賈連智,李廷棟,葛勝祥
?
輪狀病毒VP4亞單位疫苗研究進(jìn)展
賈連智,李廷棟,葛勝祥
廈門大學(xué)公共衛(wèi)生學(xué)院國家傳染病診斷試劑與疫苗工程技術(shù)研究中心分子疫苗學(xué)與分子診斷學(xué)國家重點(diǎn)實(shí)驗(yàn)室,福建廈門 361102
賈連智, 李廷棟, 葛勝祥. 輪狀病毒VP4亞單位疫苗研究進(jìn)展. 生物工程學(xué)報(bào), 2017, 33(7): 1075–1084.Jia LZ, Li TD, Ge SX. Research progress in rotavirus VP4 subunit vaccine. Chin J Biotech, 2017, 33(7): 1075–1084.
輪狀病毒是全球范圍內(nèi)導(dǎo)致5歲以下嬰幼兒嚴(yán)重腹瀉的主要病原體,造成了巨大的經(jīng)濟(jì)負(fù)擔(dān)和社會(huì)負(fù)擔(dān)。疫苗預(yù)防接種是控制輪狀病毒感染最為有效的手段,但在輪狀病毒導(dǎo)致的死亡率較高的非洲和亞洲部分低收入國家,目前已經(jīng)上市的輪狀病毒疫苗的有效性較低,且會(huì)增加腸套疊的風(fēng)險(xiǎn)。更加安全、有效的輪狀病毒疫苗對(duì)于降低輪狀病毒感染導(dǎo)致的發(fā)病率和死亡率具有重要意義。目前,各國科研人員試圖從多個(gè)方面提高輪狀病毒疫苗的有效性,非復(fù)制型基因工程亞單位疫苗是目前輪狀病毒疫苗研究的主要方向。文中就目前輪狀病毒亞單位疫苗,特別是基于VP4蛋白的亞單位疫苗的研究進(jìn)展進(jìn)行了綜述,以期對(duì)輪狀病毒疫苗的發(fā)展提供借鑒意義。
輪狀病毒,VP4,亞單位疫苗,腹瀉
輪狀病毒是全球范圍內(nèi)引起5歲以下嬰幼兒腹瀉的主要病原體,主要通過糞口途徑傳播,臨床癥狀包括嘔吐、發(fā)熱、水樣便等,嚴(yán)重時(shí)會(huì)由于脫水導(dǎo)致死亡[1]。全球范圍內(nèi),每年由于輪狀病毒感染導(dǎo)致的死亡病例高達(dá)40–60萬[2],輪狀病毒疫苗也被WHO列為優(yōu)先發(fā)展的十大疫苗之一。目前已經(jīng)有兩種輪狀病毒疫苗 (Rotateq[3]和Rotarix[4]) 在全球范圍內(nèi)推廣使用,70多個(gè)國家已經(jīng)將輪狀病毒疫苗納入免疫規(guī)劃,另有多種輪狀病毒疫苗在區(qū)域范圍內(nèi)使用[5-6],幾種候選疫苗也正在進(jìn)行臨床試驗(yàn)[7-10](表1)。隨著輪狀病毒疫苗的推廣,輪狀病毒導(dǎo)致的年死亡病例由40–60萬下降到20萬左右[11]。輪狀病毒導(dǎo)致的死亡主要發(fā)生在非洲和亞洲等不發(fā)達(dá)的國家和地區(qū),但是,在這些國家和地區(qū)已經(jīng)上市的輪狀病毒疫苗的有效性僅為50%左右,顯著低于發(fā)達(dá)國家[12]。同時(shí),目前已經(jīng)上市的輪狀病毒疫苗均為減毒活疫苗,會(huì)增加腸套疊的風(fēng)險(xiǎn)[13]。因此,更加安全、有效的輪狀病毒亞單位疫苗的研究對(duì)于進(jìn)一步降低輪狀病毒導(dǎo)致的發(fā)病率和死亡率具有重要意義。相比減毒活疫苗,非復(fù)制型疫苗,特別是亞單位疫苗安全性更高,是目前輪狀病毒疫苗研究的主要方向。
輪狀病毒屬于呼腸孤病毒科,輪狀病毒屬,無包膜二十面體結(jié)構(gòu),直徑為70 nm,其基因組含11條雙鏈RNA片段,分別編碼6種結(jié)構(gòu)蛋白 (VP1–4、VP6、VP7) 和6種非結(jié)構(gòu)蛋白(NSP1–6)。輪狀病毒具有3層衣殼結(jié)構(gòu),分別是由VP1、VP2和VP3三種結(jié)構(gòu)蛋白構(gòu)成的內(nèi)衣殼,由VP6構(gòu)成的中間衣殼,以及由糖蛋白VP7和刺突蛋白VP4構(gòu)成的外衣殼[14]。
目前,輪狀病毒的免疫保護(hù)機(jī)制尚不完全清楚,一般認(rèn)為,固有免疫和獲得性免疫在輪狀病毒的免疫保護(hù)中均發(fā)揮著重要作用。輪狀病毒感染后,血清中IL-6、IL-10以及IFN-γ水平均會(huì)明顯升高,且IFN-γ能夠抑制輪狀病毒的復(fù)制[15]。同時(shí),機(jī)體會(huì)產(chǎn)生針對(duì)VP2、VP4、VP6、VP7以及NSP4等蛋白的抗體。研究表明,針對(duì)VP4蛋白的抗體可以阻斷輪狀病毒的吸附與入胞,而針對(duì)VP7蛋白的抗體則能夠阻斷輪狀病毒的脫殼,從而抑制輪狀病毒的復(fù)制[16]。盡管VP6不是中和抗原,但可以刺激機(jī)體產(chǎn)生IgA,IgA與pIgR結(jié)合,可以由腸基底側(cè)轉(zhuǎn)運(yùn)至腸腔,在轉(zhuǎn)運(yùn)過程中可以與脫去外衣殼的雙層病毒顆粒結(jié)合,從而抑制輪狀病毒的轉(zhuǎn)錄和復(fù)制[17]。自然感染對(duì)再次發(fā)生輪狀病毒感染性腹瀉具有一定的保護(hù)性,一般情況下,再次感染后無明顯癥狀或癥狀較輕[18]。Chiba等的研究表明,自然感染的保護(hù)性與高滴度的中和抗體有關(guān)[19],而后續(xù)的研究表明,自然感染的保護(hù)性與IgA抗體的關(guān)系更密切[20]。目前已經(jīng)上市的輪狀病毒疫苗的臨床結(jié)果也表明,輪狀病毒疫苗的免疫保護(hù)性與IgA的水平存在一定的相關(guān)性[21]。細(xì)胞免疫在預(yù)防輪狀病毒的感染中也發(fā)揮著重要作用,但目前僅限于動(dòng)物模型的研究,與自然感染以及疫苗接種后的保護(hù)性的關(guān)系尚不清楚。輪狀病毒免疫保護(hù)機(jī)制的研究為發(fā)展不同類型的輪狀病毒疫苗奠定了理論基礎(chǔ)。
表1 輪狀病毒現(xiàn)有疫苗及候選疫苗的研究
輪狀病毒基因工程疫苗的研究始于20世紀(jì)80年代,包括病毒樣顆粒 (VLP) 疫苗[22]、重組抗原亞單位疫苗 (VP4[23]、VP6[24]、VP7[25]、NSP4[26])、多肽疫苗[27]以及核酸疫苗[28]等,其中研究最早的是合成肽疫苗,但其免疫原性較低[27],研究最多的是病毒樣顆粒疫苗,而進(jìn)展最快的則是基于VP4蛋白的亞單位疫苗,目前已經(jīng)完成了Ⅰ期臨床[10]。
輪狀病毒VLP疫苗[29-35]、重組VP6[36,37]均在小鼠模型上能夠抑制輪狀病毒的復(fù)制和排毒,具有較高的免疫保護(hù)性,但是VLP在家兔和無菌豬模型中免疫保護(hù)性較低[31,38]。另外,研究表明,針對(duì)NSP4蛋白的抗體可以減輕輪狀病毒導(dǎo)致的腹瀉[39]。VP7是輪狀病毒的主要中和抗原[40],但是,重組表達(dá)的VP7蛋白不能刺激機(jī)體產(chǎn)生高滴度中和抗體[41],這可能與VP7為糖蛋白,中和表位構(gòu)象依賴性較強(qiáng),而重組表達(dá)的VP7不能形成正確構(gòu)象有關(guān)[42]。
與VP7不同,VP4蛋白沒有糖基化修飾,相比VP7更容易表達(dá);但是VP4作為刺突蛋白,介導(dǎo)了輪狀病毒的吸附和入胞過程,其抗體可以阻斷輪狀病毒的吸附和入胞過程;同時(shí),人源毒株中常見的P基因型 (VP4) 僅P[8]、P[4]和P[6]三種,且P[8]占80%以上,而常見的G基因型 (VP7) 有G1–G4以及G9五種[43]。盡管自然感染以及接種減毒苗后針對(duì)VP4的中和抗體水平較低[44],但重組表達(dá)的VP4的免疫原性并不低于VP7[45],這可能與天然病毒中VP4蛋白的含量較低以及VP5部分不能充分暴露有關(guān)。同時(shí),由于自然感染后針對(duì)VP4蛋白的抗體水平較低,母源抗體對(duì)基于VP4蛋白的疫苗的干擾也相對(duì)較小。因此,相比VP7蛋白,VP4可能更適合作為輪狀病毒基因工程亞單位疫苗的候選抗原。
3.1 VP4及其截短蛋白的研究
VP4蛋白由776個(gè)氨基酸組成 (人源毒株為775aa),胰蛋白酶可以將VP4切割形成VP8*和VP5*,并提高輪狀病毒的感染性[46]。VP8蛋白具有血凝素活性,核心結(jié)構(gòu)由aa65–223組成,通過N端的柔性區(qū)插入VP5內(nèi)部。VP8蛋白可以與細(xì)胞表面的唾液酸受體結(jié)合從而介導(dǎo)輪狀病毒的吸附[47]。輪狀病毒吸附后,VP5蛋白可以與多個(gè)細(xì)胞受體相互作用并介導(dǎo)輪狀病毒的入胞。研究表明,針對(duì)VP8蛋白和VP5蛋白的抗體均可中和輪狀病毒的感染[48]。
1987年,Arias等通過大腸桿菌將VP4蛋白的N端361個(gè)氨基酸 (aa42–387) 與噬菌體聚合酶MS2融合表達(dá),發(fā)現(xiàn)MS2-VP8’能夠刺激小鼠產(chǎn)生中和抗體[49](表2)。1990年,Mackow等利用桿狀病毒-昆蟲細(xì)胞表達(dá)系統(tǒng)表達(dá)了VP4蛋白[51],該蛋白可以被胰酶酶切形成VP8* (aa1–246) 及VP5(1)* (aa248–474)。小鼠模型的結(jié)果表明,VP4、VP8*和VP5 (1) *均能刺激小鼠產(chǎn)生中和抗體,且VP5 (1) *免疫組子代乳鼠腹瀉的比例顯著低于VP8*免疫組,說明針對(duì)VP5蛋白的抗體在體內(nèi)可以更好地介導(dǎo)免疫保護(hù)[48],這與Matsui等之前的研究結(jié)果是一致的[52]。但是,多項(xiàng)研究表明,VP5的免疫原性較低[50,53],而且重組表達(dá)的VP5以包涵體形式存在,不能有效地刺激機(jī)體產(chǎn)生中和抗體[50],因此,之后的研究主要集中于VP8蛋白。
全長的VP8蛋白在大腸桿菌中也以包涵體的形式表達(dá),但其刺激小鼠產(chǎn)生中和抗體的能力與真核表達(dá)的VP8蛋白無顯著差異,免疫牛和家兔也能產(chǎn)生高滴度的中和抗體[54]。將VP8蛋白與GST融合表達(dá)則可以獲得可溶性的VP8蛋白,免疫雞后可以產(chǎn)生高滴度的卵黃抗體[55]。2005年,Mark等將VP8蛋白核心區(qū) (aa65–224) 與GST融合表達(dá)并解析了VP8核心區(qū)的結(jié)構(gòu)[56]。2012年,聞曉波等發(fā)現(xiàn),在僅融合6個(gè)組氨酸的情況下,VP8核心區(qū)ΔVP8也能夠以可溶形式高效表達(dá),該蛋白在豚鼠模型中可產(chǎn)生高滴度的中和抗體,但不能有效地刺激小鼠產(chǎn)生中和抗體[23]。2015年Xue等發(fā)現(xiàn),將VP8核心區(qū)的N端進(jìn)一步延長至起始于26位氨基酸時(shí),在沒有融合蛋白的情況下其可溶性表達(dá)量與VP8核心區(qū)無顯著差異,但其免疫中和活性顯著高于ΔVP8。這可能有兩方面的原因,一方面,VP8蛋白N端柔性區(qū)aa26–65之間可能存在中和表位,這與Jennifer等2003年通過合成肽的方式發(fā)現(xiàn)aa55–66位可結(jié)合免疫血清中的中和抗體相一致;另一方面,N端柔性區(qū)的存在可能使VP8核心區(qū)的構(gòu)象更接近其在天然病毒中的構(gòu)象[57]。
目前,輪狀VP8蛋白相關(guān)的研究已經(jīng)較為清楚,但是,VP4蛋白相比VP8*和VP5*具有更高的免疫保護(hù)性,一方面,胰蛋白酶敏感區(qū)可以刺激機(jī)體產(chǎn)生保護(hù)性抗體[58];另一方面,VP8存在的條件下,VP5可能能夠被更好地遞呈從而產(chǎn)生更高滴度的保護(hù)性抗體。同時(shí),VP5可以刺激機(jī)體產(chǎn)生具有交叉中和活性的抗體[48]。因此,包含VP5結(jié)構(gòu)域的VP4蛋白更適合成為輪狀病毒候選基因工程疫苗。
3.2 VP4與外源蛋白的融合表達(dá)
盡管截短的VP4蛋白可溶性表達(dá)量高,且在弗氏佐劑條件下可以刺激機(jī)體產(chǎn)生較高滴度的中和抗體,但是,在鋁佐劑條件下,其免疫原性較低,在小鼠模型中不能有效地刺激機(jī)體產(chǎn)生中和抗體[59]。為了進(jìn)一步增強(qiáng)VP4的免疫原性,以介導(dǎo)更強(qiáng)的免疫保護(hù)性,研究人員嘗試將VP4與能夠增強(qiáng)免疫原性的外源蛋白進(jìn)行融合表達(dá),如破傷風(fēng)毒素T細(xì)胞表位 (P2)、霍亂毒素B亞基 (CTB)、大腸桿菌不耐熱毒素B亞基 (LTB)、布魯氏桿菌二氧四氫喋啶合成酶(BLS) 以及顆粒性蛋白鼠多瘤病毒VP1和截短的諾如病毒衣殼蛋白 (可形成P顆粒) 等 (表3)。
在這些融合抗原中,CTB和BLS能夠顯著提高VP4蛋白的免疫原性,而諾如病毒P蛋白和破傷風(fēng)毒素T細(xì)胞表位P2以及LTB對(duì)VP4免疫原性的影響相對(duì)較小[60]。VP8與CTB融合表達(dá),免疫三針后血清中和抗體滴度相比單純的VP8蛋白可以提高4–8倍。相比N端融合,VP8融合于CTB蛋白C端的免疫血清中和滴度更高,CTB-VP8蛋白免疫組子代乳鼠的腹瀉程度也顯著低于VP8-CTB和單獨(dú)的VP8[59]。VP8與BLS融合表達(dá),其免疫血清中和滴度可提高1個(gè)數(shù)量級(jí)以上,且融合蛋白免疫對(duì)子代小鼠的被動(dòng)保護(hù)效果顯著優(yōu)于單獨(dú)的VP8免疫組及混合免疫組[61]。PP-VP8僅在滴鼻免疫條件下能夠顯著提高VP8的免疫原性,但經(jīng)皮下途徑進(jìn)行免疫時(shí),PP-VP8與VP8的免疫原性無顯著差異[62]。
P2-VP8僅在免疫兩針后具有更高的血清抗體滴度,免疫三針后則與VP8無顯著差異[63-64]。盡管如此,P2-VP8的研究進(jìn)展最快,是目前唯一完成Ⅰ期臨床的輪狀病毒基因工程疫苗。Ⅰ期臨床的結(jié)果顯示,三針免疫后,所有志愿者的血清IgA水平均出現(xiàn)4倍及以上升高。但是,中和抗體的應(yīng)答率僅為50%–66.7%,此外,Ⅰ期臨床實(shí)驗(yàn)受試人群為18–45周歲的成年人,在免疫系統(tǒng)發(fā)育尚不完全的嬰幼兒中,P2-VP8的免疫原性和免疫保護(hù)性還需要進(jìn)一步的研究[10]。
3.3 其他
近年來,也有研究團(tuán)隊(duì)通過植物表達(dá)輪狀病毒VP8蛋白。2004年,F(xiàn)ilgueira 等以煙草花葉病毒作為載體在煙草中表達(dá)了牛輪狀病毒VP8蛋白,并且在小鼠模型中體現(xiàn)出一定的免疫保護(hù)性[65]。2011年,Lantz等通過轉(zhuǎn)基因的方式在煙草的葉綠體中表達(dá)了牛輪狀病毒的VP8蛋白,該蛋白免疫小鼠可產(chǎn)生高滴度的中和抗體,并且對(duì)子代乳鼠的腹瀉具有80%以上的保護(hù)率[66]。2015年Federico等發(fā)現(xiàn),將VP8與BLS融合表達(dá)免疫母雞能夠產(chǎn)生高滴度的卵黃抗體,但是凍干后其免疫原性有一定程度的降低[67]。盡管植物的生產(chǎn)成本較低,但是目前植物表達(dá)系統(tǒng)尚不完善,病毒載體和轉(zhuǎn)基因的方式均存在一定的局限性,即使目標(biāo)蛋白能夠成功表達(dá),提取和純化的難度也很大,因此,通過轉(zhuǎn)基因植物生產(chǎn)疫苗還存在一定的挑戰(zhàn)。
此外,通過可食用的乳酸菌也可以表達(dá)輪狀病毒的VP4蛋白及其VP8結(jié)構(gòu)域,通過口服方式進(jìn)行免疫后,這些改造后的乳酸菌可以刺激小鼠產(chǎn)生一定的中和抗體,但是滴度較低[60,68-69]。因此,盡管乳酸菌提供了一種安全、簡便的方式,為發(fā)展新型的黏膜免疫疫苗提供了新的選擇,但是,由于其免疫原性較低,是否能夠成為候選疫苗還有待進(jìn)一步研究。
輪狀病毒感染是一個(gè)全球性的公共衛(wèi)生問題,輪狀病毒疫苗已經(jīng)上市并納入多個(gè)國家的免疫規(guī)劃。隨著輪狀病毒疫苗的接種,輪狀病毒導(dǎo)致的發(fā)病率和死亡率顯著下降,但是,在非洲和亞洲等輪狀病毒導(dǎo)致的死亡率較高的發(fā)展中國家,輪狀病毒疫苗的保護(hù)率仍有待進(jìn)一步提高。高滴度的母源抗體是導(dǎo)致輪狀病毒減毒疫苗有效性低的主要因素之一。盡管VP4介導(dǎo)了輪狀病毒的吸附和入胞過程,自然感染中產(chǎn)生的針對(duì)VP4蛋白的抗體遠(yuǎn)低于VP7。因此,基于VP4蛋白的輪狀病毒疫苗有希望能夠打破母源抗體的干擾,在母源抗體較高的發(fā)展中國家和地區(qū)產(chǎn)生更好的免疫保護(hù)效果。但是,VP4亞單位疫苗的研究目前仍存在以下三方面的問題:1) 不同于天然病毒和VLP疫苗,VP4亞單位疫苗的免疫原性較弱;2) 不同毒株受體識(shí)別的差異可能會(huì)導(dǎo)致輪狀病毒疫苗對(duì)不同毒株保護(hù)性的差異;3) 缺少有效的動(dòng)物模型。輪狀病毒基因工程疫苗在不同動(dòng)物模型中的免疫保護(hù)性差異較大,且缺少能夠有效反映輪狀病毒疫苗有效性的血清學(xué)指標(biāo),限制了輪狀病毒疫苗研究。此外,新的流行毒株的出現(xiàn)也為輪狀病毒疫苗的研究帶來了挑戰(zhàn)。因此,進(jìn)一步提高VP4蛋白的免疫原性,加快輪狀病毒動(dòng)物模型的研究才能使VP4亞單位疫苗成為可能。
[1] Bernstein DI. Rotavirus overview. Pediatr Infect Dis J, 2009, 28(3 Suppl): S50–S53.
[2] Tate JE, Burton AH, Boschi-Pinto C, et al. 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis, 2012, 12(2): 136–141.
[3] Armah GE, Sow SO, Breiman RF, et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: a randomised, double-blind, placebo-controlled trial. Lancet, 2010, 376(9741): 606–614.
[4] Bar-Zeev N, Kapanda L, Tate JE, et al. Effectiveness of a monovalent rotavirus vaccine in infants in Malawi after programmatic roll-out: an observational and case-control study. Lancet Infect Dis, 2015, 15(4): 422–428.
[5] Zhen SS, Li Y, Wang SM, et al. Effectiveness of the live attenuated rotavirus vaccine produced by a domestic manufacturer in China studied using a population-based case-control design. Emerg Microbes Infect, 2015, 4(10): e64.
[6] Anh DD, Van Trang N, Thiem VD, et al. A dose-escalation safety and immunogenicity study of a new live attenuated human rotavirus vaccine (Rotavin-M1) in Vietnamese children. Vaccine, 2012, 30(Suppl 1): A114–A121.
[7] Bines JE, Danchin M, Jackson P, et al. Safety and immunogenicity of RV3-BB human neonatal rotavirus vaccine administered at birth or in infancy: a randomised, double-blind, placebo-controlled trial. Lancet Infect Dis, 2015, 15(12): 1389–1397.
[8] Bhandari N, Rongsen-Chandola T, Bavdekar A, et al. Efficacy of a monovalent human-bovine (116E) rotavirus vaccine in Indian children in the second year of life. Vaccine, 2014, 32(Suppl 1): A110–A116.
[9] Zade JK, Kulkarni PS, Desai SA, et al. Bovine rotavirus pentavalent vaccine development in India. Vaccine, 2014, 32(Suppl 1): A124–A128.
[10] Fix AD, Harro C, McNeal M, et al. Safety and immunogenicity of a parenterally administered rotavirus VP8 subunit vaccine in healthy adults. Vaccine, 2015, 33(31): 3766–3772.
[11] Tate JE, Burton AH, Boschi-Pinto C, et al. Global, regional, and national estimates of rotavirus mortality in children <5 Years of Age, 2000–2013. Clin Infect Dis, 2016, 62(Suppl 2): S96–S105.
[12] Munos MK, Walker CL, Black RE. The effect of rotavirus vaccine on diarrhoea mortality. Int J Epidemiol, 2010, 39(Suppl 1): i56–i62.
[13] Anderson EJ, Sederdahl BK. Intussusception risk increased after rotavirus vaccination but outweighed by benefits. Evid Based Med, 2014, 19(5): 191–192.
[14] McDonald SM, Patton JT. Assortment and packaging of the segmented rotavirus genome. Trends Microbiol, 2011, 19(3): 136–144.
[15] Bass DM. Interferon ga mma and interleukin 1, but not interferon alfa, inhibit rotavirus entry into human intestinal cell lines. Gastroenterology, 1997, 113(1): 81–89.
[16] Ludert JE, Ruiz MC, Hidalgo C, et al. Antibodies to rotavirus outer capsid glycoprotein VP7 neutralize infectivity by inhibiting virion decapsidation. J Virol, 2002, 76(13): 6643–6651.
[17] Corthésy B, Benureau Y, Perrier C, et al. Rotavirus anti-VP6 secretory immunoglobulin A contributes to protection via intracellular neutralization but not via immune exclusion. J Virol, 2006, 80(21): 10692–10699.
[18] Parashar UD, Hummelman EG, Bresee JS, et al. Global illness and deaths caused by rotavirus disease in children. Emerg Infect Dis, 2003, 9(5): 565–572.
[19] Chiba S, Urasawa T, Yokoyama T, et al. Protective effect of naturally acquired homotypic and heterotypic rotavirus antibodies. Lancet, 1986, 328(8504): 417–421.
[20] Johansen K, Svensson L. Neutralization of rotavirus and recognition of immunologically important epitopes on VP4 and VP7 by human IgA. Arch Virol, 1997, 142(7): 1491–1498.
[21] Patel M, Glass RI, Jiang BM, et al. A systematic review of anti-rotavirus serum IgA antibody titer as a potential correlate of rotavirus vaccine efficacy. J Infect Dis, 2013, 208(2): 284–294.
[22] Conner ME, Zarley CD, Hu B, et al. Virus-like particles as a rotavirus subunit vaccine. J Infect Dis, 1996, 174(Suppl 1): S88–S92.
[23] Wen XB, Cao DJ, Jones RW, et al. Construction and characterization of human rotavirus recombinant VP8* subunit parenteral vaccine candidates. Vaccine, 2012, 30(43): 6121–6126.
[24] El-Senousy WM, Shahein YE, Barakat AB, et al. Molecular cloning and immunogenicity evaluation of rotavirus structural proteins as candidate vaccine. Int J Biol Macromol, 2013, 59: 67–71.
[25] Khodabandehloo M, Shahrabadi MS, Keyvani H, et al. Recombinant outer capsid glycoprotein (VP7) of rotavirus expressed in insect cells induces neutralizing antibodies in rabbits. Iran J Public Health, 2012, 41(5): 73–84.
[26] Ray P, Malik J, Singh RK, et al. Rotavirus nonstructural protein NSP4 induces heterotypic antibody responses during natural infection in children. J Infect Dis, 2003, 187(11): 1786–1793.
[27] Ijaz MK, Nur-E-Kamal MSA, Dar FK, et al. Inhibition of rotavirus infectionandby a synthetic peptide from VP4. Vaccine, 1998, 16(9/10): 916–920.
[28] Chen SC, Jones DH, Fynan EF, et al. Protective immunity induced by oral immunization with a rotavirus DNA vaccine encapsulated in microparticles. J Virol, 1998, 72(7): 5757–5761.
[29] O'Neal CM, Crawford SE, Estes MK, et al. Rotavirus virus-like particles administered mucosally induce protective immunity. J Virol, 1997, 71(11): 8707–8717.
[30] Coste A, Sirard JC, Johansen K, et al. Nasal immunization of mice with virus-like particles protects offspring against rotavirus diarrhea. J Virol, 2000, 74(19): 8966–8971.
[31] Yuan LJ, Geyer A, Hodgins DC, et al. Intranasal administration of 2/6-rotavirus-like particles with mutantheat-labile toxin (LT-R192G) induces antibody-secreting cell responses but not protective immunity in gnotobiotic pigs. J Virol, 2000, 74(19): 8843–8853.
[32] Siadat-Pajouh M, Cai L. Protective efficacy of rotavirus 2/6-virus-like particles combined with CT-E29H, a detoxified cholera toxin adjuvant. Viral Immunol, 2001, 14(1): 31–47.
[33] Bertolotti-Ciarlet A, Ciarlet M, Crawford SE, et al. Immunogenicity and protective efficacy of rotavirus 2/6-virus-like particles produced by a dual baculovirus expression vector and administered intramuscularly, intranasally, or orally to mice. Vaccine, 2003, 21(25/26): 3885–3900.
[34] Shuttleworth G, Eckery DC, Awram P. Oral and intraperitoneal immunization with rotavirus 2/6 virus-like particles stimulates a systemic and mucosal immune response in mice. Arch Virol, 2005, 150(2): 341–349.
[35] Agnello D, Hervé CA, Lavaux A, et al. Intrarectal immunization with rotavirus 2/6 virus-like particles induces an antirotavirus immune response localized in the intestinal mucosa and protects against rotavirus infection in mice. J Virol, 2006, 80(8): 3823–3832.
[36] McNeal MM, VanCott JL, Choi AHC, et al. CD4 T cells are the only lymphocytes needed to protect mice against rotavirus shedding after intranasal immunization with a chimeric VP6 protein and the adjuvant LT (R192G). J Virol, 2002, 76(2): 560–568.
[37] Choi AH, McNeal MM, Flint JA, et al. The level of protection against rotavirus shedding in mice following immunization with a chimeric VP6 protein is dependent on the route and the coadministered adjuvant. Vaccine, 2002, 20(13/14): 1733–1740.
[38] Ciarlet M, Crawford SE, Barone C, et al. Subunit rotavirus vaccine administered parenterally to rabbits induces active protective immunity. J Virol, 1998, 72(11): 9233–9246.
[39] Ball JM, Tian P, Zeng CQY, et al. Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein. Science, 1996, 272(5258): 101–104.
[40] Green KY, Sears JF, Taniguchi K, et al. Prediction of human rotavirus serotype by nucleotide sequence analysis of the VP7 protein gene. J Virol, 1988, 62(5): 1819–1823.
[41] Aoki ST, Settembre EC, Trask SD, et al. Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science, 2009, 324(5933): 1444–1447.
[42] Yuan LY, Liu Y, Li CH, et al. Expression inand immunogenicity of rotavirus VP7. Chin J Biotech, 2001, 17(2): 145?149 (in Chinese).袁力勇, 劉勇, 李春宏, 等. 輪狀病毒VP7基因在大腸桿菌中的表達(dá)及其免疫原性. 生物工程學(xué)報(bào), 2001, 17(2): 145–149.
[43] Liu N, Xu ZQ, Li DD, et al. Update on the disease burden and circulating strains of rotavirus in China: a systematic review and meta-analysis. Vaccine, 2014, 32(35): 4369–4375.
[44] Ward RL, Knowlton DR, Greenberg HB, et al. Serum-neutralizing antibody to VP4 and VP7 proteins in infants following vaccination with WC3 bovine rotavirus. J Virol, 1990, 64(6): 2687–2691.
[45] Choi AHC, Basu M, McNeal MM, et al. Antibody-independent protection against rotavirus infection of mice stimulated by intranasal immunization with chimeric VP4 or VP6 protein. J Virol, 1999, 73(9): 7574–7581.
[46] Lopez S, Arias CF. Early steps in rotavirus cell entry//Roy P, Ed. Reoviruses: Entry, Assembly and Morphogenesis. Berlin Heidelberg: Springer, 2006, 309: 39–66.
[47] Blanchard H, Yu X, Coulson BS, et al. Insight into host cell carbohydrate-recognition by human and porcine rotavirus from crystal structures of the virion spike associated carbohydrate-binding domain (VP8*). J Mol Biol, 2007, 367(4): 1215–1226.
[48] Dunn SJ, Fiore L, Werner RL, et al. Immunogenicity, antigenicity, and protection efficacy of baculovirus expressed VP4 trypsin cleavage products, VP5(1)* and VP8* from rhesus rotavirus. Arch Virol, 1995, 140(11): 1969–1978.
[49] Arias CF, Lizano M, López S. Synthesis inand immunological characterization of a polypeptide containing the cleavage sites associated with trypsin enhancement of rotavirus SA11 infectivity. J Gen Virol, 1987, 68(3): 633–642.
[50] Lizano M, López S, Arias CF. The amino-terminal half of rotavirus SA114fM VP4 protein contains a hemagglutination domain and primes for neutralizing antibodies to the virus. J Virol, 1991, 65(3): 1383–1391.
[51] Mackow ER, Barnett JW, Chan H, et al. The rhesus rotavirus outer capsid protein VP4 functions as a hemagglutinin and is antigenically conserved when expressed by a baculovirus recombinant. J Virol, 1989, 63(4): 1661–1668.
[52] Matsui SM, Offit PA, Vo PT, et al. Passive protection against rotavirus-induced diarrhea by monoclonal antibodies to the heterotypic neutralization domain of VP7 and the VP8 fragment of VP4. J Clin Microbiol, 1989, 27(4): 780–782.
[53] Padilla-Noriega L, Fiore L, Rennels MB, et al. Humoral immune responses to VP4 and its cleavage products VP5* and VP8* in infants vaccinated with rhesus rotavirus. J Clin Microbiol, 1992, 30(6): 1392–1397.
[54] Lee J, Babiuk LA, Harland R, et al. Immunological response to recombinant VP8* subunit protein of bovine rotavirus in pregnant cattle. J Gen Virol, 1995, 76(Pt 10): 2477–2483.
[55] Kovacs-Nolan J, Sasaki E, Yoo D, et al. Cloning and expression of human rotavirus spike protein, VP8*, in. Biochem Biophys Res Commun, 2001, 282(5): 1183–1188.
[56] Kraschnefski MJ, Scott SA, Holloway G, et al. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the VP8* carbohydrate-binding protein of the human rotavirus strain Wa. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2005, 61(Pt 11): 989–993.
[57] Xue MG, Yu LQ, Che YJ, et al. Characterization and protective efficacy in an animal model of a novel truncated rotavirus VP8 subunit parenteral vaccine candidate. Vaccine, 2015, 33(22): 2606–2613.
[58] Ijaz MK, Attah-Poku SK, Redmond MJ, et al. Heterotypic passive protection induced by synthetic peptides corresponding to VP7 and VP4 of bovine rotavirus. J Virol, 1991, 65(6): 3106–3113.
[59] Xue MG, Yu LQ, Jia LZ, et al. Immunogenicity and protective efficacy of rotavirus VP8* fused to cholera toxin B subunit in a mouse model. Hum Vaccines Immunother, 2016, 12(11): 2959–2968.
[60] Qiao XY, Li GW, Wang XQ, et al. Recombinant porcine rotavirus VP4 and VP4-LTB expressed in Lactobacillus casei induced mucosal and systemic antibody responses in mice. BMC Microbiol, 2009, 9(1): 249.
[61] Bellido D, Craig PO, Mozgovoj MV, et al.spp. lumazine synthase as a bovine rotavirus antigen delivery system. Vaccine, 2009, 27(1): 136–145.
[62] Tan M, Huang PW, Xia M, et al. Norovirus P particle, a novel platform for vaccine development and antibody production. J Virol, 2011, 85(2): 753–764.
[63] Wen XB, Wei XM, Ran XH, et al. Immunogenicity of porcine P[6], P[7]-specific △VP8* rotavirus subunit vaccines with a tetanus toxoid universal T cell epitope. Vaccine, 2015, 33(36): 4533–4539.
[64] Wen XB, Wen K, Cao DJ, et al. Inclusion of a universal tetanus toxoid CD4+T cell epitope P2 significantly enhanced the immunogenicity of recombinant rotavirus ΔVP8* subunit parenteral vaccines. Vaccine, 2014, 32(35): 4420–4427.
[65] Pérez Filgueira DM, Mozgovoj M, Wigdorovitz A, et al. Passive protection to bovine rotavirus (BRV) infection induced by a BRV VP8* produced in plants using a TMV-based vector. Arch Virol, 2004, 149(12): 2337–2348.
[66] Lentz EM, Mozgovoj MV, Bellido D, et al. VP8* antigen produced in tobacco transplastomic plants confers protection against bovine rotavirus infection in a suckling mouse model. J Biotechnol, 2011, 156(2): 100–107.
[67] Federico Alfano E, Lentz EM, Bellido D, et al. Expression of the multimeric and highly immunogenicspp. lumazine synthase fused to bovine rotavirus vp8d as a scaffold for antigen production in tobacco chloroplasts. Front Plant Sci, 2015, 6: 1170.
[68] Marelli B, Perez AR, Banchio C, et al. Oral immunization with liveexpressing rotavirus VP8* subunit induces specific immune response in mice. J Virol Methods, 2011, 175(1): 28–37.
[69] Rodríguez-Díaz J, Montava R, Viana R, et al. Oral immunization of mice withexpressing the rotavirus VP8* protein. Biotechnol Lett, 2011, 33(6): 1169–1175.
[70] Mackow ER, Vo PT, Broome R, et al. Immunization with baculovirus-expressed VP4 protein passively protects against simian and murine rotavirus challenge. J Virol, 1990, 64(4): 1698–1703.
[71] Wen XB, Cao DJ, Jones RW, et al. Tandem truncated rotavirus VP8* subunit protein with T cell epitope as non-replicating parenteral vaccine is highly immunogenic. Hum Vaccin Immunother, 2015, 11(10): 2483–2489.
[72] Lua LHL, Fan YY, Chang C, et al. Synthetic biology design to display an 18 kDa rotavirus large antigen on a modular virus-like particle. Vaccine, 2015, 33(44): 5937–5944.
[73] Coste A, Cohen J, Reinhardt M, et al. Nasal immunisation withproducing rotavirus VP2 and VP6 antigens stimulates specific antibody response in serum and milk but fails to protect offspring. Vaccine, 2001, 19(30): 4167–4174.
(本文責(zé)編 郝麗芳)
Research progress in rotavirus VP4 subunit vaccine
Lianzhi Jia, Tingdong Li, and Shengxiang Ge
,,,,361102,,
Rotaviruses are leading causes of worldwide acute diarrhea in children younger than 5 years old, with severe consequence of social and economic burden. Vaccination is the most effective way to control rotavirus infection, however, the licensed rotavirus vaccines are ineffective in some low-income countries of Africa and Asia, where the mortality caused by rotavirus is higher than other areas. In addition, there are also safety concerns such as increased risk of intussusception. Therefore, it is urgent to improve the efficiency and safety of rotavirus vaccine to reduce the morbidity and mortality caused by rotavirus. Till now, many efforts are made to improve the effectiveness of rotavirus vaccines, and the inactive vaccine becomes the main trend in the research of rotavirus vaccine. The developments in recombinant rotavirus vaccines, especially in VP4 subunit vaccines are summarized in this review, and it could be helpful to develop effective recombinant rotavirus vaccines in further studies.
rotavirus, VP4, subunit vaccines, diarrhea
December 14, 2016; Accepted: February 17, 2017
Shengxiang Ge. Tel: +86-592-2188381; E-mail: sxge@xmu.edu.cn
Supported by:National Natural Science Foundation of China (No. 81501741).
國家自然科學(xué)基金 (No. 81501741) 資助。