在卵巢的卵母細(xì)胞中表達(dá)[3],此外,在哺乳動(dòng)物睪丸[4-6]、垂體、子宮、骨髓[7]中亦有GDF9表達(dá)。與大多數(shù)TGFβ超家族生長(zhǎng)因子不同,GDF9的羧基末端(C-末端)以6個(gè)半胱氨酸(Cys)取代了TGFβ超家族保守的7個(gè)或9個(gè)Cys,而且C-末端參與成熟蛋白二硫鍵形成的Cys也被絲氨酸(Ser)替換,這表明GDF9單體可能通過(guò)非共價(jià)健連接形成二聚體[8]。
GDF9通過(guò)與單次跨膜的絲/蘇氨酸激酶活性受體Ⅰ(activin receptor-like kinase 5, ALK5)、受體Ⅱ(BMP type Ⅱ receptor, BMPRⅡ)高親和性結(jié)合,啟動(dòng)經(jīng)典的Smad2/3信號(hào)通路[9],調(diào)控細(xì)胞內(nèi)特定基因的轉(zhuǎn)錄及蛋白的合成,從而影響細(xì)胞的功能活動(dòng)。除通過(guò)GDF9/Smads信號(hào)轉(zhuǎn)導(dǎo)通路實(shí)施生物學(xué)應(yīng)答外,GDF9還能以不依賴(lài)Smads的方式調(diào)節(jié)細(xì)胞功能[10]。
從已有的研究結(jié)果來(lái)看,GDF9廣泛參與哺乳動(dòng)物生殖過(guò)程,主要包括卵泡發(fā)育、卵母細(xì)胞發(fā)育、排卵、黃體形成、精子發(fā)生、受精和胚胎發(fā)育等。
2 GDF9對(duì)卵泡發(fā)育的作用
下丘腦-垂體-性腺軸間的內(nèi)分泌調(diào)節(jié)在卵泡發(fā)育過(guò)程中發(fā)揮重要作用。此外,GDF9在卵泡的生長(zhǎng)分化、顆粒細(xì)胞的增殖和分化、卵丘擴(kuò)張、卵泡膜細(xì)胞分化、卵巢甾體激素、蛋白酶和細(xì)胞因子的合成等過(guò)程中亦不可或缺,從而維持穩(wěn)定的發(fā)育卵泡內(nèi)微環(huán)境。由于卵泡生成的初級(jí)卵泡階段受阻,敲除GDF9的小鼠是雌性不育的[11]。體內(nèi)給予GDF9重組蛋白能促進(jìn)大鼠的原始卵泡和初級(jí)卵泡轉(zhuǎn)變?yōu)榇渭?jí)卵泡[12]。
2.1 GDF9調(diào)節(jié)卵泡的生長(zhǎng)和分化
卵泡發(fā)育過(guò)程可分為促性腺激素不依賴(lài)和促性腺激素依賴(lài)兩個(gè)階段。前者包括原始卵泡和初級(jí)卵泡階段,在此階段,GDF9通過(guò)自分泌或旁分泌的方式來(lái)維持卵泡的正常生長(zhǎng)和卵母細(xì)胞的發(fā)育,生殖激素在該階段不起作用。GDF9可能通過(guò)抑制caspase-3的促凋亡作用促進(jìn)原始卵泡和初級(jí)卵泡發(fā)育到次級(jí)卵泡[13,14]。后一階段主要由下丘腦-垂體-性腺軸調(diào)節(jié)卵泡的發(fā)育,GDF9可與促性腺激素一起影響優(yōu)勢(shì)卵泡的選擇以及閉鎖卵泡的形成,促進(jìn)黃體的形成[12,15,16]。GDF9對(duì)卵泡發(fā)育的影響主要表現(xiàn)在對(duì)顆粒細(xì)胞、卵泡膜細(xì)胞及卵丘的作用上。
目前關(guān)于GDF9是否影響原始卵泡向初級(jí)卵泡發(fā)育存在爭(zhēng)議[12,17,18]。體內(nèi)給與GDF9重組蛋白能促進(jìn)大鼠從原始卵泡和初級(jí)卵泡發(fā)育到次級(jí)卵泡[12]。在山羊卵巢皮質(zhì)體外培養(yǎng)過(guò)程中,外源添加GDF9也能促使山羊原始卵泡發(fā)育到次級(jí)卵泡[17]。而Nilsson等則持相反意見(jiàn),認(rèn)為GDF9只能促進(jìn)初級(jí)卵泡的發(fā)育,而對(duì)原始卵泡無(wú)影響[18]。這可能是物種差異、研究人員和方法不同所致。
2.2 GDF9影響顆粒細(xì)胞的增殖和凋亡,改變其分化狀態(tài)
GDF9敲除小鼠的初級(jí)卵泡的顆粒細(xì)胞不能增殖和凋亡[19]。GDF9對(duì)未分化顆粒細(xì)胞的作用在于降低促卵泡素(follicle-stimulating hormone, FSH)的生物學(xué)效應(yīng)、促進(jìn)顆粒細(xì)胞的增殖和抑制顆粒細(xì)胞過(guò)早黃素化。GDF9對(duì)FSH誘導(dǎo)的孕酮、雌激素和促黃體生成素(luteinizing hormone, LH)受體生成起抑制作用。FSH通過(guò)合成環(huán)磷酸腺苷(cyclic adenosine monophosphate, cAMP)促進(jìn)類(lèi)固醇生成和LH受體含量增加來(lái)介導(dǎo)顆粒細(xì)胞分化,GDF9可顯著降低FSH誘導(dǎo)的cAMP生成量[20]。同時(shí),GDF9降低顆粒細(xì)胞8-Br-cAMP誘導(dǎo)的孕激素合成,降低類(lèi)固醇激素調(diào)節(jié)蛋白(StAR)的表達(dá),抑制P450側(cè)鏈裂解酶、P450芳香化酶的活性和卵泡膜細(xì)胞孕酮、17-α羥孕酮及脫氫表雄酮的合成,抑制顆粒細(xì)胞分化[21]。在大鼠[22]和人[1]顆粒細(xì)胞中,GDF9可刺激抑制素的產(chǎn)生,誘導(dǎo)Smad2的活化,在FSH分泌的反饋調(diào)節(jié)中起重要作用。
與未分化顆粒細(xì)胞不同,GDF9通過(guò)前列腺素E2配基受體信號(hào)通路使排卵前被FSH/LH激活的顆粒細(xì)胞的分化狀態(tài)發(fā)生改變,促進(jìn)顆粒細(xì)胞中前列腺素和孕酮的合成[23]。
GDF9還可通過(guò)促進(jìn)細(xì)胞代謝基因和編碼糖酵解酶[24]基因表達(dá)促進(jìn)卵母細(xì)胞發(fā)育,調(diào)節(jié)顆粒細(xì)胞代謝與卵泡發(fā)育保持一致[25]。
2.3 GDF9參與卵泡膜細(xì)胞的募集和分化
GDF9可影響卵泡膜細(xì)胞[21]和膜間質(zhì)細(xì)胞[26,27]類(lèi)固醇的生物合成,參與卵泡膜細(xì)胞募集和分化。GDF9基因敲除小鼠的卵泡膜細(xì)胞分化受阻,卵泡膜細(xì)胞分化的標(biāo)志缺乏,如17α-羥化酶(CYP17)、LH受體和C-kit受體[19]。而外源給予GDF9之后,免疫印跡結(jié)果表明卵巢勻漿中CYP17的含量增加[12]。
2.4 GDF9可誘導(dǎo)卵丘擴(kuò)張和分化
排卵前,富含透明質(zhì)酸的胞外間質(zhì)在卵丘細(xì)胞迅速積累,并引起細(xì)胞群擴(kuò)展。這一過(guò)程對(duì)于排卵及受精過(guò)程極其重要[28]。在出現(xiàn)LH峰時(shí),GDF9導(dǎo)致卵丘和卵母細(xì)胞發(fā)生下列變化:透明質(zhì)酸合成酶2 (hyaluronan synthase 2, HAS2)和環(huán)氧合酶2(COX2)的表達(dá)增加,透明質(zhì)酸、前列腺素E2(PGE2)和PGE2受體亞型EP2的合成能力增強(qiáng),StAR的表達(dá)量提高,從而促進(jìn)卵丘擴(kuò)張、孕酮合成[23]以及卵丘細(xì)胞合成膽固醇[29]。
在卵丘卵母細(xì)胞復(fù)合物(cumulus oocyte complexes, COCs)中,GDF9通過(guò)促進(jìn)HAS2表達(dá)和抑制尿激酶(urokinase plasminogen activator, uPA)的表達(dá)來(lái)啟動(dòng)卵丘擴(kuò)展[31]。重組的GDF9能上調(diào)中國(guó)倉(cāng)鼠顆粒細(xì)胞HAS2、COX2和StAR mRNA的表達(dá),下調(diào)uPA及LH受體 mRNA的合成,促進(jìn)富含透明質(zhì)酸的細(xì)胞外基質(zhì)的形成以維持卵母細(xì)胞生長(zhǎng)最適宜的內(nèi)環(huán)境[30]。小鼠卵母細(xì)胞的HAS2和前列腺素合酶2(Prostaglandin synthase 2, PTGS2) mRNA 水平在注射GDF9 dsRNA 8小時(shí)后也明顯下降[31]。而Varnosfaderani等則認(rèn)為在促進(jìn)綿羊卵丘細(xì)胞擴(kuò)張上,GDF9不起主要作用[32]。
GDF9基因還可以與FSH、BMP15等其他激素或生長(zhǎng)因子對(duì)動(dòng)物卵泡發(fā)育起協(xié)同效應(yīng)。
3 GDF9對(duì)卵母細(xì)胞發(fā)育的作用
3.1 GDF9可能參與卵母細(xì)胞減數(shù)分裂的啟動(dòng)和調(diào)控
研究發(fā)現(xiàn),綿羊卵巢中GDF9的基因轉(zhuǎn)錄從母羊妊娠后56天開(kāi)始,在94天達(dá)最高水平,之后逐步降低。而母羊卵巢上的卵原細(xì)胞在妊娠56~75天時(shí)開(kāi)始形成初級(jí)卵母細(xì)胞[33]。在綿羊卵母細(xì)胞的發(fā)育過(guò)程中,GDF9的最高表達(dá)量出現(xiàn)在GV期,其后MⅡ期卵母細(xì)胞、2細(xì)胞期、4細(xì)胞期、8細(xì)胞期、16細(xì)胞期和桑椹胚中GDF9的表達(dá)量依次下降,囊胚中甚至檢測(cè)不到其表達(dá)[4]。GDF9的表達(dá)時(shí)間和方式暗示其可能參與綿羊卵母細(xì)胞減數(shù)分裂的啟動(dòng)和調(diào)控[34]。馬絨毛膜促性腺激素(eCG)和絨毛膜促性腺激素(hCG)處理GDF9單敲除(+/-)和BMP15雙敲除(-/-)雙重突變(double mutant, DM)小鼠發(fā)現(xiàn),卵母細(xì)胞恢復(fù)減數(shù)分裂的時(shí)間延遲[16]。
3.2 GDF9 影響卵母細(xì)胞的生長(zhǎng)發(fā)育和成熟
卵泡發(fā)育和卵母細(xì)胞的生長(zhǎng)成熟是同步的。GDF9可通過(guò)調(diào)節(jié)卵泡發(fā)育、卵丘擴(kuò)張中關(guān)鍵酶的活性和顆粒細(xì)胞形態(tài)、數(shù)量、排列的變化[30]、維持卵母細(xì)胞和體細(xì)胞間的通訊(縫隙連接和粘著連接)[35]來(lái)影響卵母細(xì)胞的生長(zhǎng)發(fā)育和成熟。GDF9還可激活成熟促進(jìn)因子MPF和MAPK來(lái)調(diào)控豬卵母細(xì)胞的成熟[36]。GDF9敲除可上調(diào)小鼠卵泡中顆粒細(xì)胞kit配體和抑制素-α的表達(dá),間接影響卵母細(xì)胞的生長(zhǎng)和成熟[19]。而外源添加GDF9能夠提高牛[37]和豬[38]的卵母細(xì)胞成熟率。
FSH誘導(dǎo)GDF9+/-和BMP15-/-DM小鼠體外成熟卵母細(xì)胞的卵丘擴(kuò)張指數(shù)顯著低于BMP15+/-組、BMP15-/-組或GDF9+/-組。GDF9+/-和BMP15-/-DM小鼠卵丘細(xì)胞HAS2表達(dá)水平顯著低于BMP15+/-組或GDF9+/-組,與BMP15-/-組差別不大,而GDF9+/-和BMP15+/-組的卵丘細(xì)胞HAS2表達(dá)水平?jīng)]有差異[16]。
GDF9敲除不會(huì)影響小鼠卵母細(xì)胞的細(xì)胞核成熟,但是會(huì)影響卵母細(xì)胞的細(xì)胞質(zhì)成熟[16]。GDF9敲除小鼠的卵母細(xì)胞的跨透明帶突起物(transzonal projection, TZP)倒向卵母細(xì)胞,數(shù)量減少,結(jié)構(gòu)雜亂無(wú)章。體細(xì)胞和透明帶的聯(lián)系不很緊密,透明帶與卵黃膜的粘附明顯減少,顆粒細(xì)胞間的相互作用增強(qiáng)。超微結(jié)構(gòu)顯示GDF9敲除會(huì)導(dǎo)致皮質(zhì)顆粒和高爾基復(fù)合體的片層減少,說(shuō)明卵原細(xì)胞形成成熟卵母細(xì)胞的過(guò)程受到抑制[35]。
4 排卵和黃體形成
GDF9在排卵和黃體形成過(guò)程中亦發(fā)揮極其重要的作用。
4.1 GDF9可增加排卵率
鑰孔血藍(lán)蛋白(keyhole limpet hemocyanin, KLH)-GDF9多肽弗氏佐劑免疫會(huì)導(dǎo)致排卵的綿羊數(shù)量減少,黃體形成受到抑制,未排卵的綿羊伴隨正常卵泡發(fā)育的抑制和乏情[39]。綿羊的排卵率或產(chǎn)羔數(shù)與GDF9基因多態(tài)性有關(guān)[40]。研究發(fā)現(xiàn),綿羊GDF9基因上有3個(gè)位點(diǎn)(Fec GH、Fec TT、Fec GV)的突變雜合子排卵率比野生型要高,而這些突變純合子是不育的,可能是改變了GDF9成熟蛋白的形成[41]、GDF9形成二聚體的能力[42]以及GDF9與ALK5[43,44]、BMPRⅡ[45]的結(jié)合。
4.2 GDF9促進(jìn)黃體生成
GDF9通過(guò)影響優(yōu)勢(shì)卵泡的選擇以及閉鎖卵泡的形成促進(jìn)黃體生成。在黃體組織中發(fā)現(xiàn)BMP受體基因以及GDF9基因和蛋白的表達(dá),也暗示GDF9在黃體形成過(guò)程中發(fā)揮作用[46]。此外,GDF9可增加抑制素B的表達(dá),抑制素B與活化素(activin)A進(jìn)行競(jìng)爭(zhēng),導(dǎo)致activin A對(duì)StAR表達(dá)和孕酮生成的抑制作用減弱[47],亦能對(duì)黃體形成產(chǎn)生影響。
5 GDF9在雄性生殖中的作用
已有研究結(jié)果表明,GDF9可能在精子發(fā)生中發(fā)揮作用。成年羊駝生精上皮圓形精子和粗線(xiàn)期精子細(xì)胞的胞質(zhì)中有GDF9表達(dá),GDF9通過(guò)作用于生殖細(xì)胞或體細(xì)胞(如睪丸間質(zhì)細(xì)胞、支持細(xì)胞)調(diào)控睪丸中精子的發(fā)生過(guò)程[5]。荷斯坦公牛鮮精和凍精中GDF9基因兩個(gè)位點(diǎn)的突變與頂體完整率和精子密度顯著相關(guān)[48]。
睪丸支持細(xì)胞(sertoli cell, SC)間緊密連接的動(dòng)態(tài)變化對(duì)于血睪屏障(blood testis barrier, BTB)的完整性及精子發(fā)生過(guò)程至關(guān)重要[49]。GDF9可通過(guò)影響緊密連接和抑制素的生成影響精子生成,還可通過(guò)抑制緊密連接蛋白claudin-11、occludin和zonula occludens-1的膜定位破壞SC緊密連接的完整性[50]。
有關(guān)GDF9與雄性生殖方面的研究相對(duì)較少。GDF9是否參與精子的獲能和頂體反應(yīng)、是否影響睪丸發(fā)育、是否影響雄激素生物合成以及其它物種精子的冷凍保存,都有待于進(jìn)一步研究。
6 GDF9影響受精和胚胎發(fā)育
卵母細(xì)胞中正常的BMP15和GDF9表達(dá)水平對(duì)卵母細(xì)胞的細(xì)胞質(zhì)成熟至關(guān)重要。GDF9+/-、BMP15-/-以及GDF9+/-BMP15-/-DM小鼠的MⅡ期卵母細(xì)胞受精率顯著降低,著床前胚胎(2細(xì)胞至桑椹胚)發(fā)育滯后。這可能是通過(guò)降低BMP15和GDF9表達(dá)水平來(lái)影響卵丘細(xì)胞發(fā)育,也說(shuō)明卵母細(xì)胞、顆粒細(xì)胞間的反饋調(diào)節(jié)環(huán)對(duì)正常的卵母細(xì)胞發(fā)育很重要[16]。
GDF9能提高綿羊[32]、牛[37]、豬[38]和小鼠[51]等的胚胎質(zhì)量和發(fā)育能力,但不同物種間存在一定差異。與對(duì)照組相比,未成熟的綿羊COCs與重組的人GDF9共培養(yǎng)會(huì)降低卵裂率,對(duì)囊胚率無(wú)明顯影響,而囊胚的滋養(yǎng)層細(xì)胞數(shù)顯著增加[32]。GDF9重組蛋白能夠提高克隆牛胚胎的卵母細(xì)胞成熟率、卵裂率和囊胚率[37]。在豬卵母細(xì)胞體外成熟(in vitro maturation, IVM)培養(yǎng)過(guò)程中,外源添加GDF9能顯著提高囊胚率[38]。在FSH和表皮生長(zhǎng)因子(epidermal growth factor, EGF)存在下,外源添加GDF9能顯著提高小鼠卵母細(xì)胞的囊胚率和囊胚的內(nèi)細(xì)胞團(tuán)(inner cell mass, ICM)細(xì)胞數(shù)量,15天的成活胎兒數(shù)亦有增加[51]。
GDF9可能通過(guò)影響黃體形成和前列腺素合成在子宮內(nèi)膜上皮的增殖與分化、胚胎著床、維持妊娠、啟動(dòng)分娩、胎盤(pán)形成和功能維持等方面發(fā)揮作用,關(guān)于GDF9是否影響卵母細(xì)胞的捕獲、卵母細(xì)胞在輸卵管的運(yùn)輸、黃體退化、胎盤(pán)結(jié)構(gòu)和乳腺發(fā)育等,需要進(jìn)一步研究。
另外,GDF9可能具有更廣泛的生物學(xué)效應(yīng),雖然GDF9主要在卵巢的卵母細(xì)胞中表達(dá),但它在其它性腺組織和非性腺組織中亦有表達(dá)[4]。GDF9在非性腺組織中也可能發(fā)揮重要的生理功能[7]。
7 應(yīng)用展望
總之,GDF9通過(guò)影響生殖細(xì)胞和體細(xì)胞參與調(diào)節(jié)哺乳動(dòng)物生殖過(guò)程的多個(gè)環(huán)節(jié),發(fā)揮重要的自分泌和旁分泌作用。然而,GDF9在生殖系統(tǒng)中作用的研究才剛剛起步,還需要從分子生物學(xué)、細(xì)胞生物學(xué)和發(fā)育生物學(xué)等角度對(duì)其進(jìn)行深入挖掘,揭示GDF9在生殖活動(dòng)中的作用機(jī)制和調(diào)節(jié)方式,闡明哺乳動(dòng)物的生殖機(jī)理,促進(jìn)生殖生物學(xué)的發(fā)展,廣泛應(yīng)用于哺乳動(dòng)物生殖調(diào)控和生殖疾病的診斷與臨床治療中。
另外,由于生殖過(guò)程的調(diào)節(jié)本來(lái)就是一個(gè)很復(fù)雜的過(guò)程,有很多影響因素參與調(diào)節(jié),下丘腦-垂體-性腺軸內(nèi)分泌調(diào)節(jié)和卵母細(xì)胞源旁分泌或自分泌因子(GDF9、BMP15和BMP6等)共同發(fā)揮重要調(diào)節(jié)作用。要研究哺乳動(dòng)物整個(gè)生殖活動(dòng)的調(diào)節(jié)機(jī)理,需要對(duì)生殖過(guò)程進(jìn)行整體和系統(tǒng)研究,這樣才有助于全面揭示哺乳動(dòng)物復(fù)雜的生殖過(guò)程,為促進(jìn)哺乳動(dòng)物生殖健康和提高動(dòng)物繁殖力提供理論依據(jù)和技術(shù)手段,推動(dòng)生殖生物學(xué)研究以及動(dòng)物繁殖、改良的發(fā)展和進(jìn)步。
參 考 文 獻(xiàn):
[1]Kaivo-Oja N, Bondestam J, Kmrinen M, et al. Growth differentiation factor-9 induces Smad2 activation and inhibin B production in cultured human granulosa-luteal cells [J]. J. Clin. Endocrinol. Metab., 2003, 88(2): 755-762.
[2]Juengel J L, Mcnatty K P. The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development [J]. Hum. Reprod. Update, 2005, 11(2): 143-160.
[3]Mcgrath S A, Esquela A F, Lee S J. Oocyte-specific expression of growth/differentiation factor-9 [J]. Mol. Endocrinol., 1995, 9(1): 131-136.
[4]Pennetier S, Uzbekova S, Perreau C, et al. Spatio-temporal expression of the germ cell marker genes MATER, ZAR1, GDF9, BMP15, and VASA in adult bovine tissues, oocytes, and preimplantation embryos [J]. Biol. Reprod., 2004, 71(4): 1359-1366.
[5]Guo Q Y, Gao Z Z, Zhao L, et al. Expression of growth differentiation factor 9 (GDF9), ALK5, and claudin-11 in adult alpaca testis [J]. Acta Histochem., 2013, 115(1): 16-21.
[6]Zhao L, He J, Guo Q, et al. Expression of growth differentiation factor 9 (GDF9) and its receptor in adult cat testis [J]. Acta Histochem., 2011, 113(8): 771-776.
[7]Fitzpatrick S L, Sindoni D M, Shughrue P J, et al. Expression of growth differentiation factor-9 messenger ribonucleic acid in ovarian and nonovarian rodent and human tissues [J]. Endocrinology, 1998, 139(5): 2571-2578.
[8]高麗霞. 小尾寒羊TGF-β1和GDF9基因多態(tài)性及其與繁殖力關(guān)系的研究 [D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院, 2007.
[9]Vitt U A, Mazerbourg S, Klein C, et al. Bone morphogenetic protein receptor type Ⅱ is a receptor for growth differentiation factor-9 [J]. Biol. Reprod., 2002, 67(2): 473-480.
[10]Reader K L, Mottershead D G, Martin G A, et al. Signalling pathways involved in the synergistic effects of human growth differentiation factor 9 and bone morphogenetic protein 15 [J]. Reprod. Fertil. Dev., 2014, 28(4):491-498.
[11]Dong J, Albertini D F, Nishimori K, et al. Growth differentiation factor-9 is required during early ovarian folliculogenesis [J]. Nature, 1996, 383(6600): 531-535.
[12]Vitt U A, Mcgee E A, Hayashi M, et al. In vivo treatment with GDF-9 stimulates primordial and primary follicle progression and theca cell marker CYP17 in ovaries of immature rats [J]. Endocrinology, 2000, 141(10): 3814-3820.
[13]Hreinsson J G, Scott J E, Rasmussen C, et al. Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture [J]. J. Clin. Endocrinol. Metab., 2002, 87(1): 316-321.
[14]Orisaka M, Orisaka S, Jiang J Y, et al. Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage [J]. Mol. Endocrinol., 2006, 20(10): 2456-2468.
[15]Vitt U A, Hsueh A J. Stage-dependent role of growth differentiation factor-9 in ovarian follicle development [J]. Mol. Cell Endocrinol., 2001, 183(1/2): 171-177.
[16]Su Y Q, Wu X, O'brien M J, et al. Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte-cumulus cell complex in mice: genetic evidence for an oocyte-granulosa cell regulatory loop [J]. Dev. Biol., 2004, 276(1): 64-73.
[17]Martins F S, Celestino J J, Saraiva M V, et al. Growth and differentiation factor-9 stimulates activation of goat primordial follicles in vitro and their progression to secondary follicles [J]. Reprod. Fertil. Dev., 2008, 20(8): 916-924.
[18]Nilsson E E, Skinner M K. Growth and differentiation factor-9 stimulates progression of early primary but not primordial rat ovarian follicle development [J]. Biol. Reprod., 2002, 67(3): 1018-1024.
[19]Elvin J A, Yan C, Wang P, et al. Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary [J]. Mol. Endocrinol., 1999, 13(6): 1018-1034.
[20]Vitt U A, Hayashi M, Klein C, et al. Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles [J]. Biol. Reprod., 2000, 62(2): 370-377.
[21]Yamamoto N, Christenson L K, Mcallister J M, et al. Growth differentiation factor-9 inhibits 3′5′-adenosine monophosphate-stimulated steroidogenesis in human granulosa and theca cells [J]. J. Clin. Endocrinol. Metab., 2002, 87(6): 2849-2856.
[22]Roh J S, Bondestam J, Mazerbourg S, et al. Growth differentiation factor-9 stimulates inhibin production and activates Smad2 in cultured rat granulosa cells [J]. Endocrinology, 2003, 144(1): 172-178.
[23]Elvin J A, Yan C, Matzuk M M. Growth differentiation factor-9 stimulates progesterone synthesis in granulosa cells via a prostaglandin E2/EP2 receptor pathway [J]. Proc. Natl. Acad. Sci. U. S. A., 2000, 97(18): 10288-10293.
[24]Sugiura K, Pendola F L, Eppig J J. Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism [J]. Dev. Biol., 2005, 279(1): 20-30.
[25]Eppig J J, Pendola F L, Wigglesworth K, et al. Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: amino acid transport [J]. Biol. Reprod., 2005, 73(2): 351-357.
[26]Solovyeva E V, Hayashi M, Margi K, et al. Growth differentiation factor-9 stimulates rat theca-interstitial cell androgen biosynthesis [J]. Biol. Reprod., 2000, 63(4): 1214-1218.
[27]Chen M H, Li T, Ding C H, et al. Growth differential factor-9 inhibits testosterone production in mouse theca interstitial cells [J]. Fertil. Steril., 2013, 100(5): 1444-1450.
[28]Cherr G N, Yudin A I, Katz D F. Organization of the hamster cumulus extracellular matrix: a hyaluronate-glycoprotein gel which modulates sperm access to the oocyte [J]. Develop. Growth & Differ., 1990, 32(4): 353-365.
[29]Su Y Q, Sugiura K, Wigglesworth K, et al. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells [J]. Development, 2008, 135(1): 111-121.
[30]Elvin J A, Clark A T, Wang P, et al. Paracrine actions of growth differentiation factor-9 in the mammalian ovary [J]. Mol. Endocrinol., 1999, 13(6): 1035-1048.
[31]Gui L M, Joyce I M. RNA interference evidence that growth differentiation factor-9 mediates oocyte regulation of cumulus expansion in mice [J]. Biol. Reprod., 2005, 72(1): 195-199.
[32]Varnosfaderani Sh R, Ostadhosseini S, Hajian M, et al. Importance of the GDF9 signaling pathway on cumulus cell expansion and oocyte competency in sheep [J]. Theriogenology, 2013, 80(5): 470-478.
[33]Mandon-Pepin B, Oustry-Vaiman A, Vigier B, et al. Expression profiles and chromosomal localization of genes controlling meiosis and follicular development in the sheep ovary [J]. Biol. Reprod., 2003, 68(3): 985-995.
[34]Bodensteiner K J, Clay C M, Moeller C L, et al. Molecular cloning of the ovine growth/differentiation factor-9 gene and expression of growth/differentiation factor-9 in ovine and bovine ovaries [J]. Biol. Reprod., 1999, 60(2): 381-386.
[35]Carabatsos M J, Elvin J, Matzuk M M, et al. Characterization of oocyte and follicle development in growth differentiation factor-9-deficient mice [J]. Dev. Biol., 1998, 204(2):373-384.
[36]Lin Z L, Li Y H, Xu Y N, et al. Effects of growth differentiation factor 9 and bone morphogenetic protein 15 on the in vitro maturation of porcine oocytes [J]. Reprod. Domest. Anim., 2014, 49(2): 219-227.
[37]Su J, Hu G, Wang Y, et al. Recombinant human growth differentiation factor-9 improves oocyte reprogramming competence and subsequent development of bovine cloned embryos [J]. Cell Reprogram., 2014, 16(4): 281-289.
[38]彭中友, 孫俊銘, 李燕, 等. GDF9和FST調(diào)控豬卵母細(xì)胞成熟和胚胎早期發(fā)育 [J]. 江蘇農(nóng)業(yè)學(xué)報(bào), 2015, 31(3): 583-589.
[39]Mcnatty K P, Hudson N L, Whiting L, et al. The effects of immunizing sheep with different BMP15 or GDF9 peptide sequences on ovarian follicular activity and ovulation rate [J]. Biol. Reprod., 2007, 76(4): 552-560.
[40]徐敏麗, 白莉雅, 王建英, 等. 綿羊GDF9基因研究進(jìn)展 [J]. 山東農(nóng)業(yè)科學(xué), 2016, 48(5): 148-152,158.
[41]Souza C J, Mcneilly A S, Benavides M V, et al. Mutation in the protease cleavage site of GDF9 increases ovulation rate and litter size in heterozygous ewes and causes infertility in homozygous ewes [J]. Anim. Genet., 2014, 45(5): 732-739.
[42]Hanrahan J P, Gregan S M, Mulsant P, et al. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries) [J]. Biol. Reprod., 2004, 70(4): 900-909.
[43]Mcnatty K P, Moore L G, Hudson N L, et al. The oocyte and its role in regulating ovulation rate: a new paradigm in reproductive biology [J]. Reproduction, 2004, 128(4): 379-386.
[44]Kirsch T, Sebald W, Dreyer M K. Crystal structure of the BMP2-BRIA ectodomain complex [J]. Nature Structural Biol., 2000, 7(6): 492-496.
[45]Juengel J L, Davis G H, Mcnatty K P. Using sheep lines with mutations in single genes to better understand ovarian function [J]. Reproduction, 2013, 146(4): R111-R123.
[46]Silva J R, Van Den Hurk R, Van Tol H T, et al. Expression of growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), and BMP receptors in the ovaries of goats [J]. Mol. Reprod. Dev., 2005, 70(1): 11-19.
[47]Shi F T, Cheung A P, Klausen C, et al. Growth differentiation factor 9 reverses activin A suppression of steroidogenic acute regulatory protein expression and progesterone production in human granulosa-lutein cells [J]. J. Clin. Endocrinol. Metab., 2010, 95(10): E172-E180.
[48]Tang K Q, Yang W C, Zhang X X, et al. Effects of polymorphisms in the bovine growth differentiation factor 9 gene on sperm quality in Holstein bulls [J]. Genet. Mol. Res., 2013, 12(3): 2189-2195.
[49]宿文輝, 孟曉娜, 呂孟竹. Rab13-蛋白激酶A途徑調(diào)節(jié)體外培養(yǎng)支持細(xì)胞屏障通透性的研究 [J]. 生殖與避孕, 2014, 34(8): 611-616,642.
[50]Nicholls P K, Harrison C A, Gilchrist R B, et al. Growth differentiation factor 9 is a germ cell regulator of Sertoli cell function [J]. Endocrinology, 2009, 150(5): 2481-2490.
[51]Yeo C X, Gilchrist R B, Thompson J G, et al. Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice [J]. Hum. Reprod., 2008, 23(1): 67-73.