王鵬璞 朱雨辰 劉炎冰 陳偉娜 胡小松 陳 芳
(中國(guó)農(nóng)業(yè)大學(xué)食品科學(xué)與營(yíng)養(yǎng)工程學(xué)院;國(guó)家果蔬加工工程技術(shù)研究中心;農(nóng)業(yè)部果蔬加工重點(diǎn)實(shí)驗(yàn)室;教育部果蔬加工工程技術(shù)研究中心,北京 100083)
煎炸和焙烤過程中油脂對(duì)丙烯酰胺形成影響研究進(jìn)展
王鵬璞 朱雨辰 劉炎冰 陳偉娜 胡小松 陳 芳
(中國(guó)農(nóng)業(yè)大學(xué)食品科學(xué)與營(yíng)養(yǎng)工程學(xué)院;國(guó)家果蔬加工工程技術(shù)研究中心;農(nóng)業(yè)部果蔬加工重點(diǎn)實(shí)驗(yàn)室;教育部果蔬加工工程技術(shù)研究中心,北京 100083)
丙烯酰胺是一種對(duì)人有神經(jīng)毒性和潛在致癌性的化合物,自2002年被報(bào)道在一些高溫加工的淀粉類食品中有較高含量后,引起各國(guó)學(xué)者的廣泛研究。綜述了煎炸和焙烤食物加工過程中油脂對(duì)丙烯酰胺形成的影響,主要包括油炸食品加工參數(shù)、油脂種類、油脂氧化和抗氧化劑對(duì)丙烯酰胺形成的影響,以及油脂熱解產(chǎn)物對(duì)丙烯酰胺形成的影響及其可能機(jī)制。同時(shí)展望了今后的研究方向,旨在為從油脂角度控制丙烯酰胺的形成提供參考。
丙烯酰胺 油脂 煎炸 焙烤
2002年4月,瑞典國(guó)家食品管理局和斯德哥爾摩大學(xué)共同宣布在一些經(jīng)高溫(>120 ℃)加工或焙烤的淀粉類食品中有較高含量的丙烯酰胺[1],并且其遠(yuǎn)超世界衛(wèi)生組織規(guī)定的飲用水中丙烯酰胺的最大允許量0.5 μg/L[2]。瑞典的這一發(fā)現(xiàn)很快被英國(guó)食品標(biāo)準(zhǔn)局所證實(shí)[3],并且迅速引起了世界衛(wèi)生組織和美國(guó)食品藥品管理局以及世界各地科學(xué)家的重視。原因是丙烯酰胺在1994年被國(guó)際癌癥研究中心列為2A類致癌物[4];對(duì)人和動(dòng)物都具有神經(jīng)毒性[5],對(duì)動(dòng)物具有生殖毒性[6]、致突變性和潛在的致癌性[7]。
丙烯酰胺是一種不飽和酰胺,CAS編號(hào)為79-06-1,相對(duì)分子質(zhì)量71.08,化學(xué)式CH2CHCONH2,
沸點(diǎn)125 ℃,熔點(diǎn)82~86 ℃,密度1.122 g/cm3(30 ℃)。常溫下為白色無味晶體,易溶于水、乙醇、乙醚、丙酮、氯仿,不溶于苯及庚烷中。結(jié)構(gòu)式見圖1。
圖1 丙烯酰胺的結(jié)構(gòu)式
目前普遍認(rèn)為在富含淀粉的食物中丙烯酰胺主要通過天冬酰胺和還原糖發(fā)生美拉德反應(yīng)形成[8-10]。但由于富含油脂的食物在熱加工過程中往往伴隨油脂的氧化和水解等反應(yīng),近幾年的研究表明油脂熱解產(chǎn)物對(duì)丙烯酰胺的形成同樣具有貢獻(xiàn),本文將總結(jié)煎炸和焙烤食物加工過程中油脂對(duì)丙烯酰胺形成的影響。
動(dòng)力學(xué)研究表明無論是在模擬體系還是在實(shí)際體系中,油炸溫度和時(shí)間是影響終產(chǎn)物中丙烯酰胺含量的重要因素[11-14]。Knol等[11]用等量的葡萄糖和天冬酰胺在密閉條件下進(jìn)行不同溫度加熱,結(jié)果如圖2所示,在反應(yīng)5 min之內(nèi),丙烯酰胺大量形成,當(dāng)溫度高于120 ℃時(shí),每升高20 ℃,丙烯酰胺形成量成倍數(shù)增加。作者通過用阿倫尼烏斯方程計(jì)算,表明溫度通過影響反應(yīng)速率和活化能來影響丙烯酰胺的形成。溫度低于160 ℃時(shí),45 min內(nèi)丙烯酰胺含量隨加熱時(shí)間延長(zhǎng)先增加,后趨于平穩(wěn),溫度高于160 ℃時(shí),丙烯酰胺含量隨加熱時(shí)間延長(zhǎng)先劇烈增加后減小,最后趨于平穩(wěn)。油炸時(shí)間對(duì)丙烯酰胺含量的影響與油炸溫度有關(guān),Knol等[13]在預(yù)熱到180 ℃的油中加入鮮切土豆片炸6 min,對(duì)油炸過程中的油溫、薯片外層溫度以及二者之差進(jìn)行實(shí)時(shí)監(jiān)測(cè),結(jié)果如圖3所示,在第35 s時(shí),薯片外層溫度上升到140 ℃,之后釋放水蒸氣,溫度降到135 ℃,到210 s時(shí),溫度上升到160 ℃趨于平穩(wěn),這個(gè)過程中鍋底的油溫從180 ℃逐漸下降,一直到160 ℃趨于平穩(wěn)。
圖2 不同溫度加熱對(duì)葡萄糖/天冬酰胺模擬體系(0.2 mol/L, pH 6.8)中丙烯酰胺形成的影響
圖3 油炸馬鈴薯片過程中油溫的溫度輪廓
研究表明植物油煎炸次數(shù)越多,由甘油三酯降解和聚合形成的極性化合物越多[15]。Gertz等[16]認(rèn)為極性化合物通過增加油脂和食物間的熱傳遞增加丙烯酰胺含量,但后來有學(xué)者通過油炸薯片試驗(yàn)證明油炸過程中形成的極性化合物量和植物油煎炸次數(shù)與薯片中丙烯酰胺含量均無顯著相關(guān)性(P>0.05)[17-18]。目前關(guān)于植物油煎炸次數(shù)對(duì)丙烯酰胺含量的影響尚不清楚。
目前對(duì)于油脂種類對(duì)丙烯酰胺形成的影響存在一定爭(zhēng)議。有研究報(bào)道油脂種類不同,其產(chǎn)物中丙烯酰胺含量有顯著差異。Becalski 等[19]在模擬炸薯片試驗(yàn)中,分別以橄欖油和玉米油為煎炸介質(zhì),結(jié)果經(jīng)橄欖油煎炸的薯片中丙烯酰胺含量比經(jīng)玉米油煎炸的高。Tareke[20]也報(bào)道了與玉米油和橄欖油相比,薯片在芝麻油中經(jīng)過煎炸后形成的丙烯酰胺含量最高。由于不同種類油脂的不飽和度有差異,而油脂的不飽和度越高,產(chǎn)生的丙烯酰胺越多[21]。Ehling 等[21]將天冬酰胺與魚肝油、沙丁魚油、脫α-生育酚的玉米油、橄欖油、菜籽油、大豆油、玉米油、牛油和豬油分別在180 ℃油浴下加熱30 min,形成丙烯酰胺含量從高到底的順序?yàn)樯扯◆~油(642 μg/g 天冬酰胺)>魚肝油(435.4 μg/g)>大豆油(135.8 μg/g)>玉米油(80.7 μg/g)>橄欖油(73.6 μg/g)>菜籽油(70.7 μg/g)>脫α-生育酚的玉米油(62.1 μg/g)>牛油(59.3 μg/g)>豬油(36.0μg/g)。沙丁魚油和魚肝油因富含高度不飽和脂肪酸而產(chǎn)生丙烯酰胺最多;大豆油中富含亞麻酸,其體系也會(huì)產(chǎn)生較多丙烯酰胺;但豬油和牛油中含有的不飽和脂肪較少,其體系產(chǎn)生丙烯酰胺量最少;玉米油中既有單不飽和脂肪又有多不飽和脂肪,比主要含單不飽和脂肪的菜籽油和橄欖油體系形成的丙烯酰胺量多。Capuano 等[22]在180 ℃條件下模擬曲奇焙烤試驗(yàn)中也得出了相同的結(jié)論,棕櫚油(碘值為110)體系中形成的丙烯酰胺量顯著低于葵花籽油(碘值>130)體系。一些實(shí)際油炸制品體系中煎炸油種類與丙烯酰胺形成關(guān)系的研究結(jié)果都與上述結(jié)論一致[23-24]。不飽和度不同的油脂對(duì)丙烯酰胺形成的影響,可能因?yàn)槠渲泻械母视腿狨チ坎煌悾吒视腿狨ズ克猱a(chǎn)生大量甘油,進(jìn)而產(chǎn)生更多丙烯醛和丙烯酰胺[25]。
也有一部分研究報(bào)道指出,油脂種類對(duì)丙烯酰胺形成無影響。Matth?us 等[26]將土豆片分別在精煉葵花籽油、冷壓榨葵花籽油、亞麻薺油、花生油、棕櫚油、半固體深度煎炸脂肪、冷壓榨菜籽油、精煉菜籽油、Biskin和Pomfrim中175 ℃煎炸6 min,結(jié)果表明不同食物油與丙烯酰胺的濃度無顯著相關(guān)(P>0.05)。同樣地,Mestdagh等[27]和Williams[28]用不同植物油分別煎炸薯片,發(fā)現(xiàn)不同煎炸油中薯片丙烯酰胺含量差異不顯著(P>0.05)。這在焙烤曲奇和牛肉漢堡這樣的實(shí)際體系中也得到了證實(shí)[29-30]。
油炸過程就是在高溫下將食物浸在油中,油中的高溫為食物提供熱量,使得食物表面溫度升高,食物內(nèi)部的水分迅速汽化并且從食物內(nèi)部向食物外部轉(zhuǎn)移,同時(shí)食物內(nèi)部孔隙被煎炸油取代的過程[31]。油脂在煎炸過程中經(jīng)過長(zhǎng)時(shí)間的高溫加熱,會(huì)發(fā)生一系列的化學(xué)變化,其中最主要的是油脂氧化、水解和聚合反應(yīng)[32]。有研究報(bào)道油脂氧化會(huì)促進(jìn)丙烯酰胺的形成。Arribas-Lorenzo 等[33]在曲奇體系中,以未氧化葵花籽油做對(duì)照,探討了經(jīng)熱氧化的葵花籽油對(duì)丙烯酰胺生成量的影響。結(jié)果表明,曲奇中丙烯酰胺含量隨焙烤時(shí)間延長(zhǎng)而增加,且在第16 min時(shí)試驗(yàn)組中丙烯酰胺含量比對(duì)照組高出約59%。進(jìn)一步說明隨焙烤時(shí)間延長(zhǎng),油脂熱氧化會(huì)大幅促進(jìn)曲奇體系中丙烯酰胺的形成。Capuano 等[22]在模擬曲奇焙烤的無糖試驗(yàn)中也得出了相同的結(jié)論。作者將不同氧化程度的葵花籽油加入不同配方中制作曲奇,180 ℃加熱30 min,結(jié)果表明經(jīng)氧化的油脂會(huì)顯著促進(jìn)曲奇中丙烯酰胺的形成(P<0.05),并且這種促進(jìn)作用在無糖的體系中更顯著。
但也有部分研究表明油脂氧化對(duì)丙烯酰胺形成無顯著影響[17, 29, 34-35]。Mestdagh 等[17]分別進(jìn)行的密閉管式反應(yīng)和模擬法式薯片煎炸試驗(yàn)證明,在薯片煎炸過程中油脂氧化對(duì)丙烯酰胺形成無顯著影響。Mestdagh等[34]將油脂氧化產(chǎn)生的一些醛類物質(zhì)與天冬酰胺組成模擬體系加熱,以天冬酰胺單獨(dú)加熱作為空白對(duì)照,結(jié)果表明二者生成的丙烯酰胺無顯著性差異,說明醛類物質(zhì)和天冬酰胺混合生成的丙烯酰胺主要源于天冬酰胺的脫羧和脫氨作用,醛類物質(zhì)本身不會(huì)促進(jìn)丙烯酰胺的形成。
抗氧化劑可抑制油脂氧化,提高食品感官和穩(wěn)定性,但對(duì)于丙烯酰胺,不同結(jié)構(gòu)的抗氧化劑卻存在抑制和促進(jìn)兩種相反的作用機(jī)制。首先,抗氧化劑可通過防止油脂氧化抑制丙烯酰胺形成[36]。另外,研究表明類黃酮類抗氧化劑可通過捕捉美拉德反應(yīng)中間體抑制丙烯酰胺形成。Cheng等[37]證明柚皮素結(jié)構(gòu)中A環(huán)的活性位點(diǎn)6位和8位碳原子可與丙烯酰胺形成的前體物反應(yīng),形成兩種新的化合物:(E)-8-丙烯酰胺-柚皮素和(E)-6-丙烯酰胺-柚皮素,阻止丙烯酰胺形成。同樣,表兒茶素結(jié)構(gòu)中A環(huán)的這兩個(gè)相同的活性位點(diǎn)也可捕捉美拉德反應(yīng)形成的羰基中間體[38]。還有一些抗氧化劑如N-乙酰半胱氨酸、谷胱甘肽、半胱氨酸、大蒜素等其結(jié)構(gòu)中的巰基可抑制丙烯酰胺[39-40]。但是,也有一部分抗氧化劑可促進(jìn)丙烯酰胺形成。一方面,本身含有羰基的抗氧化劑,如姜黃素和水飛薊素,可與天冬酰胺反應(yīng)形成丙烯酰胺[41-42]。另一方面,因美拉德反應(yīng)中間體5-羥甲基糠醛結(jié)構(gòu)中的α, β, γ, δ-不飽和羰基基團(tuán)可將天冬酰胺轉(zhuǎn)化為丙烯酰胺,而酚類抗氧化劑可促進(jìn)蔗糖分解為5-羥甲基糠醛,從而促進(jìn)丙酰胺的形成[43]。
5.1 丙烯醛/丙烯酸途徑
目前普遍認(rèn)為在富含淀粉的食物中丙烯酰胺形成主要通過天冬酰胺和還原糖發(fā)生美拉德反應(yīng),但是仍有文獻(xiàn)報(bào)道在少糖、多油脂的食物中丙烯酰胺主要通過丙烯醛或丙烯酸形成[44-45]。油脂熱解可產(chǎn)生丙烯醛[46],丙烯醛或丙烯酸可在氨的存在下通過氨基脫羥基反應(yīng)生成丙烯酰胺[47]。Yasuhara等[44]在研究中發(fā)現(xiàn)單獨(dú)1 g 天冬酰胺熱解產(chǎn)生0.99 μg丙烯酰胺;1 g 天冬酰胺和甘油三油酸酯同時(shí)加熱時(shí)生成丙烯酰胺的量為88.6 μg,故油脂對(duì)丙烯酰胺的形成有一定貢獻(xiàn)。同時(shí),甘油三酸酯加熱后在頂空產(chǎn)生(1.82±0.31) mg/L的丙烯醛;1 g 天冬酰胺和丙烯醛氣體加熱反應(yīng)時(shí)產(chǎn)生114 μg丙烯酰胺;丙烯醛和氨氣加熱可形成大量丙烯酰胺(753μg/g 氨);當(dāng)用丙烯醛的氧化產(chǎn)物丙烯酸和氨氣反應(yīng)時(shí),產(chǎn)生丙烯酰胺的量為190 000 μg/g 氨,由此推測(cè)在富含油脂的食品中氨和丙烯醛對(duì)于丙烯酰胺的形成起重要作用。Gertz 等[45]在研究煎炸食品中丙烯酰胺的形成機(jī)理時(shí)指出,當(dāng)油脂與食物中的水分接觸并加熱時(shí),通過水解釋放甘油三酯,甘油三酯進(jìn)一步水解產(chǎn)生游離脂肪酸、單酰甘油、二酰甘油和丙三醇,丙三醇加熱脫水形成丙烯醛,丙烯醛氧化生成丙烯酸,由此促使丙烯酰胺生成(見圖4、圖5)。
圖4 甘油三酯水解形成丙烯酰胺
圖5 由單酰甘油形成丙烯酰胺的機(jī)理
但是,Maurus等[48]在干模擬體系中加入食用油或甘油,經(jīng)加熱發(fā)現(xiàn)食用油或甘油對(duì)丙烯酰胺形成沒有顯著性影響。Becalski 等[19]模擬薯片煎炸試驗(yàn),分別以石蠟油和玉米油作為煎炸介質(zhì),在煎炸過程中加入碳酸銨,175 ℃炸10 min,結(jié)果顯示兩種煎炸介質(zhì)中的薯片中丙烯酰胺含量差異不顯著。但石蠟油中不含甘三酯,因而在煎炸過程中不會(huì)產(chǎn)生丙烯醛,說明丙烯酰胺的形成不是由于油中的物質(zhì),尤其是丙烯醛引起的。Mestdagh 等[34]在研究煎炸油降解成分對(duì)煎炸食物中丙烯酰胺形成的影響時(shí)指出在密閉的丙烯醛/天冬酰胺模擬體系中經(jīng)過加熱產(chǎn)生的丙烯酰胺含量(1 430 μg/kg)與只含天冬酰胺的密閉模擬體系(360 μg/kg)相比顯著升高(P<0.05),但是卻顯著低于天冬酰胺/葡萄糖模擬體系中形成的丙烯酰胺(9 925 μg/kg)(P<0.05),說明在體系中含有葡萄糖時(shí),丙烯醛對(duì)丙烯酰胺的形成貢獻(xiàn)較小。另外,實(shí)際體系中是開放環(huán)境,丙烯醛極易揮發(fā),加之游離氨的形成有限,因此它對(duì)丙烯酰胺的形成貢獻(xiàn)的程度還有待深入研究。
5.2 羰基化合物途徑
煎炸或焙烤食物中油脂加熱會(huì)發(fā)生水解、氧化和聚合等反應(yīng),產(chǎn)生的醛、酮等物質(zhì)可作為丙烯酰胺形成的羰基化合物來源[49-50]。因此,也有文獻(xiàn)指出油脂對(duì)丙烯酰胺形成的貢獻(xiàn)在于油脂產(chǎn)生的羰基化合物參與美拉德反應(yīng):一方面,羰基化合物和還原糖競(jìng)爭(zhēng)性地與天冬酰胺反應(yīng)[51-52],另一方面也可與美拉德反應(yīng)途徑中重要中間體3-氨基丙酰胺(3-aminopropionamide, 3-APA)反應(yīng)[53],這2條途徑均為羰基化合物途徑。羰基化合物在以上途徑中涉及關(guān)鍵的兩步,一是羰基化合物存在的情況下氨基酸的脫羧,二是3-APA的脫氨。
圖6 油脂熱解產(chǎn)生的羰基化合物通過美拉德反應(yīng)形成丙烯酰胺的可能途徑
油脂熱解產(chǎn)物的美拉德反應(yīng)途徑如圖6所示。首先,羰基化合物可通過Strecker 降解將胺類物質(zhì)或氨基酸降解為相應(yīng)的Stecker醛[54-59],進(jìn)而生成丙烯酰胺。羰基化合物與天冬酰胺反應(yīng)先形成相應(yīng)的亞胺,經(jīng)過電子重排和脫羧反應(yīng),進(jìn)而形成兩種新的亞胺,其中一種通過酶促轉(zhuǎn)氨作用形成α-酮酸,該化合物對(duì)熱不穩(wěn)定,進(jìn)一步轉(zhuǎn)變?yōu)镾trecker醛,同時(shí),經(jīng)過脫羧的另一種新的亞胺經(jīng)水解可形成Strecker醛,Strecker 醛還原成Strecker 醇,最后經(jīng)過脫水形成丙烯酰胺。
另外,如圖所示,羰基化合物可與天冬酰胺反應(yīng)形成唑烷-5-酮中間體,再形成丙烯酰胺。Hidalgo等[51]通過重水試驗(yàn)提出了在羰基化合物存在情況下天冬酰胺可能的脫羧途徑,即氨基酸在重水的存在下迅速在羧基端交換重氫,由于烯醇化的作用再置換α端的氫,羰基化合物與含重氫的天冬酰胺反應(yīng)可產(chǎn)生亞胺,經(jīng)過唑烷-5-酮脫掉一個(gè)CO2后,這些亞胺會(huì)經(jīng)過脫羧形成相對(duì)穩(wěn)定的甲亞胺葉立德,進(jìn)而形成兩種共軛亞胺。其中一種共軛亞胺通過消去一個(gè)亞胺基團(tuán)而直接裂解形成丙烯酰胺[60]。另外一種先形成3-APA,3-APA一方面脫氨基直接形成丙烯酰胺[61],另一方面通過先烷基化后再消去生成丙烯酰胺[44]。
研究表明油脂熱解產(chǎn)生的羰基化合物可直接與3-APA反應(yīng)形成丙烯酰胺[53],如圖7。有研究報(bào)道在眾多油脂熱解產(chǎn)物中二烯醛與天冬酰胺反應(yīng)的活性最高[49]。Zamor等[53]用2,4-癸二烯醛與3-APA反應(yīng),提出在2,4-癸二烯醛存在下由3-APA降解形成丙烯酰胺的可能途徑。二烯醛與3-APA可以形成中間體亞胺和亞胺離子,通過消去反應(yīng)脫掉吡啶環(huán),生成丙烯酰胺,該途徑中的吡啶環(huán)也有可能是3-APA與羰基化合物發(fā)生Michael加成反應(yīng)得到,目前對(duì)于具體形成過程還不清楚。
圖7 二烯醛與3-APA形成丙烯酰胺的可能途徑
綜述了食品熱加工過程中油脂對(duì)丙烯酰胺形成的影響,以油炸和焙烤兩種代表方式探討了油脂加工參數(shù)、油脂種類、油脂氧化、油脂抗氧化劑以及油脂熱解產(chǎn)生的羰基化合對(duì)丙烯酰胺形成的影響及其可能機(jī)制。目前對(duì)于丙烯酰胺形成的美拉德反應(yīng)機(jī)制研究較為普遍,對(duì)于油脂參與的途徑研究較少,且目前研究結(jié)果不能證明油脂形成丙烯酰胺的丙烯醛/丙烯酸途徑在含還原糖的體系中是否存在,以及丙烯醛在實(shí)際的開放體系中是否會(huì)富集。但是,對(duì)于油脂導(dǎo)致丙烯酰胺形成的羰基化合物途徑,不論體系中是否含富含糖,糖基化合物都可以參與氨基酸的降解,因此,還應(yīng)從第二條途徑入手,綜合油脂熱解反應(yīng)和美拉德反應(yīng)兩大反應(yīng)體系,深入研究富含油脂食品中油脂對(duì)丙烯酰胺形成的貢獻(xiàn)大小。
[1]Swedish National Food Administration. Information about acrylamide in food[EB/OL].[2002-4-24]http:/ /www.slv. se/ engdefault.asp
[2]World Health Organization. Guidelines for drinking-water quality.Third edition incorporating the first and second addenda[R].Geneva:WHO, 2008
[3]Food Standards Agency. FSA study of acrylamide in food, background information and research findings[EB/OL].[2002-5-17]http://www.food.gov.uk/news/newsarchive/6526
[4]International Agency for Research on Cancer. Some industrial chemicals. IRAC monographs on the evaluation of carcinogenic risk for chemicals to humans[R].Lyon,IARC,1994
[5]Lopachin R M,Lehning E J. Acrylamide induced distal axon degeneration: a proposed mechanism of action[J].Neurotoxicology,1994,15(2):247-260
[6]Dearfield K L, Abernathy C O, Ottley M S, et al. Acrylamide: its metabolism, developmental and reproductive effects, genotoxicity, and carcinogenicity[J].Mutation Research,1988,195(1):45-77
[7]Dearfield K L, Douglas G R, Ehling U H, et al. Acrylamide: a review of its genotoxicity and an assessment of heritable genetic risk[J].Mutation Research,1995,330(1-2):71-99
[8]Mottram D S, Wedzicha B L, Dodson A T.Acrylamide is formed in the Maillard reaction[J].Nature,2002,419:448-449
[9]Stadler R H, Blank I, Varga N,et al. Acrylamide from Maillard reaction products[J].Nature, 2002,419:449-450
[10]Yaylayan V A, Wnorowski A, Locas C P. Why asparagine needs carbohydrates to generate acrylamide[J].Journal of Agricultural and Food Chemistry,2003,51(6):1753-1757
[11]Knol J J, Van Loon W A M, Linssen J P H, et al.Toward a kinetic model for acrylamide formation in a glucose-asparagine reaction system[J].Journal of Agricultural and Food Chemistry,2005,53(15):6133-6139
[12]Claeys W L, Vleeschouwer K D, Hendrickx M E, et al. Kinetics of acrylamide formation and elimination during heating of asparagine-sugar model system[J].Journal of Agricultural and Food Chemistry,2005,53(26):9999-10005
[13]Knol J J, Viklund G A I, Linssen J P H, et al. A study on the use of empirical models to predict the formation of acrylamide in potato crisps[J].Molecular Nutrition & Food Research,2008,52(3):313-321
[14]Franke K, Strijowski U, Reimerdes E H, et al. Kinetics of acrylamide formation in potato powder[J].Journal of Food Engineering,2009,90(1):135-140
[16]Gertz C. Optimising the baking and frying process using oil-improving agents[J].European Journal of Lipid Science and Technology,2004,57(2):671-678
[17]Mestdagh F, Meulenaer B D, Peteghem C V. Influence of oil degradation on the amounts of acrylamide generated in a model system and in French fries[J].Food Chemistry,2007,100(3):1153-1159
[18]Zhang H, Zhang H, Cheng L L, et al. Influence of deep-frying using various commercial oils on acrylamide formation in French fries[J].Food Additives & Contaminants: Part A,2015,32(7):1083-1088
[19]Becalski A,Lau B P Y, Lewis D, et al. Acrylamide in foods: occurrence, sources, and modeling[J].Journal of Agricultural and Food Chemistry,2003,51(3):802-808
[20]Tareke E. Identification and origin of potential background carcinogens: Endogenous isoprene and oxiranes, dietary acrylamide[D].Stockholm: Stockholm University,2003
[21]Friedman M and Mottram D.Chemistry and safety of acrylamide in food[M]//Ehling S, Hengel M, Shibamoto T. Formation of acrylamide from lipids. New York:Springer Science+Business Media,2005,561:223-233
[22]Capuano E, Oliviero T, A?ar ? ?, et al. Lipid oxidation promotes acrylamide formation in fat-rich model systems[J].Food Research International,2010,43(4):1021-1026
[23]?zkaynak E, Ova G. Effects of various cooking conditions on acrylamide formation in rolled patty[J].Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment,2009,26(6):793-799
[24]Lim P K, Jinap S, Sanny M, et al. The influence of deep frying using various vegetable oils on acrylamide formation in sweet potato (IpomoeabatatasL. Lam) chips[J].Journal of Food Science,2014,79(1):T115-T121
[25]Muchtaridi M, Levita J, Rahayu D, et al. Influence of using coconut, palm, and corn oils as frying medium on concentration of acrylamide in fried tempe[J].Food and Public Health,2012,2(2):16-20
[26]Matth?us B, Haase N U, Vosmann K. Factors affecting the concentration of acrylamide during deep-fat frying of potatoes[J].European Journal of Lipid Science and Technology,2004,106(11):793-801
[27]Mestdagh F J, Meulenaer B D, Poucke C V, et al. Influence of oil type on the amounts of acrylamide generated in a model system and in french fries[J].Journal of Agricultural and Food Chemistry,2005,53(15):6170-6174
[28]Williams J S E. Influence of cariety and processing conditions on acrylamide levels in fried potato crisps[J].Food Chemistry,2005,90(4):875-881
[29]Kotsiou K, Tsaioula-Margari M, Fiore A, et al.Acrylamide formation and colour development in low-fat baked potato products as influenced by baking conditions and oil type[J].European Journal of Lipid Science and Technology,2013,236(5):843-851
[30]Ghasemian S, Rezaei K, Abedini R, et al. Investigation of different parameters on acrylamide production in the fried beef burger using Taguchi experimental design[J].Journal of Food Science and Technology,2014,51(3):440-448
[31]Datta A K. Moisture, oil and energy transport during deep-fat frying of food materials[J].Food and Bioproducts Processing,1999,77(3):194-204
[32]Choe E, Min D B. Chemistry of deep-fat frying oils[J].Journal of Food Science,2007,72(5):77-86
[33]Arribas-Lorenzo G, Fogliano V, Morales F J. Acrylamide formation in a cookie system as influenced by the oil phenol profile and degree of oxidation[J].European Food Research and Technology,2009,229(1):63-72
[34]Mestdagh F, Castelein P, Peteghem C V, et al. Importance of oil degradation components in the formation of acrylamide in fried foodstuffs[J].Journal of Agricultural and Food Chemistry,2008,56(15):6141-6144
[35]Hedegaard R V, Granby K, Frandsen H, et al. Acrylamide in bread. Effect of prooxidants and antioxidants[J].European Food Research and Technology,2008,227(2):519-525
[36]Liu Y B, Wang P P, Chen F, et al. Role of plant polyphenols in acrylamide formation and elimination[J].Food Chemistry,2015,186(S1):46-53
[37]Cheng K W, Zeng X, Tang Y S, et al. Inhibitory mechanism of naringenin against carcinogenic acrylamide formation and nonenzymatic browning in Maillard model reactions[J].Chemical Research in Toxicology,2009,22(8):1483-1489
[38]Totlani V M, Peterson D G. Epicatechin carbonyl-trapping reactions in aqueous maillard systems: Identification and structural elucidation[J].Journal of Agricultural and Food Chemistry,2006,54(19):7311-7318
[39]Hidalgo F J, Delgado R M, Zamora R. Positive interaction between amino and sulfhydryl groups for acrylamide removal[J].Food Research International,2011,44(4):1083-1087
[40]Yuan Y, Shu C, Zhou B, et al. Impact of selected additives on acrylamide formation in asparagine/sugar Maillard model systems[J].Food Research International,2011,44(1):449-455
[44]Yasuhara A, Tanaka Y, Hengel M, et al. Gas chromatographic investigation of acrylamide formation in browning model systems[J].Journal of Agricultural and Food Chemistry,2003,51(14):3999-4003
[45]Gertz A, Klostermann S.Analysis of acrylamide and mechanisms of its formation in deep-fried products[J].European Journal of Lipid Science and Technology,2002,104(11):762-771
[46]Umano K, Shibamoto T. Analysis of acrolein from heated cooking oils and beef fat[J].Journal of Agricultural and Food Chemistry,1987,35(6):909-912
[47]Smith M B, March J. March’s advanced organic chemistry. reaction, mechanisms, and structure[M].New York:Wiley-Interscience,2001:508-509
[48]Maurus B, Anja N, Sandra B, et al. Experiments on acrylamide formation and possibilities to decrease the potential of acrylamide formation in potatoes[J].Mitteilungen aus Lebensmitteluntersuchung und Hygiene,2002,93(6):668-687
[49]Zamora R, Hidalgo F J. Contribution of lipid oxidation products to acrylamide formation in model system[J].Journal of Agricultural and Food Chemistry,2008,56(15):6075-6080
[51]Hidalgo F J, Delgado R M, Navarro J L, et al.Asparagine decarboxylation by lipid oxidation products in model systems[J].Journal of Agricultural and Food Chemistry,2010,58(19):10512-10517
[52]Zamora R, Hidalgo F J. The Maillard reaction and lipid oxidation[J].Lipid Technology,2011,23(3):59-62
[53]Zamora R, Delgado R M, Hidalgo F J. Conversion of 3-aminopropionamide and 3-alkylaminopropionamides into acrylamide in model systems[J].Molecular Nutrition & Food Research,2009,53(12):1512-1520
[54]Hidalgo F J, Zamora R.Strecker-type degradation produced by the lipid oxidation products 4,5-epoxy-2-alkenals[J].Journal of Agricultural and Food Chemistry,2004,52(23):7126-7131
[55]Zamora R, Gallardo E, Navarro J, et al.Strecker-type degradation of phenylalanine by methyl 9,10-epoxy-13-oxo-11-octadecenoate and methyl 12,13-epoxy-9-oxo-11-octadecenoate[J].Journal of Agricultural and Food Chemistry,2005,53(11):4583-4588
[56]Hidalgo F J, Gallardo E, Zamora R.Strecker type degradation of phenylalanine by 4-hydroxy-2-nonenal in model systems[J].Journal of Agricultural and Food Chemistry,2005,53(26):10254-10259
[57]Zamora R, Gallardo E, Hidalgo F J.Amine degradation by 4,5-epoxy-2-decenal in model systems[J].Journal of Agricultural and Food Chemistry,2006,54(6):2398-2404[58]Zamora R, Gallardo E, Hidalgo F J.Strecker degeadation of phenylalanine initiated by 2,4-decadienal or methyl 13-oxooctadeca-9,11-dienoate in model systems[J].Journal of Agricultural and Food Chemistry,2007,55(4):1308-1314[59]Hidalgo F J, Zamora R.Conversion of phenylalanine into styrene by 2,4-decadienal in model systems[J].Journal of Agricultural and Food Chemistry,2007,55(12):4902-4906[60]Zyzak D V, Sanders R A, Stojanovic M, et al. Acrylamide formation mechanism in heated foods[J].Journal of Agricultural and Food Chemistry,2003,51(16):4782-4787
[61]Granvogl M, Jezussek M, Koehler P, et al. Quantation of 3-aminopropionamide in potatoes-a minor but potent precursor in acrylamide formarion[J].Journal of Agricultural and Food Chemistry,2004,52(15):4751-4757.
Research Process of Effect of Lipid on Acrylamide Formation During Frying and Baking
Wang Pengpu Zhu Yuchen Liu Yanbing Chen Weina Hu Xiaosong Chen Fang
(College of Food Science and Nutritional Engineering, China Agricultural University; National Engineering Research Centre for Fruits and Vegetables Processing; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture;Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education,Beijing 100083)
Acrylamide is known to be neurotoxic and potentially carcinogenic to human. It has been widely researched by many researchers all over the word since it was reported that significantly higher acrylamide level was produced in high-temperature processed staple food in 2002. This paper summarized the effect of lipid on acrylamide formation in the process of frying and baking foods, including the influence of processing parameters of fried food, lipid types, lipid oxidation, antioxidant on formation of acrylamide and the effect of pyrolysis product on acrylamide formation and its possible mechanism. Meanwhile, the research direction were prospected to provide a theoretical basis for controlling of acrylamide formation in terms of lipid.
acrylamide,lipid, frying, baking
973計(jì)劃(2012CB720805),國(guó)家自然科學(xué)基金優(yōu)秀青年基金(31222044)
2015-07-10
王鵬璞,女,1989年出生,博士,農(nóng)產(chǎn)品加工及貯藏工程
陳芳,女,1972年出生,教授,食品安全控制與干預(yù)技術(shù)
TS201.6
A
1003-0174(2017)02-0140-07