劉驪,賈嶸,李濤濤,尹浩霖,馬喜平,郭澤維
(1.西安理工大學(xué),陜西西安 710048;2.中國水電顧問集團(tuán)投資有限公司,北京 100101;3.國網(wǎng)甘肅省電力公司電力科學(xué)研究院,甘肅蘭州 730050)
基于多尺度排列熵和支持向量機(jī)的風(fēng)力發(fā)電機(jī)組齒輪箱振動故障診斷
劉驪1,賈嶸1,李濤濤1,尹浩霖2,馬喜平3,郭澤維1
(1.西安理工大學(xué),陜西西安 710048;2.中國水電顧問集團(tuán)投資有限公司,北京 100101;3.國網(wǎng)甘肅省電力公司電力科學(xué)研究院,甘肅蘭州 730050)
針對傳統(tǒng)方法難以精確檢測風(fēng)力發(fā)電機(jī)組齒輪箱非線性、非平穩(wěn)振動信號以及現(xiàn)有許多故障診斷方法無法有效診斷齒輪箱早期故障的問題,首先引入排列熵算法對齒輪箱振動信號進(jìn)行早期故障分析,進(jìn)而引入多尺度排列熵算法實現(xiàn)原始振動信號的特征提取,得到故障診斷的樣本數(shù)據(jù),最后將其輸入到建立的基于遺傳算法優(yōu)化支持向量機(jī)的診斷模型中,完成故障模式的識別與分類。仿真結(jié)果表明,該方法能夠有效識別齒輪箱的異常工況,具有較高的故障診斷精度。
齒輪箱;多尺度排列熵;遺傳算法;支持向量機(jī);故障診斷
近年來,能源短缺與環(huán)境問題日益突出,世界各國對于新能源的發(fā)展日益重視。風(fēng)力發(fā)電作為一種清潔可再生能源,在世界各國得到了快速發(fā)展[1-2]。但是,風(fēng)力發(fā)電機(jī)組長期工作于室外惡劣的環(huán)境中,極易發(fā)生各種故障。齒輪箱作為風(fēng)力發(fā)電機(jī)組的重要組成部分,由于其內(nèi)部結(jié)構(gòu)和受力狀況復(fù)雜,在機(jī)組運(yùn)行故障中所占比例較大,而齒輪箱一般又安裝在幾十米的高空,一旦發(fā)生故障,維修非常不便,嚴(yán)重影響了風(fēng)力發(fā)電機(jī)組的安全穩(wěn)定運(yùn)行[3]。因此,開展風(fēng)力發(fā)電機(jī)組齒輪箱故障故障診斷技術(shù)的研究對于改善指導(dǎo)風(fēng)力發(fā)電機(jī)組的維護(hù)、降低機(jī)組維護(hù)費(fèi)用和提高機(jī)組運(yùn)行安全可靠性具有重要的意義。
齒輪箱故障診斷技術(shù)主要分為對原始信號的處理和對故障信息的識別與決策兩個方面,目前,已有許多學(xué)者在這兩方面完成了大量的研究工作。在信號處理方面,文獻(xiàn)[4]采用自適應(yīng)小波和奇異值分解的信號降噪方法提取風(fēng)電傳動系統(tǒng)的信號特征;文獻(xiàn)[5]提出了基于小波包與倒頻譜分析的風(fēng)力發(fā)電機(jī)組齒輪箱故障診斷方法。但基于小波理論的信號處理方法,小波基函數(shù)的選擇沒有統(tǒng)一的標(biāo)準(zhǔn),主要依賴專家經(jīng)驗,阻礙了其在齒輪箱故障診斷中的應(yīng)用。文獻(xiàn)[6-8]將EMD分解用于齒輪箱故障信號處理,應(yīng)用效果較好,但EMD分解沒有堅實的理論基礎(chǔ),且存在模態(tài)混疊現(xiàn)象。總之,現(xiàn)有方法對于處理齒輪箱故障信號,即非線性、非平穩(wěn)的振動信號存在一定的缺點(diǎn)和不足,不能充分凸顯信號特征。排列熵(permutation entropy,PE)算法是一種新的動力學(xué)突變檢測方法,文獻(xiàn)[9-10]已將單維度排列熵用于機(jī)械振動信號的特征分析,效果比較理想。但單維度排列熵在表征振動信號復(fù)雜度的能力有限。
另外,故障信息的識別決策方法主要有專家系統(tǒng)[11]、模糊理論[12]、神經(jīng)網(wǎng)絡(luò)[13]和支持向量機(jī)[14]等。這些方法各有優(yōu)缺點(diǎn)。專家系統(tǒng)在知識的獲取、維護(hù)以及推理等方面尚不成熟;模糊理論在處理復(fù)雜系統(tǒng)時,隸屬度函數(shù)和模糊規(guī)則很難建立;神經(jīng)網(wǎng)絡(luò)需要在大量的訓(xùn)練樣本,而實際運(yùn)行中難以獲取大量的數(shù)據(jù)樣本;支持向量機(jī)具有結(jié)構(gòu)簡單、學(xué)習(xí)速度快、全局最優(yōu)和泛化性好等優(yōu)點(diǎn),在貧樣本情況下也可以達(dá)到較高的診斷精度。
本文采用多尺度排列熵(muti-dimension permutation entropy,MPE)分析齒輪箱故障信號以提取故障特征,利用支持向量機(jī)(support vector machines,SVM)進(jìn)行故障診斷決策。通過風(fēng)力發(fā)電機(jī)組齒輪箱實驗數(shù)據(jù)的仿真分析,驗證了該方法的有效性。
1.1 排列熵的原理
排列熵是描述一維時間序列復(fù)雜度的的平均熵參數(shù),與Lyapunov指數(shù)、分形維數(shù)等同類復(fù)雜度參數(shù)相比,計算簡單,抗造性能強(qiáng)[15-16]。其基本原理如下。
給定一序列長度為N的時間序列{x(i),i=1,2,…,N},對其進(jìn)行相空間重構(gòu),得到重構(gòu)信號:
式中:m為嵌入維數(shù);τ為延遲時間。
將式(1)中X(i)的m個數(shù)據(jù)按由小到大的順序進(jìn)行排列,得到:x(i+(j1-1)τ)≤x(i+(j2-1)τ)≤…≤x(i+(jm-1)τ)(2)式中:j1,j2,…,jm,表示各個元素在中的位置。
如果重構(gòu)分量X(i)中存在2個元素的值相等,即
則按照j1,j2值的大小排列,如果j1≤j2,有
因此,對于任意的一個向量X(i)都可以得到一組序列模式
式中:g=1,2,…,k,且k≤m! ,m個不同的符號序列,最多有種排列方式,而只有一種符合序列P(g)。
計算每種符號序列出現(xiàn)的概率為
式中:l為P(g)出現(xiàn)的次數(shù)。
按照Shannon熵計算信號的排列熵為
對其進(jìn)行歸一化處理,得
顯然,Hp的取值范圍是0≤Hp≤1。Hp的大小反映了時間序列信號的復(fù)雜度和隨機(jī)性,其值越大,說明時間序列信號越復(fù)雜。反之,則說明時間序列信號越簡單,越規(guī)則。所以,Hp值的變化反映和放大了時間序列的局部細(xì)微變化。
1.2 多尺度排列熵
由于單維度排列熵表征風(fēng)力發(fā)電機(jī)組齒輪箱振動信號特征的能力有限,本文采用多尺度排列熵的方法。
定義信號的多尺度向量為
式中,mi為第i個嵌入維數(shù),i=1,2,…,n。
在嵌入維數(shù)為mi時,信號的多尺度排列熵為
定義信號的多尺度排列熵為
多尺度排列熵表征了振動信號特征的特征向量,而HMPE中的Hpi表征了振動信號在嵌入維數(shù)為mi時的復(fù)雜度,即振動信號若有n個維度,則就有n個特征。當(dāng)多尺度向量直取其中的一個維數(shù)時,多尺度排列熵就變?yōu)榱藛尉S度排列熵。
2.1 SVM參數(shù)的優(yōu)化
SVM是在統(tǒng)計學(xué)習(xí)理論架構(gòu)下,實現(xiàn)結(jié)構(gòu)風(fēng)險最小化原則的一種新的機(jī)器學(xué)習(xí)方法,在機(jī)械故障診斷領(lǐng)域得到了廣泛的應(yīng)用[17-19]。徑向基核函數(shù)的寬度σ2和懲罰因子C是SVM診斷模型建立所需要的2個主要參數(shù),2個參數(shù)的選取是否合理,直接影響到支持向量機(jī)故障識別與診斷的正確率,本文利用遺傳算法的全局隨機(jī)搜索能力對其參數(shù)σ2和C進(jìn)行優(yōu)化調(diào)整。其主要思路是先對SVM的2個參數(shù)σ2和C編碼生成染色體,繼而對染色體根據(jù)適用度函數(shù)值進(jìn)行復(fù)制、交叉和變異操作,使其不斷進(jìn)化,最后得到使SVM分類精度達(dá)到最優(yōu)的染色體。圖1為本文建立的基于遺傳算法優(yōu)化SVM參數(shù)的流程圖。
圖1 GA優(yōu)化SVM參數(shù)流程圖Fig.1 GA optimization SVM parameters flow chart
2.2 診斷步驟
本文提出了一種多尺度排列熵和基于遺傳算法優(yōu)化SVM的診斷模型相結(jié)合的風(fēng)力發(fā)電機(jī)組齒輪箱振動故障診斷方法,其具體的診斷步驟如下:
1)利用振動傳感器采集齒輪箱在不同故障類型下的故障振動信號;
2)對每種故障振動信號進(jìn)行分段;
3)利用MPE提取每段振動信號的特征向量,構(gòu)成故障診斷的數(shù)據(jù)樣本;
4)將每種故障的數(shù)據(jù)樣本平均分成2組,分別作為遺傳算法優(yōu)化SVM診斷模型的訓(xùn)練樣本和測試樣本;
5)利用訓(xùn)練樣本和測試樣本對遺傳算法優(yōu)化SVM診斷模型進(jìn)行訓(xùn)練和測試,完成故障的識別與診斷。
本文將多尺度排列熵和基于遺傳算法優(yōu)化SVM相結(jié)合的故障診斷方法應(yīng)用于江蘇千鵬診斷工程有限公司的機(jī)械故障模擬及試驗平臺模擬的齒輪箱故障數(shù)據(jù)中,以驗證本文提出方法的正確性與有效性。圖2為齒輪箱機(jī)械故障模擬試驗平臺,主要由變速驅(qū)動電機(jī)、軸承、齒輪箱、軸、偏重轉(zhuǎn)盤、調(diào)速器等組成。通過調(diào)節(jié)配重,調(diào)節(jié)部分的安裝位置以及組件的有機(jī)組合快速模擬齒輪箱的各種故障。本文采集齒輪箱大齒輪在正常、點(diǎn)蝕和斷齒3種狀態(tài)下的故障振動數(shù)據(jù),各采集15 360個點(diǎn),采樣頻率為5.12 kHz,圖3為齒輪箱在3種狀態(tài)下的原始信號時域圖。
圖2 齒輪箱故障模擬實驗臺Fig.2 Gear box failure simulation test bed
圖3 齒輪箱3種狀態(tài)的原始振動信號Fig.3 The original state of the gear box vibration signal
3.1 特征向量的提取
將齒輪箱在正常、點(diǎn)蝕和斷齒3種狀態(tài)下的原始信號分別分為30段,共分為90段,每段信號各512個點(diǎn)。利用多尺度排列熵進(jìn)行特征向量的提取,本文選取多尺度排列熵的維數(shù)為[4,5,6,7,8,9]。以齒輪箱正常信號為例,進(jìn)行特征向量的提取,圖4為齒輪箱正常信號第一段信號的時域圖,圖5為其多尺度排列熵經(jīng)歸一化處理后的分布圖。齒輪箱在點(diǎn)蝕和斷齒時的特征向量提取方法與正常時的方法相同。表1為本文提取的特征向量,其中,H1,H2,H3分別為齒輪箱3種狀態(tài)的前3段信號的特征向量,各有30組特征向量,受篇幅限制,本文只列出前3組特征向量。
圖4 正常時的第一段信號Fig.4 The first paragraph of the normal signal
圖5 第一段信號的多尺度排列熵Fig.5 Multi-scale permutation entropy of the first-stage signal
表1 齒輪箱振動信號的特征向量Table 1 The characteristic vector of the gear box vibration signal
3.2 診斷結(jié)果與分析
對齒輪箱正常、點(diǎn)蝕和斷齒3種狀態(tài)下各30組特征向量,從中選取15組作為訓(xùn)練樣本,另15組作為測試樣本,共45組訓(xùn)練樣本和45組測試樣本。將訓(xùn)練樣本和測試樣本輸入到本文建立的基于遺傳算法優(yōu)化SVM的故障診斷模型中,進(jìn)行風(fēng)力發(fā)電機(jī)組齒輪箱故障模式的識別與診斷,診斷結(jié)果如表2所示。
表2 故障診斷結(jié)果表Tab.2 Fault diagnosis results table
對于大齒輪正常時的狀態(tài)診斷精度為100%,既能夠完全識別齒輪正常時的狀態(tài);對于大齒輪斷齒時的故障,第15組樣本誤診斷為點(diǎn)蝕故障,出現(xiàn)了錯誤分類;對于大齒輪點(diǎn)蝕故障,第3組和第6組樣本誤診斷為斷齒故障,出現(xiàn)兩組樣本錯誤分類。分析其原因,可能是由于齒輪箱運(yùn)行工況復(fù)雜,信號中含有大量噪聲干擾,使得在提取大齒輪斷齒和點(diǎn)蝕故障信號的特征向量時存在誤差,影響了故障診斷的準(zhǔn)確率。但是,本文提出的基于多尺度排列熵和基于遺傳算法優(yōu)化SVM相結(jié)合的故障診斷方法,平均診斷精度達(dá)93.33%,具有較高的故障診斷精度,能夠有效識別風(fēng)力發(fā)電機(jī)組齒輪箱的故障狀態(tài)。
針對風(fēng)力發(fā)電機(jī)組齒輪箱非線性、非平穩(wěn)信號難以檢測的難題,本文提出了基于多尺度排列熵和支持向量機(jī)的故障診斷方法,并通過對風(fēng)力發(fā)電機(jī)組齒輪箱實驗數(shù)據(jù)的仿真分析,可得出以下結(jié)論:
1)根據(jù)多尺度排列熵提取齒輪箱在3種狀態(tài)下的特征向量可以看出,3種狀態(tài)類型的的特征向量存在明顯的差異,大齒輪在斷齒時的值最大,正常時的值最小,說明多尺度排列熵能夠有效提取信號的特征向量,為后續(xù)故障模式的識別與分類奠定了基礎(chǔ);
2)根據(jù)齒輪箱故障診斷結(jié)果可以看出,在小樣本條件下,基于遺傳算法優(yōu)化SVM的診斷模型依舊能夠進(jìn)行齒輪箱故障模式的識別與分類,且診斷精度較高,說明該方法能夠較理想地區(qū)分故障類型;
3)本文提出的基于多尺度排列熵和支持相量機(jī)的故障診斷方法,診斷效果較為理想,為風(fēng)力發(fā)電機(jī)組齒輪箱的故障診斷提供了一種新思路。
[1]PAUL A,WOERMAN M.Modeling a clean energy standard for electricity:policy design implications for emissions,supply,prices,and regions[C]//Resources For the Future,2011:108-124.
[2]AHMED N A,CAMERON M.The challenges and possible solutions of horizontal axis wind turbines as a clean energy solution for the future[J].Renewable&Sustainable Energy Reviews,2014,38(5):439-460.
[3]龍泉,劉永前,楊勇平.基于粒子群優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的風(fēng)電機(jī)組齒輪箱故障診斷方法[J].太陽能學(xué)報,2012,3(1):120-125.LONG Quan,LIU Yongqian,YANG Yongping.Fault diagnosis method of wind turbine gear box based on BP neural network trained by particle swarm optimization algoritthm[J].Acta Energiae Solaris Sinica,2012,3(1):120-125(in Chinese).
[4] JIANG Y,TANG B,QIN Y,et al.Feature extraction method of wind turbine based on adaptive Monet wavelet and SVD[J].Renewable Energy,2011,36(8):2146-2153.
[5]羅毅,甄立敬.基于小波包與倒頻譜分析的風(fēng)電機(jī)組齒輪箱齒輪裂紋診斷方法[J].振動與沖擊,2015,34(3):210-214.LUO Yi,ZHEN Lijing.Diagnosis method of turbine gearbox gearcrack based on wavelet packet and cestrum analysis[J].Journal of Vibration and Shock,2015,34(3):210-214(in Chinese).
[6]王軍輝,賈嶸,譚泊.基于EEMD和模糊C均值聚類的風(fēng)電機(jī)組齒輪箱故障診斷[J].太陽能學(xué)報,2015,36(2):319-324.WANG Junhui,JIA Rong,TAN Bo.Fault diagnosis of wind turbine’s gearbox based on EEMD and fuzzzya cmeans clustering[J].Acta Energiae Solaris Sinica,2015,36(2):319-324(in Chinese).
[7]李海平,趙建民,宋文淵.基于EMD-EDT的行星齒輪箱特征提取及狀態(tài)識別方法研究[J].振動與沖擊,2016,35(3):48-54.LI Haiping,ZHAO Jianmin,SONG Wenyuan.Method of planetary gearbox feature extraction and condition recognition based on EMD and EDT[J].Journal of Vibration and Shock,2016,35(3):48-54(in Chinese).
[8]李輝,鄭海起,楊紹普.基于EMD和Teager能量算子的軸承故障診斷研究[J].振動與沖擊,2008,27(10):15-17.LI Hui, ZHENG Haiqi, YANG Shaopu.Research on bearing fault diagnosis based on EMD and teager energy operator[J].Journal of Vibration and Shock,2008,27(10):15-17(in Chinese).
[9]馮輔周,饒國強(qiáng),司愛威,等.排列熵算法研究及其在振動信號突變檢測中的應(yīng)用[J].振動工程學(xué)報,2012,25(2):221-224.FENG Fuzhou,RAO Guoqiang,SI Aiwei,et al.Research and application of the arithmetic of PE intesting the sudden change of vibration signal[J].Journal of Vibration Engineering,2012,25(2):221-224(in Chinese).
[10]馮輔周,饒國強(qiáng),張麗霞,等.基于EMD和排列熵的軸承異常檢測方法研究[J].軸承,2013(2):53-56.FENG Fuzhou,RAO Guoqiang,ZHANG Lixia,et al.Research on abnormality detection method for bearings based on EMD and permutation entropy[J].Bearing,2013(2):53-56(in Chinese).
[11]梅杰,陳定方,李文鋒,等.基于神經(jīng)網(wǎng)絡(luò)的多級行星齒輪箱故障診斷專家系統(tǒng)[J].中國工程機(jī)械學(xué)報,2011,9(1):117-121.MEI Jie,CHEN Dingfang,LI Wenfeng et al.Fault diagnosis expert system of multi-stage planetary gearbox based on neural network[J].China Civil Engineering Journal,2011,9(1):117-121(in Chinese).
[12]焦振毅,任建文,陳鵬.基于模糊理論的變壓器故障診斷模型研究[J].電力科學(xué)與工程,2012,28(6):39-43.JIAO Zhenyi, REN Jianwen, CHEN Peng.Study on transformer fault diagnosis model based on fuzzy theory[J].2012,28(6):39-43(in Chinese).
[13]尹浩霖,基于小波分析和神經(jīng)網(wǎng)絡(luò)的風(fēng)力發(fā)電機(jī)組故障診斷[D].西安:西安理工大學(xué),2014.
[14]劉迎.基于SVM風(fēng)電機(jī)組齒輪箱故障診斷系統(tǒng)研究[D].北京:華北電力大學(xué),2013.
[15]賈峰.分形與排列熵在滾動軸承故障診斷中的應(yīng)用[D].太原:太原理工大學(xué),2014.
[16]何洋洋,賈嶸,李輝,等.基于隨機(jī)共振和多尺度排列熵的水電機(jī)組振動故障診斷 [J].水力發(fā)電學(xué)報,2015,34(12):123-130.HE Yangyang,JIA Rong,LI Hui,et al.Vibration fault diagnosis of hydroelectric generating set based on stochastic resonance and multidimensional permutation entropy[J].Journal of Hydrodynamics,2015,34(12):123-130(in Chinese).
[17]徐強(qiáng).風(fēng)電機(jī)組傳動鏈狀態(tài)診斷方法研究[D].北京:華北電力大學(xué),2015.
[18]秦波,楊云中,陳敏,等.基于兩類特征和最小二乘支持向量機(jī)的齒輪故障診斷方法[J].機(jī)械傳動,2016(6):126-131.QIN Bo,YANG Yunzhong,CHEN Min,et al.Gear fault diagnosis method based on two kinds of characteristic and least squares support vector machines[J].Mechanical transmission,2016(6):126-131(in Chinese).
[19]李贏,舒乃秋.基于模糊聚類和完全二又樹支持向量機(jī)的變壓器故障診斷[J].電工技術(shù)學(xué)報,2016,31(4):64-70.LI YING,SHU Naiqiu.Transformer fault diagnosis based on fuzzy clustering and completely second tree support vector machine[J].Journal of Electrotechnical Society,2016,31(4):64-70(in Chinese).
Vibration Fault Diagnosis of Wind Turbine's Gearbox Based on Multidimensional Permutation Entropy and SVM
LIU Li1,JIA Rong1,LI Taotao1,YIN Haolin2,MA Xiping3,GUO Zewei1
(1.Xi’an University of Technology,Xi’an 710048,Shaanxi,China;2.China Hydropower Consulting Group Investment Co.,Ltd.,Beijing 100101,China;3.State Grid Gansu Electric Power Research Institute,Lanzhou 730050,Gansu,China)
Aiming at the problem that with the traditional method it is difficult to accurately detect the non-linear and non-stationary vibration signals of the wind turbine’s gearbox and the existing fault diagnosis methods can not effectively diagnose the early fault of the gearbox,this paper firstly introduces the permutation entropy algorithm to analyze the early fault of the gearbox vibration signal and then the multi-dimension permutation entropy algorithm to realize the feature extraction of the original vibration signal,so as to get the sample data of the fault diagnosis.Finally,the sample data is input into the diagnosis model based on genetic algorithm optimization support vector machine to complete the fault pattern recognition and diagnosis.The simulation results show that the method can effectively identify the abnormal working conditions of the gear box with high fault diagnosis accuracy.
gearbox;multi-dimension permutation entropy;genetic algorithm;support vector machine;fault diagnosis
2016-08-14。
劉 驪(1990—),男,碩士研究生,研究方向為電力系統(tǒng)新能源;
(編輯 李沈)
1674-3814(2017)05-0087-05
TM614
A
國家電網(wǎng)科技項目(522722150012);陜西水利科技計劃項目(2015s1kj-04)。
Project Supported by the Science and Technology Program of State Grid Cooperation of China(522722150012);Shaanxi Water Conservancy Science and Technology Program(2015s1kj-04).
賈 嶸(1971—),男,博士,教授,博士生導(dǎo)師,主要研究方向為電力系統(tǒng)自動化。