• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      羧酸類藥用活性化合物在生物碳質(zhì)上的吸附特性

      2017-08-09 00:42:44王佳怡畢二平
      環(huán)境科學(xué)研究 2017年8期
      關(guān)鍵詞:碳質(zhì)羧酸氫鍵

      王佳怡, 畢二平

      中國地質(zhì)大學(xué)(北京)水資源與環(huán)境學(xué)院, 水資源與環(huán)境工程北京市重點(diǎn)實(shí)驗(yàn)室, 北京 100083

      羧酸類藥用活性化合物在生物碳質(zhì)上的吸附特性

      王佳怡, 畢二平*

      中國地質(zhì)大學(xué)(北京)水資源與環(huán)境學(xué)院, 水資源與環(huán)境工程北京市重點(diǎn)實(shí)驗(yàn)室, 北京 100083

      為研究生物碳質(zhì)吸附在處理水土環(huán)境中羧酸類PhACs(藥用活性化合物)的作用,通過比表面積、紅外光譜、元素分析及電鏡掃描對(duì)商業(yè)水稻秸稈生物碳質(zhì)的結(jié)構(gòu)與性質(zhì)進(jìn)行了討論,同時(shí)研究了生物碳質(zhì)對(duì)不同初始pH及不同初始質(zhì)量濃度的五種羧酸類PhACs〔KTP(酮洛芬)、IBP(布洛芬)、NPX(萘普生)、ASP(阿司匹林)、SYA(水楊酸)〕吸附特征的影響. 結(jié)果表明:吸附過程包括前期快速吸附和后期緩慢吸附至平衡兩個(gè)階段;在第一階段,外表面吸附與大孔及中孔擴(kuò)散是控制吸附的機(jī)制,在第二階段,生物碳質(zhì)內(nèi)表面吸附及基質(zhì)在微孔中的擴(kuò)散是影響吸附的主要機(jī)制. 初始pH為6.0~7.0時(shí),等溫吸附數(shù)據(jù)符合Freundlich吸附等溫方程,反映了非均勻性表面的吸附特性. 五種羧酸類PhACs在生物碳質(zhì)上的吸附能力〔通過Kd,0.01(特定液相濃度下的單點(diǎn)分配系數(shù))表達(dá)〕表現(xiàn)為NPX(24.30 gL)>IBP(15.82 gL)>KTP(10.44 gL)>SYA(2.64 gL)>ASP(1.24 gL). 溶液初始pH變化對(duì)所選PhACs的吸附量有顯著影響,初始溶液pH處于pKa±1.0范圍內(nèi)時(shí),所選吸附質(zhì)的吸附量達(dá)到最大值,隨著初始pH的升高,所選PhACs主要以陰離子形式存在,同時(shí)生物碳質(zhì)表面負(fù)電性增加,增強(qiáng)的靜電斥力減弱了氫鍵作用. 研究顯示,氫鍵作用在生物碳質(zhì)吸附PhACs過程中起到主要促進(jìn)作用,除此之外,還受到范德華力及π-π電子供受體等多種作用驅(qū)動(dòng).

      羧酸類藥用活性化合物;生物碳質(zhì);吸附;溶液pH;氫鍵作用

      我國是農(nóng)業(yè)大國,早在2005年,我國秸稈總產(chǎn)量即為世界第一[1]. 其中,稻草、玉米秸和麥秸是我國產(chǎn)量最高的三種秸稈. 秸稈的資源化和綜合利用一直是當(dāng)今社會(huì)的熱議課題[2]. 將農(nóng)業(yè)秸稈制備成生物碳質(zhì)并應(yīng)用于土壤改良和水土環(huán)境污染修復(fù),是近年來環(huán)境領(lǐng)域新興的研究熱點(diǎn)[3- 8]. 有機(jī)污染物在生物碳質(zhì)上的不同吸附機(jī)理影響其吸附容量和去除效率[9- 12]. 隨著制備生物碳質(zhì)的碳化溫度的升高,生物碳質(zhì)的比表面積、孔隙體積和芳香性均顯著增加[13],非離子型有機(jī)污染物的吸附機(jī)理從在非碳化組分上的分配過渡到在碳化組分上的表面吸附[14- 15]. 以往的研究多集中在對(duì)非離子型有機(jī)污染物在生物碳質(zhì)上的吸附機(jī)理探討,而對(duì)陰離子型有機(jī)污染物的吸附行為理解還不充分[16].

      PhACs(pharmaceutically active compounds, 藥用活性化合物)是一類新型污染物,已在世界范圍內(nèi)的水體中被檢出[17- 18]. 雖然這類物質(zhì)痕量存在,在地表水或地下水中的檢出濃度一般為μgL級(jí),但其潛在的高生物活性會(huì)對(duì)人體造成健康隱患[19- 21]. 跟初代藥物產(chǎn)品相比,新型的PhACs分子被設(shè)計(jì)成具有更低的環(huán)境持久性和生物可獲得性. 為實(shí)現(xiàn)這一目的,一般是在藥物分子設(shè)計(jì)時(shí)加入極性官能團(tuán)(通常為酸性官能團(tuán)),使其在環(huán)境水體pH條件下迅速解離成陰離子形態(tài)[22]. 如IBP(Ibuprofen,布洛芬)、NPX(Naproxen,萘普生)、KTP(Ketoprofen,酮洛芬)、ASP(Aspirin,阿司匹林)與SYA(Salicylic acid,水楊酸)等均帶有羧酸官能團(tuán),其pKa(酸解離常數(shù))為2.79~4.91. 故環(huán)境水體pH是影響生物碳質(zhì)對(duì)陰離子型有機(jī)污染物截留效率最直接的因素.

      為探究生物碳質(zhì)對(duì)水土環(huán)境中陰離子型有機(jī)污染物的截留潛力,該研究選取水稻秸稈生物碳質(zhì)(碳化溫度400~500 ℃)作為典型生物碳質(zhì)吸附劑,以五種羧酸類PhACs為典型污染物,通過計(jì)算比表面積、紅外光譜分析、元素分析、電鏡掃描及計(jì)算pHPZC(零點(diǎn)電荷)等確定了生物碳質(zhì)的結(jié)構(gòu)與性質(zhì),并通過吸附試驗(yàn)進(jìn)一步分析了不同濃度、吸附時(shí)間及不同初始pH下生物碳質(zhì)對(duì)羧酸類PhACs的吸附特性. 以期為推進(jìn)農(nóng)業(yè)秸稈的資源化,篩選用于水土污染修復(fù)的廉價(jià)、環(huán)境友好型吸附劑提供理論依據(jù).

      1 材料與方法

      1.1 試驗(yàn)材料

      IBP、KTP、ASP與SYA標(biāo)準(zhǔn)品購自日本TCI公司,NPX標(biāo)準(zhǔn)品購自美國Sigma-Aldrich公司(均為色譜純,純度>99%),具體性質(zhì)見表1. 甲醇、乙腈及磷酸均購自美國Thermo Fisher Scientific公司,HPLC級(jí). NaCl、NaOH、HCl及冰醋酸等藥品均購自北京化工廠,分析純. 試驗(yàn)用水均為Milli-Q超純水.

      1.2 生物碳質(zhì)樣品及表征

      表1 五種羧酸類PhACs的部分主要性質(zhì)

      注:氫鍵酸性(A)數(shù)據(jù)來自文獻(xiàn)[23- 26];其他數(shù)據(jù)來自SRC Physprop Database(http:www.srcinc.com).

      商業(yè)水稻秸稈生物碳質(zhì)購自江蘇溧竹環(huán)??萍加邢薰?,碳化溫度為400~500 ℃. 為去除生物碳質(zhì)中的無機(jī)組分,在使用前進(jìn)行酸洗[27]:利用1 molL 稀HCl浸泡24 h;再用去離子水洗至上清液接近中性以去除殘留的酸液;置于80 ℃的烘箱中24 h至烘干;取出后過200目(0.007 5 mm)篩,置于干燥處儲(chǔ)存?zhèn)溆?

      利用Elementar Analysensysteme GmbH vario EL元素分析儀對(duì)生物碳質(zhì)元素及含量進(jìn)行分析;通過FTIR(Fourier Transform infrared spectroscopy)光譜儀(FTIR- 650)分析生物碳質(zhì)表面官能團(tuán);采用BET比表面積檢測(cè)法(ASAP 2460)測(cè)定生物碳質(zhì)的比表面積與孔徑;通過SEM(Scanning Electron Microscope,掃描電鏡)對(duì)生物碳質(zhì)外部形態(tài)進(jìn)行了觀察;通過測(cè)定在0.01 molL NaCl溶液中緩沖48 h的生物碳質(zhì)上清液pH(Sartorius PB- 10),作圖得到其與初始pH(2.0、3.0、4.0、6.0、8.0和10.0)的關(guān)系,從而得到吸附劑pHPZC.

      1.3 吸附試驗(yàn)及樣品測(cè)試

      上清液中PhACs的質(zhì)量濃度采用LC- 20AT HPLC(High Performance Liquid Chromatography, 高效液相色譜儀)(日本島津)測(cè)定,儀器配置SPD- 20A高靈敏度紫外-可見檢測(cè)器、DGU- 20A3低容量排氣裝置、20AT常規(guī)溶劑輸送泵、CTO- 20A柱溫箱和XDB-C18色譜柱. 五種吸附質(zhì)檢測(cè)條件中流速均為1.0 mLmin,柱溫為30 ℃. 其他檢測(cè)條件見表2.

      表2 羧酸類PhACs的HPLC測(cè)試參數(shù)

      1.4 數(shù)據(jù)分析

      采用準(zhǔn)二級(jí)動(dòng)力學(xué)方程Freundlich吸附等溫方程對(duì)試驗(yàn)結(jié)果進(jìn)行擬合. 其中準(zhǔn)二級(jí)動(dòng)力學(xué)方程常用來描述吸附質(zhì)在固相上為化學(xué)力作用,其表達(dá)式:

      dqtdt=k2(qe-qt)2

      (1)

      式中:k2為反應(yīng)速率常數(shù),g(mg·h);qt與qe分別為t時(shí)刻和平衡時(shí)刻吸附劑上化合物的固相吸附量,mgg.

      Freundlich吸附等溫方程常用于描述非均勻性表面的吸附,其表達(dá)式:

      Cs=KfCw

      (2)

      式中:Cs為平衡時(shí)吸附質(zhì)的固相吸附量,mgg;Cw平衡時(shí)液相中吸附質(zhì)的質(zhì)量濃度,mgL;Kf為Freundlich吸附等溫方程參數(shù),表示吸附作用強(qiáng)度,(mgg)(mgL)n;1n為Freundlich指數(shù),反映吸附的非線性程度.

      2 結(jié)果與討論

      2.1 生物碳質(zhì)基本理化性質(zhì)

      圖1 商業(yè)水稻秸稈生物碳質(zhì)的FTIR圖Fig.1 FTIR spectra of the commercial rice straw biochar

      圖2 商業(yè)水稻秸稈生物碳質(zhì)SEM圖Fig.2 SEM images of the commercial rice straw biochar

      通過BET理論計(jì)算商業(yè)水稻秸稈生物碳質(zhì)的比表面積及微孔體積可以發(fā)現(xiàn),生物碳質(zhì)主要以中孔及大孔比表面積為主(見表3). 依據(jù)文獻(xiàn)[31]的方法,測(cè)得該研究中所用生物碳質(zhì)的pHPZC為4.07. 這說明當(dāng)溶液pH小于該值時(shí),生物碳質(zhì)表面帶正電,反之帶負(fù)電.

      表3 商業(yè)水稻秸稈生物碳質(zhì)比表面積及孔徑

      2.2 吸附動(dòng)力學(xué)特征

      動(dòng)力學(xué)吸附試驗(yàn)中,基于不同吸附質(zhì)的溶解度不同,相應(yīng)地設(shè)置了不同的初始濃度. 初始ρ(KTP)、ρ(IBP) 及ρ(NPX)分別為14.30、14.20、13.70 mgL,初始ρ(ASP)與ρ(SYA)分別為81.80、68.50 mgL. 由圖3可見,KTP、IBP、NPX、ASP及SYA的平衡吸附量分別為9.45、6.62、10.63、47.55及40.98 mgg,平衡時(shí)間分別為20、30、20、36及36 d. 所有吸附質(zhì)的吸附過程均呈快速吸附與慢速吸附兩個(gè)階段. 結(jié)合SEM掃描電鏡對(duì)生物碳質(zhì)結(jié)構(gòu)的表征結(jié)果可以得出:快速吸附階段(前8 d左右),吸附主要受生物碳質(zhì)外表面吸附以及大孔及中孔中的吸附質(zhì)擴(kuò)散控制;在慢速吸附階段,吸附質(zhì)主要受生物碳質(zhì)內(nèi)表面吸附以及溶質(zhì)在吸附劑的微孔中的擴(kuò)散作用影響[15,32]. 該研究中,吸附達(dá)到平衡的時(shí)間比以往碳基吸附劑的更長[31],而且快速吸附與緩慢吸附過程所造成的吸附量增長近乎一致,說明生物碳質(zhì)內(nèi)表面吸附與微孔吸附是十分重要的過程,其吸附量不可忽略.

      圖3 五種羧酸類PhACs在生物碳質(zhì)上的吸附動(dòng)力學(xué)試驗(yàn)結(jié)果Fig.3 Sorption kinetics of five carboxyl acid PhACs to biochar

      應(yīng)用動(dòng)力學(xué)模型對(duì)動(dòng)力學(xué)試驗(yàn)結(jié)果的模擬可以從不同角度反應(yīng)吸附特征. 通過對(duì)試驗(yàn)數(shù)據(jù)的擬合(見圖4與表4),準(zhǔn)二級(jí)動(dòng)力學(xué)擬合模型對(duì)羧酸類PhACs在生物碳質(zhì)上的吸附數(shù)據(jù)擬合較好,試驗(yàn)測(cè)得的固相吸附量與擬合預(yù)測(cè)值基本相符.

      2.3 等溫吸附特征

      圖4 五種羧酸類PhACs在生物碳質(zhì)上的吸附動(dòng)力學(xué)數(shù)據(jù)及擬合結(jié)果Fig.4 Sorption kinetics fitting results of five carboxyl acid PhACs to biochar

      在初始溶液pH為6.0~7.0時(shí),五種PhACs全部以羧酸離子(R-COO-)形式存在. 采用Freundlich吸附等溫方程對(duì)試驗(yàn)結(jié)果進(jìn)行擬合的結(jié)果表明:所選PhACs的吸附呈明顯的非線性(見圖5和表5),反映了非均勻性的表面吸附. 從微觀表征結(jié)果(見圖2與表3)可以得知,所選生物碳質(zhì)具有多孔結(jié)構(gòu)、內(nèi)外比表面積均較大. 隨著溶液中ρ(PhACs)升高,生物碳質(zhì)中的吸附位點(diǎn)逐漸減少,剩余的吸附位點(diǎn)對(duì)于溶液中吸附質(zhì)的吸附能力在下降[33- 34]. 也有研究指出,吸附質(zhì)的芳香環(huán)結(jié)構(gòu)也是導(dǎo)致吸附過程非線性的影響因素之一[35],所選羧酸類PhACs所帶苯環(huán)可以與生物碳質(zhì)中的苯環(huán)及羧基發(fā)生π-π及n-π電子供受體作用,進(jìn)而多種吸附機(jī)制導(dǎo)致了等溫吸附的非線性.

      表4 五種羧酸類PhACs在生物碳質(zhì)上吸附的準(zhǔn)二級(jí)動(dòng)力學(xué)模型擬合參數(shù)

      圖5 五種羧酸類PhACs在生物碳質(zhì)上的等溫吸附試驗(yàn)結(jié)果Fig.5 Sorption isotherms of five carboxyl acid PhACs to biochar

      Table 5 Fitted parameters of the Freundlich equations of five carboxyl acid PhACs sorption to biochar

      另一方面,水稻秸稈生物碳質(zhì)包含羧基、羥基、酯、醚及酮基等多種官能團(tuán),并且存在于吸附劑的內(nèi)外表面(見圖1). 由于其中含有O元素,生物碳質(zhì)中的水會(huì)擴(kuò)散進(jìn)入孔隙中并使固體骨架膨脹,閉合的孔隙在進(jìn)入水溶液中會(huì)發(fā)生膨脹進(jìn)而提供新的吸附位點(diǎn)[36],導(dǎo)致后期吸附過程緩慢但并未達(dá)到飽和. 因此,在生物碳質(zhì)中的吸附是由表面吸附與內(nèi)部吸附共同組成的. 五種吸附質(zhì)均為羧酸類PhACs,在吸附過程中具有氫鍵酸性(A),即提供質(zhì)子或接受電子的能力[37- 38]. 由圖5可見,接受電子能力強(qiáng)的吸附質(zhì)分子表現(xiàn)出更強(qiáng)的吸附親和力,表明氫鍵作用在吸附過程中起到促進(jìn)作用.

      2.4 生物碳質(zhì)對(duì)羧酸類PhACs吸附機(jī)制分析

      溶液pH在生物碳質(zhì)吸附羧酸類PhACs過程中十分重要. pH的變化將影響生物碳質(zhì)表面官能團(tuán)的質(zhì)子化去質(zhì)子化作用,進(jìn)而與吸附質(zhì)發(fā)生不同的作用,影響吸附量的變化. 同時(shí),由于pKa的差異,溶液中PhACs也具有不同的存在形式. 由圖6可見,五種化合物在酸性條件下的吸附量均大于中性溶液. 其中,NPX、IBP與KTP主要表現(xiàn)為在pH為3.0左右達(dá)到最大吸附量,SYA與ASP在pH為5.0左右達(dá)到最大吸附量. 整體表現(xiàn)為在溶液pH處于pKa±1.0范圍內(nèi)時(shí),所選吸附質(zhì)的吸附量達(dá)到最大值,并且隨著溶液的pH增大,吸附量呈下降的趨勢(shì). 這與IBP在活性炭上的吸附特征[39]一致.

      注:虛線為每種PhACs的pKa值.圖6 溶液pH對(duì)生物碳質(zhì)吸附羧酸類PhACs的影響Fig.6 Effects of solution pH on carboxyl acid PhACs sorption to biochar

      生物碳質(zhì)表面的pHPZC為4.07,這主要是由羧基與酚羥基共同作用的結(jié)果[40]. 當(dāng)溶液pH小于4.07時(shí),生物碳質(zhì)表面帶正電. 由表1可見,此時(shí)NPX、IBP、KTP主要以分子形式存在(R-COOH),因此,這種條件下靜電引力極小,促進(jìn)吸附作用的應(yīng)主要為氫鍵作用及其他作用力[31]. 隨著pH的增加,生物碳質(zhì)表面正電荷強(qiáng)度降低,因此越靠近pKa,吸附量下降越顯著. ASP與SYA的pKa較小,在pH為5.0左右時(shí),ASP與SYA有99.9%以離子形式存在,生物碳質(zhì)表面的酚羥基仍為分子形式,易與SYA及ASP的羧酸離子形成氫鍵,此時(shí)吸附量達(dá)到最大值. 當(dāng)溶液pH大于4.07以后,吸附劑表面發(fā)生離子化,負(fù)電荷逐步增加. 吸附質(zhì)均以羧酸離子形式存在(R-COO-),此時(shí)生物碳質(zhì)表面增長的負(fù)電荷會(huì)與吸附質(zhì)形成加強(qiáng)的靜電斥力,一定程度上降低了氫鍵作用.

      五種羧酸類PhACs的pKa不同,生物碳質(zhì)的含氧官能團(tuán)可以為吸附質(zhì)提供吸附位點(diǎn),利于形成較強(qiáng)的氫鍵,使得氫鍵作用為整個(gè)吸附過程中的主要驅(qū)動(dòng)力[5]. 同時(shí),生物碳質(zhì)表面的羧基和酚羥基(質(zhì)子供受體)均可以與化合物解離前后結(jié)構(gòu)上的羧基形成氫鍵[31]. 然而,不同溶液pH條件下,形成氫鍵的點(diǎn)位存在差異,這是造成不同物質(zhì)吸附差異的主要因素. 在有些pH條件下,吸附質(zhì)與吸附劑之間除發(fā)生氫鍵作用外,還會(huì)發(fā)生的其他相互作用,如范德華力、π-π電子供受體作用及靜電作用等,這些也是造成吸附差異的主要因素[31].

      天然水環(huán)境及大部分污水的pH基本為6.0~7.0左右,因此主要對(duì)該pH范圍內(nèi)羧酸類PhACs在生物碳質(zhì)上的吸附特性及主要作用力進(jìn)行對(duì)比分析. 由于NPX、KTP、IBP與SYA及ASP之間溶解度大小差異顯著,因此通過Freundlich吸附等溫方程求取Kd,0.01(特定液相濃度下的單點(diǎn)分配系數(shù),CwSw=0.01)來對(duì)其吸附量大小進(jìn)行比較[41]. 可以得出五種PhACs在生物碳質(zhì)上的Kd,0.01表現(xiàn)為NPX(24.30 gL)>IBP(15.82 gL)>KTP(10.44 gL)>SYA(2.64 gL)>ASP(1.24 gL). 其中NPX、KTP、IBP的Kd,0.01比SYA及ASP的Kd,0.01高5~10倍. 這與不同化合物的疏水性、分子大小、分子極性及發(fā)生各作用力時(shí)需要消耗的能量大小等多種因素有關(guān). 首先,SYA與ASP的溶解度比其他三種物質(zhì)高兩個(gè)數(shù)量級(jí),因此這兩種物質(zhì)在低濃度下更易存在于溶液中,分配系數(shù)顯著低于另外三種物質(zhì). 從結(jié)構(gòu)式中(見圖7)可以發(fā)現(xiàn),在pH=6.0~7.0時(shí),SYA帶有一個(gè)未解離的羥基官能團(tuán),可以與生物碳質(zhì)表面的氧發(fā)生氫鍵作用. ASP比SYA多帶有一個(gè)甲基,有研究指出,化合物表面的甲基相比芳香環(huán)更易朝向生物碳質(zhì)表面[12]. 因此Kd,0.01(SYA)>Kd,0.01(ASP).

      通過NPX、IBP及KTP的結(jié)構(gòu)式可以發(fā)現(xiàn),這三種物質(zhì)均帶有芳香環(huán)結(jié)構(gòu)與甲基官能團(tuán),導(dǎo)致其在空間中是立體的分布狀態(tài),因此與吸附劑不僅會(huì)發(fā)生π-π EDA作用,甲基官能團(tuán)與吸附劑表面還存在較大的范德華力[42]. 而此時(shí),五種化合物以陰離子形式存在,生物碳質(zhì)表面帶有負(fù)電荷,吸附劑與吸附質(zhì)間存在一定程度的偶極作用力(靜電斥力),NPX、IBP及KTP表現(xiàn)為連接羧酸離子的另一端與生物碳質(zhì)表面靠近,進(jìn)入其空穴中發(fā)生相互作用. IBP的疏水性較KTP更強(qiáng),Kd,0.01相對(duì)更大. IBP的分子結(jié)構(gòu)小于NPX,因此在溶液中與生物碳質(zhì)相接觸的表面積相對(duì)較少,更易吸著于生物碳質(zhì)表面較小的吸附位點(diǎn),將會(huì)減弱π-π EDA與色散力作用[43]. 同時(shí)NPX分子結(jié)構(gòu)中螯合在一起的萘環(huán)相比IBP與KTP更易發(fā)生π-π EDA作用[44]. 因此,Kd,0.01(NPX)>Kd,0.01(IBP)>Kd,0.01(KTP).

      圖7 羧酸類PhACs的結(jié)構(gòu)式Fig.7 The structural formula of carboxylic acids PhACs

      3 結(jié)論

      a) 生物碳質(zhì)對(duì)羧酸類PhACs的吸附過程分為兩個(gè)階段,前8 d左右為快速吸附階段,外表面吸附與大孔及中孔擴(kuò)散是控制吸附的機(jī)制;之后,生物碳質(zhì)內(nèi)表面吸附及基質(zhì)在微孔中的擴(kuò)散是影響吸附的主要機(jī)制. KTP、IBP、NPX、ASP及SYA的平衡時(shí)間分別為20、30、20、36及36 d.

      b) 在初始pH為6.0~7.0時(shí),等溫吸附結(jié)果應(yīng)用Freundlich方程擬合較好,反映了非均勻性表面的吸附特性. 通過等溫吸附試驗(yàn)得到的吸附系數(shù)(Kf)與氫鍵酸性(A)的線性關(guān)系可知,氫鍵作用在吸附過程中起到主要促進(jìn)作用. 除氫鍵作用外,羧酸類PhACs在生物碳質(zhì)上的吸附受其他多種作用驅(qū)動(dòng),如范德華力、π-π電子供受體作用以及靜電作用等. 五種PhACs的Kd,0.01表現(xiàn)為NPX(24.30 gL)>IBP(15.82 gL)>KTP(10.44 gL)>SYA(2.64 gL)>ASP(1.24 gL).

      c) 在溶液pH處于pKa±1.0范圍內(nèi)時(shí),所選吸附質(zhì)的吸附量達(dá)到最大值. 對(duì)于不同存在形式的吸附質(zhì),生物碳質(zhì)的含氧官能團(tuán)可以為其提供不同的吸附位點(diǎn),也利于形成較強(qiáng)的氫鍵. 不同吸附質(zhì)形成氫鍵的點(diǎn)位存在差異,這是造成不同物質(zhì)吸附差異的主要因素.

      [1] 畢于運(yùn),高春雨,王亞靜,等.中國秸稈資源數(shù)量估算[J].農(nóng)業(yè)工程學(xué)報(bào),2009,25(12):211- 217. BI Yuyun,GAO Chunyu,WANG Yajing,etal.Estimation of straw resources in China[J].Transactions of the CSAE,2009,25(12):211- 217.

      [2] 王亞靜,高春雨,王紅彥,等.芻議秸稈綜合利用與糧食安全[C]//中國農(nóng)業(yè)資源與區(qū)劃學(xué)會(huì):2014年中國農(nóng)業(yè)資源與區(qū)劃學(xué)會(huì)學(xué)術(shù)年會(huì).福州:中國農(nóng)業(yè)資源與區(qū)劃學(xué)會(huì),2014.

      [3] SUBEDI R,TAUPE N,PELISSETTI S,etal.Greenhouse gas emissions and soil properties following amendment with manure-derived biochars:Influence of pyrolysis temperature and feedstock type[J].Journal of Environmental Management,2016,166:73- 83.

      [4] 陳寶梁,周丹丹,朱利中,等.生物碳質(zhì)吸附劑對(duì)水中有機(jī)污染物的吸附作用及機(jī)理[J].中國科學(xué)(B輯:化學(xué)),2008,38(6):530- 537.

      [5] 張涵瑜,王兆煒,高俊紅,等.蘆葦基和污泥基生物炭對(duì)水體中諾氟沙星的吸附性能[J].環(huán)境科學(xué),2016,37(2):689- 696. ZHANG Hanyu ,WANG Zhaowei,GAO Junhong,etal.Adsorption characteristics of norfloxacin by biochar derived from reed straw and municipal sludge[J].Environmental Science,2016,37(2):689- 696.

      [6] TAN Xiaofei,LIU Yunguo,ZENG Guangming,etal.Application of biochar for the removal of pollutants from aqueous solutions[J].Chemosphere,2015,125:70- 85.

      [7] 張繼義,李金濤,魯華濤,等.小麥秸稈生物碳質(zhì)吸附劑從水中吸附硝基苯的機(jī)理[J].環(huán)境科學(xué)研究,2012,25(3):333- 339. ZHANG Jiyi,LI Jintao,LU Huatao,etal.Adsorption mechanism of nitrobenzene by biological carben sorbent prepared from wheat straw in water [J].Research of Environmental Sciences,2012,25(3):145- 149.

      [8] AHMAD M,RAJAPAKSHA A U,LIM J E,etal.Biochar as a sorbent for contaminant management in soil and water:a review[J].Chemosphere,2014,99:19- 33.

      [9] WANG Ziying,HAN Lanfang,SUN Ke,etal.Sorption of four hydrophobic organic contaminants by biochars derived from maize straw,wood dust and swine manure at different pyrolytic temperatures[J].Chemosphere,2016,144:285- 291.

      [10] HAN Yanxue,BOATENG A A,QI P X,etal.Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties[J].Journal of Environmental Management,2013,118:196- 204.

      [11] 張繼義,梁麗萍,蒲麗君,等.小麥秸稈Cr(VI)的吸附特性及動(dòng)力學(xué)、熱力學(xué)分析[J].環(huán)境科學(xué)研究,2010,23(12):1546- 1552. ZHANG Jiyi,LIANG Liping,PU Lijun,etal.Adsorption characteristics of Cr(VI) by wheat straw including kinetic and thermodynamics analysis [J].Research of Environmental Sciences,2010,23(12):1546- 1552.

      [12] JUNG C,BOATENG L K,FLORA J R V,etal.Competitive adsorption of selected non-steroidal anti-inflammatory drugs on activated biochars:Experimental and molecular modeling study[J].Chemical Engineering Journal,2015,264:1- 9.

      [13] XIAO Liwei,BI Erping,DU Beibei,etal.Surface characterization of maize-straw-derived biochars and their sorption performance for mtbe and benzene[J].Environmental Earth Sciences,2014,71(12):5195- 5205.

      [14] CHEN Baoliang,ZHOU Dandan,ZHU Lizhong.Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J].Environmental Science & Technology,2008,42(14):5137- 5143.

      [15] CHEN Zaiming,CHEN Baoliang,CHIOU C T.Fast and slow rates of naphthalene sorption to biochars produced at different temperatures[J].Environmental Science & Technology,2012,46(20):11104- 11111.

      [16] SIGMUND G,SUN Huichao,HOFMANN T,etal.Predicting the sorption of aromatic acids to noncarbonized and carbonized sorbents[J].Environmental Science & Technology,2016,50(7):3641- 3648.

      [17] YAN Qing,FENG Guozhong,GAO Xu,etal.Removal of pharmaceutically active compounds (phacs) and toxicological response of cyperus alternifolius exposed to phacs in microcosm constructed wetlands[J].Journal of Hazardous Materials,2016,301:566- 575.

      [18] PAL A,HE Yiliang,JEKEL M,etal.Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle[J].Environment International,2014,71:46- 62.

      [19] VERLICCHI P,AL AUKIDY M,ZAMBELLO E.Occurrence of pharmaceutical compounds in urban wastewater:Removal,mass load and environmental risk after a secondary treatment:a review[J].Science of The Total Environment,2012,429:123- 155.

      [20] YAN Qing,GAO Xu,CHEN Youpeng,etal.Occurrence,fate and ecotoxicological assessment of pharmaceutically active compounds in wastewater and sludge from wastewater treatment plants in chongqing,the three gorges reservoir area[J].Science of The Total Environment,2014,470/471:618- 630.

      [21] ZIYLAN A,INCE N H.The occurrence and fate of anti-inflammatory and analgesic pharmaceuticals in sewage and fresh water:Treatability by conventional and non-conventional processes[J].Journal of Hazardous Materials,2011,187(1/2/3):24- 36.

      [22] TULP H C,FENNER K,SCHWARZENBACH R P,etal.Ph-dependent sorption of acidic organic chemicals to soil organic matter[J].Environmental Science & Technology,2009,43(24):9189- 9195.

      [23] ABRAHAM M H,ACREE JR W E,LEO A J,etal.Partition of compounds from water and from air into the wet and dry monohalobenzenes[J].New Journal of Chemistry,2009,33(8):1685- 1692.

      [24] SPRUNGER L M,ACHI S S,ACREE JR W E,etal.Development of correlations for describing solute transfer into acyclic alcohol solvents based on the abraham model and fragment-specific equation coefficients[J].Fluid Phase Equilibria,2010,288(1/2):139- 144.

      [25] ABRAHAM M H,ACREE JR W E,LEO A J,etal.The partition of compounds from water and from air into wet and dry ketones[J].New Journal of Chemistry,2009,33(3):568- 573.

      [26] ABRAHAM M H,ACREE JR W E.Characterisation of the water-isopropyl myristate system[J].International Journal of Pharmaceutics,2005,294(1/2):121- 128.

      [27] CHEN Cuiping,ZHOU Wenjun,LIN D.Sorption characteristics of n-nitrosodimethylamine onto biochar from aqueous solution[J].Bioresource Technology,2015,179:359- 366.

      [28] 李沛辰,毋偉,張豐松,等.秸稈生物碳的結(jié)構(gòu)特征及其對(duì)17β-雌二醇的吸附性能[J].環(huán)境科學(xué)研究,2015,28(8):1260- 1266. LI Peichen,WU Wei,ZHANG Fengsong,etal.Structural characteristics of straw biochars and sorption of 17β-estradiol on straw biochar[J].Research of Environmental Sciences,2015,28(8):1260- 1266.

      [29] XIAO Xin,CHEN Baoliang,ZHU Lizhong.Transformation,morphology,and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures[J].Environmental Science & Technology,2014,48(6):3411- 3419.

      [30] 孟梁,侯靜文,郭琳,等.蘆葦生物炭制備及其對(duì)Cu2+的吸附動(dòng)力學(xué)[J].實(shí)驗(yàn)室研究與探索,2015(1):5- 8. MENG Liang,HOU Jingwen,GUO Lin,etal.Preparation of reed derived-biochar and its adsorption kinetic of Cu2+[J].Research and Exploration in Laboratory,2015(1):5- 8.

      [31] ESSANDOH M,KUNWAR B,PITTMAN JR C U,etal.Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar[J].Chemical Engineering Journal,2015,265:219- 227.

      [32] CHEN Zaiming,CHEN Baoliang,ZHOU Dandan,etal.Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures[J].Environmental Science & Technology,2012,46(22):12476- 12483.

      [33] SUN Ke,KANG Mingjie,ZHANG Zheyun,etal.Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene[J].Environmental Science & Technology,2013,47(20):11473- 11481.

      [34] PIGNATELLO J J,XING Baoshan.Mechanisms of slow sorption of organic chemicals to natural particles[J].Environmental Science & Technology,1996,30(1):1- 11.

      [35] ZHU Dongqiang,KWON S,PIGNATELLO J J.Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions[J].Environmental Science & Technology,2005,39(11):3990- 3998.

      [36] MOHAN D,RAJPUT S,SINGH V K,etal.Modeling and evaluation of chromium remediation from water using low cost bio-char,a green adsorbent[J].Journal of Hazardous Materials,2011,188(123):319- 333.

      [37] 顧慧燕,畢二平.估算多種有機(jī)物的有機(jī)碳-水分配系數(shù)線性自由能模型[J].科學(xué)技術(shù)與工程,2014(18):310- 315. GU Huiyan,BI Erping.Linear free energy relationships for evaluating organic carbon-water distribution coefficients of various kinds of organic compounds[J].Science Technology and Engineering,2014(18):310- 315.

      [38] ENDO S,GOSS K U.Applications of polyparameter linear free energy relationships in environmental chemistry[J].Environmental Science & Technology,2014,48(21):12477- 12491.

      [39] GUEDIDI H,REINERT L,SONEDA Y,etal.Adsorption of ibuprofen from aqueous solution on chemically surface-modified activated carbon cloths[J].Arabian Journal of Chemistry,2014,doi:10.1016j.arabjc.2014.03.007.

      [40] BOEHM H P.Surface oxides on carbon and their analysis:a critical assessment[J].Carbon,2002,40(2):145- 149.

      [41] CHO H H,HUANG H,SCHWAB K.Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes[J].Langmuir,2011,27(21):12960- 12967.

      [42] SCHAMES J R,HENCHMAN R H,SIEGEL J S,etal.Discovery of a novel binding trench in hiv integrase[J].Journal of Medicinal Chemistry,2004,47(8):1879- 1881.

      [43] XU Wujun,GAO Qiang,XU Yao,etal.Controllable release of ibuprofen from size-adjustable and surface hydrophobic mesoporous silica spheres[J].Powder Technology,2009,191(12):13- 20.

      [44] CHAKAROVA-KACK S D,SCHRODER E,LUNDQVIST B I,etal.Application of van der waals density functional to an extended system:adsorption of benzene and naphthalene on graphite[J].Physical Review Letters,2006,96(14),doi:10.1103PhysRevLett.96.146107.

      Sorption Characteristics of Pharmaceutically Active Carboxyl Acid Compounds to Biochar

      WANG Jiayi, BI Erping*

      Beijing Key Laboratory of Water Environmental Engineering, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China

      In order to evaluate the role of biochar sorption in treatment of pharmaceutically active compounds (PhACs) in water and soil environments, the structure and properties of commercial rice straw biochar (carbonization temperature: 400- 500 ℃, 200 mesh0.0075 mm) were characterized by BET, Fourier transform infrared spectroscopy, elemental analysis and scanning electron microscopy. Meanwhile, five carboxyl acid PhACs (i.e., NPX (naproxen), ibuprofen (IBP), ketoprofen (KTP), aspirin (ASP) and salicylic acid (SYA)) were selected as model sorbates. The mechanisms of these sorbates sorbing to biochar were investigated through batch experiments under different initial sorbate concentrations and initial solution pH values. The results showed that the overall sorption process included two stages, i.e., fast sorption in the beginning followed by slow sorption. In the first stage, the outside surface adsorption and sorbate diffusion into macro and mesopores were the main mechanisms. In the second stage, inner surface sorption and sorbate diffusion into micropores dominated the sorption process. The isotherm data were well fitted by the Freundlich isotherm when initial solution pH was in the range of 6.0 to 7.0, which indicates sorption to a non-uniform biochar surface. The sorption coefficientsKd,0.01(CwSw=0.01) of the five PhACs were in the order: NPX (24.30 gL) > IBP (15.82 gL) > KTP (10.44 gL) > SYA (2.64 gL)> ASP (1.24 gL). Initial solution pH played a crucial role in PhACs sorption. The maximum sorption capacity was observed at the solution pH range of pKa±1.0 for the five PhACs. With increasing initial solution pH, the species of five sorbates were mainly in anion forms, and the surfaces of biochar became more negatively charged. Therefore, the enhanced electrostatic repulsion between sorbate anions and the negatively charged biochar reduced the possibility of hydrogen bonding. The results showed that hydrogen bonding was the main driving force in the sorption process; the other forces included van der Waals and π-π electron-donor-acceptor interactions.

      carboxyl acid pharmaceutically active compounds; biochar; sorption; solution pH; hydrogen bonding

      2016-08-29

      2017-05-05

      國家自然科學(xué)基金項(xiàng)目(41472231)

      王佳怡(1993-),女,吉林集安人,cugb_Peony@163.com.

      *責(zé)任作者,畢二平(1969-),男,河北邢臺(tái)人,教授,博士,博導(dǎo),主要從事污染水文地質(zhì)與環(huán)境有機(jī)化學(xué)研究,bi@cugb.edu.cn

      X52

      1001- 6929(2017)08- 1278- 09

      A

      10.13198j.issn.1001- 6929.2017.02.51

      王佳怡,畢二平.羧酸類藥用活性化合物在生物碳質(zhì)上的吸附特性[J].環(huán)境科學(xué)研究,2017,30(8):1278- 1286.

      WANG Jiayi,BI Erping.Sorption characteristics of pharmaceutically active carboxyl acid compounds to biochar[J].Research of Environmental Sciences,2017,30(8):1278- 1286.

      猜你喜歡
      碳質(zhì)羧酸氫鍵
      教材和高考中的氫鍵
      碳質(zhì)廢棄物氧化過程及其特征溫度研究
      吡啶-2-羧酸鉻的制備研究
      云南化工(2021年10期)2021-12-21 07:33:28
      碳質(zhì)泥巖鉆水平井防塌工藝措施
      鉆采工藝(2021年1期)2021-04-23 08:16:24
      攪拌對(duì)聚羧酸減水劑分散性的影響
      13C固體核磁共振技術(shù)檢測(cè)PM2.5中的總有機(jī)碳質(zhì)組分
      碳質(zhì)材料催化臭氧氧化去除水中溶解性有機(jī)物的研究進(jìn)展
      復(fù)合羧酸鑭對(duì)PVC熱穩(wěn)定作用研究
      中國塑料(2014年1期)2014-10-17 02:46:34
      聚羧酸減水劑與減縮劑的相容性研究
      二水合丙氨酸復(fù)合體內(nèi)的質(zhì)子遷移和氫鍵遷移
      南部县| 什邡市| 海阳市| 阿勒泰市| 新邵县| 玛纳斯县| 龙陵县| 唐海县| 新和县| 赞皇县| 中西区| 砀山县| 呼伦贝尔市| 灌南县| 台湾省| 池州市| 永德县| 陆良县| 苍南县| 太仆寺旗| 文成县| 玉山县| 黄龙县| 广州市| 固原市| 清流县| 和田市| 象山县| 华蓥市| 浠水县| 泉州市| 河源市| 四平市| 阳山县| 西城区| 图片| 什邡市| 夏河县| 福鼎市| 剑河县| 舞阳县|