楊國(guó)鋒,余有芳,盛奎川
(1.浙江大學(xué)生物系統(tǒng)工程與食品科學(xué)學(xué)院,杭州310058;2.浙江商業(yè)職業(yè)技術(shù)學(xué)院應(yīng)用工程學(xué)院,杭州310053)
進(jìn)料速率對(duì)生物質(zhì)顆粒燃燒煙氣排放特性的影響
楊國(guó)鋒1?,余有芳2?*,盛奎川1
(1.浙江大學(xué)生物系統(tǒng)工程與食品科學(xué)學(xué)院,杭州310058;2.浙江商業(yè)職業(yè)技術(shù)學(xué)院應(yīng)用工程學(xué)院,杭州310053)
為探明進(jìn)料速率對(duì)生物質(zhì)顆粒燃燒過(guò)程中煙氣成分及污染物排放的影響規(guī)律,以5G-20/85-0.23型生物質(zhì)顆粒燃燒器為對(duì)象,研究進(jìn)料方式為進(jìn)2 s停13 s、進(jìn)2 s停15 s、進(jìn)2 s停17 s、進(jìn)2 s停19 s、進(jìn)2 s停21 s(分別用2/ 13、2/15、2/17、2/19、2/21表示),相應(yīng)的平均進(jìn)料速率為6.9、6.2、5.5、5.0和4.5 kg/h時(shí),煙氣中CO、O2和NOx含量的變化,考察CO和NOx含量隨運(yùn)行時(shí)間的波動(dòng)及兩者排放量之間的關(guān)系。結(jié)果表明:進(jìn)料速率從6.9 kg/h(2/13)降低到5.0 kg/h(2/19)時(shí),煙氣中CO含量逐漸減小,在5.0 kg/h時(shí)達(dá)到最小值66 mg/Nm3;NOx含量變化與CO相似,在進(jìn)料速率為5.0 kg/h(2/19)時(shí)達(dá)到最小值8.8 mg/Nm3;在進(jìn)料速率為6.9 kg/h(2/13)時(shí)煙氣中CO含量隨運(yùn)行時(shí)間的波動(dòng)最大;在不同進(jìn)料速率下CO含量均呈周期性波動(dòng),波動(dòng)周期與進(jìn)料周期基本吻合,而NOx含量隨運(yùn)行時(shí)間的波動(dòng)幅度較小??傮w而言,平均進(jìn)料速率為5.0 kg/h,即進(jìn)2 s停19 s的進(jìn)料方式能夠明顯降低污染物的排放。
生物質(zhì)顆粒;燃燒器;進(jìn)料速率;污染物排放;一氧化碳;氮氧化物
Summary Biomass pellets,prepared from wood particles,straws,and other agricultural and forestry residues,possessed the advantages of higher energy density,convenient transportation and storage,and reduced fossil energy consumption and greenhouse gas emissions.They have been widely used in industrial boilers,agricultural greenhouses and household heatingunits.Currently,the efficient measurement and control of pollutant emission during biomass pellet combustion become increasingly importantand attractmore and more public awareness.Feeding rate is one ofthe criticalfactors thatdetermine the combustion status and pollutantemissions.Previous researches mainly focused on the effectoffeeding rate on carbon oxide(CO) emission,while the impact on nitrogen oxides(NOx)emission was seldomly reported.The new China National Emission Regulation(NER)issued in early 2012 requires thatNOxemission mustbe controlled below 100 mg/m3.
The objective of this study was to investigate the effect of feeding rate on the emission and variation of CO and NOxbased on a 5G-20/85-0.23 biomass pellet burner platform.Average feeding rates of 6.9,6.2,5.5,5.0 and 4.5 kg/h were employed, corresponding to the setofworking and pausing time in the feeding mechanism at2 s/13 s,2 s/15 s,2 s/17 s,2 s/19 s,and 2 s/21 s, respectively(labelled as2/13,2/15,2/17,2/19,2/21).
Results showed that CO emission was reduced with the feeding rate decreased from 6.9 to 5.0 kg/h,and the lowest COconcentration of66 mg/Nm3was achieved atthe feeding rate of 5.0 kg/h.When the feeding rate was further reduced to 4.5 kg/h, the highest CO concentration of 205 mg/Nm3was obtained.Overall,the CO emission firstdecreased and then increased for the feeding rate range of 6.9 to 4.5 kg/h.With the decreasing of feeding rate,oxygen(O2)concentration increased first and then decreased.MaximalO2concentration of16%was achieved with the feeding mechanism of2/19.Fluctuation of CO concentration with time reflects the combustion quality and consistency inside the furnace,and minimal fluctuation is preferred.The highest fluctuation of CO concentration appeared when the feeding mechanism was setat 2/13,and a fluctuation peak was noticed at80 s,which was probably caused by the pellet accumulation in the furnace and incomplete combustion in generating more CO. Overall,the fluctuation period was in good agreement with the feeding period.The effect of feeding rate on NO,NO2,and NOxconcentrations was similar to that of CO,with the lowest NOxof 8.8 mg/Nm3obtained at feeding rate of 5.0 kg/h and highest NOxof78 mg/Nm3obtained at6.9 kg/h.The furnace temperature atlower position reached 758℃atthe optimalfeeding rate.When the feeding rate was 4.5 kg/h,the temperature was only 375℃.The periodical fluctuation of NOxis notas obvious as CO.With the feeding mechanisms of 2/19 and 2/17,very minor fluctuations of NOxwith time were observed.The NOxfluctuations were relatively largerwith 2/15 and 2/13 feeding mechanisms.
In summary,the concentrations of CO and NOxin the emission are significantly affected by biomass pellet feeding rate. Minimal CO and NOxemissions are achieved when the feeding mechanism is setat 2/19.Periodicalfluctuation of NOxwith time is less obvious compared with CO.These results provide both practical data and theoreticalbasis for the optimization offeeding rate forbiomass pelletburners.
生物質(zhì)顆粒成型燃料是以木屑、秸稈等農(nóng)林廢棄物為原料,利用機(jī)械設(shè)備壓縮成圓柱顆粒狀且質(zhì)地堅(jiān)實(shí)的成型物,可作為工業(yè)鍋爐、炊事?tīng)t灶、民用取暖爐和農(nóng)業(yè)加溫的燃料,具有體積小、能量密度大、便于運(yùn)輸和貯藏等優(yōu)點(diǎn)。隨著我國(guó)可再生能源開(kāi)發(fā)利用與節(jié)能減排政策的實(shí)施,生物質(zhì)顆粒燃料的生產(chǎn)和銷(xiāo)售已進(jìn)入商業(yè)化運(yùn)營(yíng)階段,大規(guī)模使用生物質(zhì)顆粒燃料方興未艾,有些地區(qū)甚至出現(xiàn)顆粒燃料供不應(yīng)求的局面。
近年來(lái),生物質(zhì)顆粒燃料燃燒器在小型熱水鍋爐、農(nóng)業(yè)溫室和養(yǎng)殖設(shè)施的加溫?zé)犸L(fēng)爐、家用取暖爐等領(lǐng)域得到了廣泛應(yīng)用。然而,目前大部分燃燒器的工況參數(shù)設(shè)置存在較多不合理之處,導(dǎo)致在使用過(guò)程中煙氣污染物排放量大,制約了其推廣應(yīng)用。王月喬等[1]在生物質(zhì)顆粒燃料適應(yīng)性研究中發(fā)現(xiàn),燃燒器顆粒物排放通常在98 mg/Nm3左右,煙氣格林曼黑度為Ⅱ級(jí)。張學(xué)敏等[2]研究在不同進(jìn)料方式下燃燒器在燃燒過(guò)程中的排放特性發(fā)現(xiàn),煙氣中CO含量通常在800 mg/Nm3左右,NOx含量在134 mg/Nm3左右。可見(jiàn),現(xiàn)存的大多數(shù)顆粒燃燒器在使用過(guò)程中煙塵濃度和CO排放值偏高,因此,有必要研究燃燒器工況參數(shù)與污染物排放量之間的關(guān)系,以便為顆粒燃料的清潔燃燒及達(dá)標(biāo)排放提供科學(xué)依據(jù)。
進(jìn)料速率是顆粒燃燒器的重要工況參數(shù)之一,與燃燒器熱負(fù)荷和污染物排放量直接相關(guān)。燃燒器經(jīng)優(yōu)化設(shè)計(jì)并加工定型后,燃燒室和進(jìn)風(fēng)量配置等結(jié)構(gòu)參數(shù)就已被確定,因此,進(jìn)料速率的合理調(diào)控成為關(guān)鍵因素。進(jìn)料速率過(guò)大會(huì)導(dǎo)致供氧不足,煙氣中CO、NOx等污染物排放量高,污染環(huán)境[3]。進(jìn)料速率過(guò)小既達(dá)不到需要的熱負(fù)荷,又因供入空氣量過(guò)多,導(dǎo)致可燃?xì)怏w在爐膛中停留時(shí)間過(guò)短,引起不完全燃燒,同樣會(huì)增加污染物排放[4]。DIAS等[5]在研究進(jìn)料速率與CO含量的關(guān)系時(shí)發(fā)現(xiàn),在過(guò)量空氣系數(shù)不變的情況下,當(dāng)進(jìn)料速率從5 kg/h逐漸增加到6 kg/h時(shí),煙氣中CO含量逐漸降低,隨著進(jìn)料速率的繼續(xù)增加CO含量又開(kāi)始升高。另外,有學(xué)者研究發(fā)現(xiàn),在進(jìn)料速率增加的初始階段通入爐膛內(nèi)的空氣未被完全利用,隨著進(jìn)料速率的繼續(xù)增加使其充分利用,CO含量開(kāi)始降低,當(dāng)進(jìn)料速率超過(guò)某個(gè)臨界值后,爐膛內(nèi)出現(xiàn)了缺氧燃燒,CO含量再次升高[6-7]。綜上,現(xiàn)有研究主要集中在進(jìn)料速率對(duì)CO排放的影響,而進(jìn)料速率對(duì)NOx排放的影響卻鮮見(jiàn)報(bào)道,且煙氣中污染物含量隨燃燒器運(yùn)行時(shí)間的波動(dòng)特征尚不清楚。因此,本文以一種小型熱水鍋爐配套的生物質(zhì)顆粒燃燒器為對(duì)象,研究顆粒燃料進(jìn)料速率對(duì)煙氣中CO和NOx等含量的影響,考察CO與NOx排放量隨燃燒器運(yùn)行時(shí)間的波動(dòng)特征及變化規(guī)律,為合理選擇進(jìn)料速率、降低生物質(zhì)顆粒在燃燒過(guò)程中污染物的排放提供理論依據(jù)。
1.1 試驗(yàn)材料
生物質(zhì)顆粒燃料取自浙江省金華市浙江紅永燃料加工廠,原料主要為杉木、松木等木材加工剩余物。顆粒燃料的平均直徑為9.0 mm,密度為1 200 kg/m3;其工業(yè)分析成分、元素組成和熱值見(jiàn)表1。其中:工業(yè)分析成分根據(jù)《固體生物質(zhì)燃料工業(yè)分析方法》(GB/T 28731—2012)測(cè)定;熱值根據(jù)《生物質(zhì)固體成型燃料試驗(yàn)方法》(NY/T 1881.1—2010)測(cè)定;C、H和N含量采用元素分析儀(EA 1112,CarloErba公司,意大利)測(cè)定,O元素質(zhì)量分?jǐn)?shù)用100減去C、H、N、S和干燥基灰分百分含量計(jì)算獲得。顆粒燃料在室內(nèi)干燥陰涼處用塑料密封袋貯藏保存,試驗(yàn)時(shí)取用。
1.2 試驗(yàn)平臺(tái)和儀器設(shè)備
1.2.1 生物質(zhì)顆粒燃燒器試驗(yàn)平臺(tái)
以浙江省蘭溪市田農(nóng)新能源科技有限公司制造的5G-20/85-0.23型生物質(zhì)顆粒熱水鍋爐中使用的燃燒器為基礎(chǔ),本課題組自行設(shè)計(jì)搭建成生物質(zhì)顆粒燃燒器試驗(yàn)平臺(tái),主要由爐體、進(jìn)料系統(tǒng)、調(diào)控及檢測(cè)儀器等組成,其結(jié)構(gòu)示意圖如圖1所示。爐體由內(nèi)及外依次為爐膛隔熱層和保溫層,爐體從底部到上部依次是灰渣收集室→爐排(一次進(jìn)風(fēng)口)→燃燒室→二次進(jìn)風(fēng)口→冷卻水管等;采用軸向平行的雙螺桿進(jìn)料機(jī)構(gòu);風(fēng)量調(diào)節(jié)及檢測(cè)儀器主要有:130FLJ2WYD4-2離心風(fēng)機(jī)(上海新興機(jī)電集團(tuán)有限公司),SLDLUGB-DN40智能一體式渦街流量計(jì)(南京順來(lái)達(dá)儀表有限公司),實(shí)驗(yàn)室自制的手動(dòng)風(fēng)量蝴蝶閥調(diào)節(jié)裝置(管道內(nèi)徑110 mm,長(zhǎng)度1 200 mm)。
表1 生物質(zhì)顆粒燃料的工業(yè)分析、元素組成和熱值Table1 Results ofproximate analysis,elementcomposition and heatvalue ofthe biomass pellets
圖1 生物質(zhì)顆粒燃燒器試驗(yàn)平臺(tái)示意圖Fig.1 Schematic diagram oftestplatform ofbiomass pelletburner
1.2.2 燃燒器工作流程
將一定量的顆粒加入料倉(cāng)中,啟動(dòng)電源后按設(shè)定好的程序運(yùn)行,依次為:送料(20 s)→點(diǎn)火(4 min)→點(diǎn)火成功、正常運(yùn)行(間隙進(jìn)料)→穩(wěn)定燃燒→停止進(jìn)料,繼續(xù)燃燒15 min后結(jié)束。進(jìn)料機(jī)構(gòu)采用間歇進(jìn)料(周期進(jìn)料)方式送料,即上螺桿按工作幾秒停頓幾秒為一個(gè)周期,下螺桿則連續(xù)運(yùn)轉(zhuǎn)。采用雙螺桿機(jī)構(gòu)與間隙進(jìn)料的主要目的是有效防止燃燒室回火而“返燒”料倉(cāng)內(nèi)的顆粒燃料[8]。
1.3 試驗(yàn)方法
1.3.1 煙氣成分測(cè)定
煙氣中CO、NO、NO2、NOx和O2含量檢測(cè):參考《固定污染源排放煙氣連續(xù)監(jiān)測(cè)系統(tǒng)技術(shù)要求及檢測(cè)方法》(HJ/T 76—2007),用Testo350煙氣分析儀(Testo公司,德國(guó))完成。該檢測(cè)儀的NOx含量為NO與NO2之和。根據(jù)檢測(cè)儀要求,待燃燒器運(yùn)行穩(wěn)定后(爐膛溫度幾乎不變),將煙氣探針固定在距離爐體上方50 cm、并與煙囪橫截面呈30~45°夾角處。測(cè)量前校準(zhǔn)煙氣分析儀,檢測(cè)時(shí)間5 min,采樣頻率10 s/次,自動(dòng)保存每10 s內(nèi)各煙氣成分的平均值、最大值、最小值等數(shù)據(jù)。
1.3.2 進(jìn)料量設(shè)定
采用間隙進(jìn)料方式送料,即進(jìn)t1,停t2,螺桿進(jìn)料速率為14.45 g/s,則每小時(shí)進(jìn)入爐膛內(nèi)的燃料質(zhì)量為:
式中:m為平均進(jìn)料速率,kg/h;t1為進(jìn)料時(shí)間,s;t2為停頓時(shí)間,s。
1.3.3 一次進(jìn)風(fēng)與二次進(jìn)風(fēng)流量的測(cè)定
一、二次進(jìn)風(fēng)分別由2個(gè)相同型號(hào)的離心風(fēng)機(jī)提供,在風(fēng)機(jī)進(jìn)風(fēng)口前端安裝調(diào)節(jié)風(fēng)量大小的蝴蝶閥,風(fēng)機(jī)出風(fēng)口前端15倍直徑(60 cm)處安裝渦街流量計(jì)用于測(cè)量氣體流量。二次風(fēng)比例以二次風(fēng)量/總風(fēng)量表示,總風(fēng)量為一次與二次風(fēng)量之和。
1.3.4 顆粒燃料燃燒的理論空氣量
1 kg干燥基生物質(zhì)固體燃料燃燒需要消耗的理論空氣量的計(jì)算公式[9-10]為:
式中:V0為理論空氣量,Nm3;w(C)為干燥基碳元素質(zhì)量分?jǐn)?shù),%;w(S)為干燥基硫元素質(zhì)量分?jǐn)?shù),%;w(H)為干燥基氫元素質(zhì)量分?jǐn)?shù),%;w(O)為干燥基氧元素質(zhì)量分?jǐn)?shù),%。根據(jù)表1中顆粒燃料的C、S、H、O干燥基含量,則計(jì)算可得V0=4.02 Nm3。
1.4 試驗(yàn)設(shè)計(jì)
根據(jù)前期預(yù)試驗(yàn)結(jié)果,當(dāng)平均進(jìn)料速率為6.2 kg/h(進(jìn)2 s停15 s)時(shí),污染物排放處在一個(gè)相對(duì)合理的范圍內(nèi),故將進(jìn)料方式設(shè)為進(jìn)2 s停15 s(6.2 kg/h),一次風(fēng)量、二次風(fēng)量分別為47.2 m3/h、38.1 m3/h,即二次風(fēng)比例為0.4,以過(guò)量空氣系數(shù)為2.5進(jìn)行試驗(yàn),結(jié)果顯示,CO質(zhì)量濃度為193 mg/Nm3,NOx質(zhì)量濃度為72 mg/Nm3,均低于國(guó)家相關(guān)標(biāo)準(zhǔn):說(shuō)明在此工況下各參數(shù)處在一個(gè)相對(duì)合理的范圍內(nèi)。保持其他參數(shù)不變,僅增大進(jìn)料速率,選擇進(jìn)4 s停15 s(10 kg/h)的進(jìn)料方式進(jìn)行試驗(yàn),結(jié)果顯示CO質(zhì)量濃度高達(dá)3 293 mg/Nm3,遠(yuǎn)超相關(guān)污染物的國(guó)家排放標(biāo)準(zhǔn)。因此,在不同進(jìn)料速率下通過(guò)風(fēng)量調(diào)節(jié)閥,改變一次風(fēng)與二次風(fēng)進(jìn)風(fēng)量,以保持二次風(fēng)比例0.4和過(guò)量空氣系數(shù)2.5不變,選取間隙進(jìn)料變化梯度為進(jìn)2 s停13 s、進(jìn)2 s停15 s、進(jìn)2 s停17 s、進(jìn)2 s停19 s、進(jìn)2 s停21 s(分別用2/13、2/15、2/17、2/ 19、2/21表示),相應(yīng)的平均進(jìn)料速率為6.9、6.2、5.5、5.0和4.5 kg/h。
2.1 煙氣中CO和O2含量
2.1.1 進(jìn)料速率對(duì)煙氣中CO和O2含量的影響
煙氣中CO含量直接反映揮發(fā)分的析出和燃燒狀況,在不同進(jìn)料速率下煙氣中CO和O2含量見(jiàn)圖2。從中可知,隨著進(jìn)料速率的減小,煙氣中CO濃度先降低后增加,這與已有的研究結(jié)果[11-13]相似。進(jìn)料方式在2/13~2/19之間變化時(shí)CO含量逐漸降低:說(shuō)明隨著平均進(jìn)料速率的減小,爐膛內(nèi)燃燒狀況得到改善,燃燒更加充分。這主要是由于過(guò)量空氣系數(shù)和二次風(fēng)比例保持不變,進(jìn)料速率的降低增加了送風(fēng)中O2與揮發(fā)分的混合時(shí)間,使兩者混合更加充分[14]。進(jìn)料方式從2/17變?yōu)?/19時(shí),CO從146 mg/Nm3直接降到66 mg/Nm3,降低了55%:說(shuō)明在此變化過(guò)程中釋放的CO含量大幅減少并且揮發(fā)分燃燒更加完全。在進(jìn)料方式為2/21時(shí)CO含量明顯升高,增加了2倍以上,出現(xiàn)最大值(205 mg/Nm3)。這是因?yàn)樵谶M(jìn)料速率繼續(xù)降低后,爐柵上方的顆粒燃料層出現(xiàn)“燒穿”現(xiàn)象,也即通過(guò)爐柵下方進(jìn)入的一次風(fēng)發(fā)生“漏風(fēng)”現(xiàn)象,進(jìn)入爐膛的空氣停留時(shí)間縮短,將顆粒熱解產(chǎn)生的部分CO帶走,來(lái)不及與進(jìn)風(fēng)中的O2混合燃燒而從爐膛上部煙氣出口排出,因而導(dǎo)致煙氣中CO含量明顯升高。
隨著進(jìn)料速率的降低,煙氣中O2含量先升高后降低,在進(jìn)料方式為2/19時(shí)達(dá)到最大值(16%左右)。在不同進(jìn)料速率下O2含量均出現(xiàn)較高的現(xiàn)象,這可能與采用螺桿送料的進(jìn)料機(jī)構(gòu)及固定爐柵(爐排)的燃燒室有關(guān):顆粒燃料被螺桿輸送至爐柵上方產(chǎn)生不均勻分布,均存在顆粒在爐柵上方靠近進(jìn)料口一側(cè)堆積的現(xiàn)象,在另一側(cè)缺少顆粒而不同程度產(chǎn)生“漏風(fēng)”,空氣阻力小,導(dǎo)致進(jìn)入爐膛的一次風(fēng)通過(guò)該側(cè)爐柵上的縫隙直接進(jìn)入爐膛并使氣流加速,從而使煙氣中O2含量偏高。
圖2 不同進(jìn)料速率對(duì)煙氣中CO和O2含量的影響Fig.2 Influence of different feeding rates on the contents of CO and O2in flue gas
圖3 不同進(jìn)料速率下煙氣中CO含量隨時(shí)間的變化Fig.3 Variation of CO contentin flue gas with time at different feeding rates
2.1.2 煙氣中CO含量的波動(dòng)
CO含量隨時(shí)間的變化可直接反映爐膛內(nèi)燃燒狀況的穩(wěn)定性。圖3為不同進(jìn)料速率下煙氣中CO含量隨運(yùn)行時(shí)間的變化。從中可知:在進(jìn)料方式為2/13時(shí),CO含量隨時(shí)間變化波動(dòng)最大,說(shuō)明在此工況下?tīng)t膛內(nèi)燃燒狀況波動(dòng)較大,在測(cè)試時(shí)間到80 s時(shí),出現(xiàn)了一個(gè)明顯的峰值,可能是此時(shí)顆粒在爐膛內(nèi)的堆積量達(dá)到最大,由于不完全燃燒產(chǎn)生的CO驟然增加,隨后燃燒速度加快,進(jìn)料量和燃燒速度達(dá)到了新的平衡,CO含量波動(dòng)減??;CO含量隨時(shí)間變化曲線從峰谷到峰頂大概持續(xù)15 s左右,最大值和最小值分別出現(xiàn)在進(jìn)料結(jié)束時(shí)和停頓結(jié)束時(shí),與進(jìn)料周期基本吻合。在其他幾種進(jìn)料方式下雖然煙氣中CO含量波動(dòng)幅度不大,但是也基本呈周期性變化,且與其對(duì)應(yīng)的進(jìn)料周期相吻合。由此可見(jiàn),在間歇進(jìn)料方式中,進(jìn)料時(shí)間不能過(guò)長(zhǎng),否則會(huì)造成顆粒堆積量增加,燃燒不完全,CO污染物排放量升高。
2.2 煙氣中NO、NO2和NOx的含量
2.2.1 進(jìn)料速率對(duì)煙氣中NO、NO2和NOx含量的影響
圖4為進(jìn)料速率對(duì)NO、NO2和NOx含量的影響。從中可以看出,NO、NO2與NOx含量的變化基本相似。隨進(jìn)料速率的減小,煙氣中NOx含量呈現(xiàn)出先降低后升高的變化趨勢(shì):進(jìn)料方式為2/13時(shí),出現(xiàn)最大值(78 mg/Nm3),2/19時(shí)達(dá)到最小值(8.8 mg/ Nm3),相應(yīng)地,由熱電偶傳感器檢測(cè)的爐膛下部溫度達(dá)到最大值758℃;當(dāng)進(jìn)料方式為2/21時(shí),NOx含量卻明顯升高,相應(yīng)地,爐膛下部溫度降低至375℃。說(shuō)明在一定溫度范圍內(nèi),溫度增加有利于抑制NOx的生成而降低排放。在本研究工況下,生物質(zhì)顆粒燃燒未達(dá)到空氣中N2向NOx轉(zhuǎn)化的溫度(1 300℃以上),基本上不產(chǎn)生熱力型NOx[15-16]。因木質(zhì)顆粒中N元素含量低,NOx主要來(lái)自于燃料中N的氧化,故在不同進(jìn)料速率下,煙氣中NOx含量均較低。由圖2與圖4可以看出,隨進(jìn)料速率的降低,煙氣中NOx含量的變化與CO的變化趨勢(shì)相似,均呈現(xiàn)先降低后升高的變化[17-18]。
圖4 不同進(jìn)料速率對(duì)煙氣中NO、NO2和NOx含量的影響Fig.4 Influence of feeding rate on NO,NO2and NOxconcentrations in flue gas
2.2.2 煙氣中NOx含量的波動(dòng)
在不同進(jìn)料速率下煙氣中NOx含量隨時(shí)間的波動(dòng)如圖5所示。從中可知,NOx沒(méi)有呈現(xiàn)周期性變化。當(dāng)進(jìn)料方式為2/19和2/17時(shí),NOx含量隨時(shí)間波動(dòng)很小。當(dāng)進(jìn)料方式為2/15和2/13時(shí),其隨時(shí)間波動(dòng)幅度相對(duì)較大??赡苁钱?dāng)進(jìn)料速率增加時(shí),爐膛內(nèi)顆粒在某個(gè)時(shí)刻出現(xiàn)了堆積,導(dǎo)致燃燒狀況不穩(wěn)定,促進(jìn)了NOx的產(chǎn)生及排放濃度出現(xiàn)變化。如前所述,NOx的主要來(lái)源是原料中N元素的轉(zhuǎn)化,因此,進(jìn)料速率與原料中N元素向NOx轉(zhuǎn)化密切相關(guān),即進(jìn)料速率越大,就會(huì)有更多的原料中的N元素進(jìn)入爐膛內(nèi)[19-20]??梢?jiàn),進(jìn)料速率不僅影響煙氣中NOx含量,還會(huì)影響其波動(dòng)幅度。
圖5 不同進(jìn)料速率下煙氣中NOx含量隨時(shí)間的變化Fig.5 Variation of NOxconcentration in flue gas with time at different feeding rates
3.1 進(jìn)料速率對(duì)煙氣中CO含量有明顯影響。在進(jìn)料方式為2/19(平均進(jìn)料速率為5.0 kg/h)時(shí)CO排放量最小,進(jìn)料方式為2/13(平均進(jìn)料速率為6.9 kg/h)時(shí),CO排放量最大,波動(dòng)幅度也最大。煙氣中CO含量呈周期性變化,其變化周期與送料周期基本吻合。間歇式進(jìn)料可在保證熱負(fù)荷需求的條件下縮短每個(gè)送料循環(huán)的進(jìn)料時(shí)間,以便減少顆粒堆積,降低污染物排放。在本試驗(yàn)條件下,進(jìn)料方式選擇2/19(進(jìn)2 s,停19 s)較為合理。
3.2 在不同進(jìn)料速率下NOx含量的變化趨勢(shì)與CO基本一致。在進(jìn)料方式為2/19(平均進(jìn)料速率為5.0 kg/h)時(shí)NOx含量達(dá)到最小值8.8 mg/Nm3,進(jìn)料方式為2/13(平均進(jìn)料速率為6.9 kg/h)時(shí)出現(xiàn)最大值78 mg/Nm3。在不同進(jìn)料速率下NOx沒(méi)有呈現(xiàn)周期性變化,當(dāng)進(jìn)料方式為2/19和2/17時(shí),NOx隨時(shí)間的波動(dòng)幅度較小。
3.3 在不同進(jìn)料速率下煙氣中CO和NOx含量變化比較一致,進(jìn)料速率對(duì)CO排放的影響大于其對(duì)NOx排放的影響。
參考文獻(xiàn)(References):
[1]王月喬,田宜水,侯書(shū)林,等.生物質(zhì)顆粒燃燒器燃料適應(yīng)性試驗(yàn).農(nóng)業(yè)工程學(xué)報(bào),2014,30(7):197-205.
WANG Y Q,TIAN Y S,HOU S L,et al.Experiment on fuel flexibility of biomass pellet burner.Transactions of the Chinese Society of Agricultural Engineering,2014,30(7):197-205.(in Chinese with English abstract)
[2]張學(xué)敏,張永亮,姚宗路,等.不同進(jìn)料方式燃燒器對(duì)生物質(zhì)燃料顆粒物排放特性的影響.農(nóng)業(yè)工程學(xué)報(bào),2014,30(12):200-207.
ZHANG X M,ZHANG Y L,YAO Z L,et al.Effect of burners with different feeding modes on emission characteristics of biomass molding fuel particles.Transactions of the Chinese Society of Agricultural Engineering,2014,30(12):200-207.(in Chinese with English abstract)
[3]MORáN J,GRANADA E,MíGUEZ J L,et al.Use of grey relational analysis to assess and optimize small biomass boilers. Fuel Processing Technology,2006,87(2):123-127.
[4]PORTEIRO J,COLLAZO J,PATI?O D,et al.Numerical modeling of a biomass pellet domestic boiler.Energy&Fuels, 2009,23(2):1067-1075.
[5]DIAS J,COSTA M,AZEVEDO J L T.Test of a small domestic boiler using differentpellets.Biomass and Bioenergy,2004,27(6): 531-539.
[6]QIU G Q.Testing offlue gas emissions ofa biomass pelletboiler and abatementofparticle emissions.Renewable Energy,2013,50: 94-102.
[7]CARDOZO E,ERLICH C,ALEJO L,et al.Combustion of agricultural residues:An experimental study for small-scale applications.Fuel,2014,115:778-787.
[8]包應(yīng)時(shí),楊國(guó)鋒,洪一前,等.生物質(zhì)顆粒燃燒器進(jìn)料防回火方法.農(nóng)業(yè)工程,2015,5(5):49-53.
BAO Y S,YANG G F,HONG Y Q,et al.An analysis ofdifferent anti-burning back feeding methods of biomass pellet burner. AgriculturalEngineering,2015,5(5):49-53.(in Chinesewith English abstract)
[9]劉建禹,翟國(guó)勛,陳榮耀.生物質(zhì)燃料直接燃燒過(guò)程特性的分析.東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2001,32(3):290-294.
LIU J Y,ZHAI G X,CHEN R Y.Analysis on the characteristics of biomass fuel direct combustion process.Journal of Northeast Agricultural University,2001,32(3):290-294.(in Chinese with English abstract)
[10]李鑫華.生物質(zhì)顆粒燃料燃燒爐的優(yōu)化設(shè)計(jì).北京:北京工業(yè)大學(xué),2011:13-15.
LI X H.Biomass pellet fuel combustion furnace of optimization design.Beijing:Beijing University of Technology,2011:13-15. (in Chinese with English abstract)
[11]WAHLUND B,YAN J,WESTERMARK M.Increasing biomass utilisation in energy systems:A comparative study of CO2reduction and cost for different bioenergy processing options. Biomass and Bioenergy,2004,26(6):531-544.
[12]WIINIKKA H,GEBART R.The influence ofair distribution rate on particle emissions in fixed bed combustion of biomass. Combustion Science and Technology,2005,177(9):1747-1766.
[13]VAN DER STELT M J C,GERHAUSER H,KIEL J H A,et al. Biomass upgrading by torrefaction for the production of biofuels: A review.Biomass and Bioenergy,2011,35(9):3748-3762.
[14]ROY M M,DUTTA A,CORSCADDEN K.An experimentalstudy of combustion and emissions of biomass pellets in a prototype pelletfurnace.Applied Energy,2013,108:298-307.
[15]REN Q Q,ZHAO C S.Evolution of fuel-N in gas phase during biomass pyrolysis.Renewable and Sustainable Energy Review, 2015,50:408-418.
[16]HOUSHFAR E,SKREIBERG?,L?V?S T,et al.Effect of excess air ratio and temperature on NOxemission from grate combustion of biomass in the staged air combustion scenario. Energy&Fuels,2011,25(10):4643-4654.
[17]LIMOUSY L,JEGUIRIM M,DUTOURNIéP,et al.Gaseous products and particulate matter emissions of biomass residential boilerfired with spentcoffee grounds pellets.Fuel,2013,107:323-329.
[18]STUBENBERGER G,SCHARLER R,ZAHIROVI?S,et al. Experimental investigation of nitrogen species release from different solid biomass fuels as a basis for release models.Fuel, 2008,87(6):793-806.
[19]GONZáLEZ J F,LEDESMA B,ALKASSIR A,et al.Study of the influence of the composition of several biomass pellets on the drying process.Biomass and Bioenergy,2011,35(10):4399-4406.
[20]LIU H,CHANEY J,LI J X,et al.Control of NOxemissions of a domestic/small-scale biomass pellet boiler by air staging.Fuel, 2013,103(1):792-798.
Effect of feeding rate on pollutant emission of biomass pellet burner.Journal of Zhejiang University(Agric.& Life Sci.),2017,43(3):390-396
YANG Guofeng1?,YU Youfang2?*,SHENG Kuichuan1
(1.College of Biosystems Engineering and Food Science,Zhejiang University,Hangzhou 310058,China;2.Applied Engineering College,Zhejiang Business College,Hangzhou 310053,China)
biomass pellet;burner;feeding rate;pollutantemission;carbon oxide;nitrogen oxides
TK 16
A
10.3785/j.issn.1008-9209.2017.01.101
浙江省科技計(jì)劃公益技術(shù)研究項(xiàng)目(2015C31061);浙江省教育廳項(xiàng)目(Y201225889)。
余有芳(http://orcid.org/0000-0002-1215-335X),Tel:+86-571-58308305,E-mail:youfang_yu@163.com
(Firstauthor):楊國(guó)鋒(http://orcid.org/0000-0002-4409-9685),E-mail:gfyang985@163.com。?共同第一作者
2017-01-10;接受日期(Accepted):2017-03-23;網(wǎng)絡(luò)出版日期(Published online):2017-05-18
浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版)2017年3期