張俊思 袁大剛付宏陽 翁 倩 王昌全
(四川農(nóng)業(yè)大學(xué)資源學(xué)院,成都 611130)
EGCG溶液濃度與酸堿度對(duì)黃壤Al、Fe和Mn形態(tài)的影響*
張俊思 袁大剛?付宏陽 翁 倩 王昌全
(四川農(nóng)業(yè)大學(xué)資源學(xué)院,成都 611130)
植物多酚可通過絡(luò)合作用改變元素的存在形態(tài)。采用雙因素完全隨機(jī)試驗(yàn)設(shè)計(jì),通過浸提試驗(yàn)研究表沒食子兒茶素沒食子酸脂(EGCG)溶液濃度、酸堿度、濃度與酸堿度互作對(duì)黃壤可溶態(tài)、游離態(tài)、無定形態(tài)和絡(luò)合態(tài)鋁(Al)、鐵(Fe)和錳(Mn)的影響。結(jié)果表明:EGCG溶液濃度對(duì)黃壤可溶態(tài)和絡(luò)合態(tài)Al、Fe、Mn及無定形態(tài)Al、Fe均產(chǎn)生極顯著影響,EGCG溶液酸堿度對(duì)黃壤可溶態(tài)及無定形態(tài)Al、Fe、Mn均產(chǎn)生顯著或極顯著影響,EGCG溶液濃度與酸堿度對(duì)黃壤可溶態(tài)Al、Fe、Mn,無定形態(tài)和絡(luò)合態(tài)Al也有極顯著或顯著的互作效應(yīng)。相關(guān)分析結(jié)果顯示,土壤中3種元素的無定形態(tài)氧化物含量與對(duì)應(yīng)的可溶態(tài)氧化物含量呈顯著或極顯著負(fù)相關(guān),表明EGCG溶液主要通過改變氧化物形態(tài),特別是無定形態(tài)氧化物含量,影響元素活化,進(jìn)而改變其可溶態(tài)含量;Al和Mn的活化會(huì)使土壤濾液pH降低,在pH降低幅度較大時(shí),可能導(dǎo)致土壤酸化。本試驗(yàn)一方面為研究酸性茶園土壤酸化的來源提供了方向,另一方面也可為植物Al/Mn毒害的防治提供參考,但在利用植物多酚類物質(zhì)防治土壤Al/Mn毒害的同時(shí)要處理好土壤酸化與治理毒害的關(guān)系。
表沒食子兒茶素沒食子酸脂(EGCG);濃度;酸堿度;礦質(zhì)元素;黃壤
鋁(Al)、鐵(Fe)、錳(Mn)是土壤中重要的礦質(zhì)元素,其中,F(xiàn)e、Mn是植物必需的微量營養(yǎng)元素。土壤Al、Fe、Mn主要以水溶態(tài)、交換態(tài)、礦物態(tài)(硅酸鹽和氧化物,氧化物又可以分為結(jié)晶態(tài)和無定形態(tài))和有機(jī)絡(luò)合態(tài)等形態(tài)存在。盡管土壤Fe2+、Mn2+在強(qiáng)還原環(huán)境中常見,但在強(qiáng)酸性土壤中,大量的Fe、Mn也能以低價(jià)態(tài)的Fe2+、Mn2+存在,植物容易受到毒害[1];Al為非變價(jià)元素,離子態(tài)Al,即Al3+的積累也容易導(dǎo)致Al毒的發(fā)生[2]。
植物多酚是一類廣泛存在于植物葉、根、果等器官中的重要次生代謝產(chǎn)物,可以以根系分泌或枯枝落葉分解等形式進(jìn)入土壤系統(tǒng)[3]。茶樹是多酚含量較高的一種植物,茶葉中的多酚含量占總干物質(zhì)的18%~36%[4]。中國是茶樹原產(chǎn)地,在全國二十多個(gè)?。ㄊ?、自治區(qū))均有種植。截至2015年,中國茶園面積已達(dá)2.73×104hm2,茶葉產(chǎn)量2.25×104t,均已位居世界第一。伴隨茶樹的生長發(fā)育,茶多酚(茶樹體內(nèi)代謝產(chǎn)生的多酚)在土壤中積累[5]。茶園土壤總酚含量在1009~3730 mg kg-1之間[6];在茶多酚組分中,以兒茶素類最多,占總量的70%~80%,兒茶素類中又以表沒食子兒茶素沒食子酸脂(EGCG)含量最高[7]。茶多酚及其組分易于分離提純,有利于開展多酚-金屬相互作用的研究,其含量最高、活化能力較強(qiáng)的組分——EGCG可以當(dāng)“模式”多酚[3]。EGCG含有的鄰位酚羥基能與許多金屬離子在酸解離位點(diǎn)上發(fā)生配位作用而形成絡(luò)合物[4,8];EGCG的絡(luò)合作用可促進(jìn)質(zhì)子的不斷解離,從而促進(jìn)質(zhì)子作用的發(fā)生[4];EGCG除與Al、Fe、Mn發(fā)生質(zhì)子作用和絡(luò)合作用外,還可使高價(jià)的Fe、Mn發(fā)生還原溶解[7,9-10],這些作用影響土壤Al、Fe、Mn的活化和遷移,從而對(duì)植物生物有效性或毒性產(chǎn)生影響。
研究表明,EGCG溶液濃度和酸堿度影響土壤Al、Fe的活化量,它們均隨EGCG濃度的升高而增加,同時(shí)隨EGCG溶液pH的升高呈現(xiàn)不同程度地增加[7];EGCG與土壤Al、Fe絡(luò)合計(jì)量比也對(duì)其活化產(chǎn)生影響[3]。此外,EGCG溶液酸堿度對(duì)元素的影響還體現(xiàn)在絡(luò)合物組成上,如Al3+與EGCG在不同pH的溶液中可形成絡(luò)合比為1∶1、2∶1或3∶1的絡(luò)合物[11]。然而,這些報(bào)道僅僅研究了單一因素對(duì)Al、Fe、Mn活化的影響,缺乏多因素互作效應(yīng)研究;目前的研究也缺乏多因素互作對(duì)土壤Al、Fe、Mn氧化物形態(tài)轉(zhuǎn)化影響的探討。鑒于此,本文采用雙因素完全隨機(jī)試驗(yàn)設(shè)計(jì),通過土壤浸提試驗(yàn),研究EGCG濃度與酸堿度互作對(duì)黃壤Al、Fe、Mn的影響,為有效控制Al/Mn毒害等提供理論依據(jù)。
1.1 供試材料
供試試劑:EGCG,購買于湖州榮凱植物提取公司,純度大于98%。
供試土壤:黃壤,采集于四川省雅安市名山區(qū),地理位置為30°07′19.7″ N,103°09′08.6″ E,海拔794 m,發(fā)育于第四紀(jì)更新統(tǒng)冰水沉積物母質(zhì)。為了減少土壤有機(jī)質(zhì)及多酚對(duì)研究的影響,樣品采集時(shí)選擇非茶園土壤,采集深度為30~50 cm,其基本化學(xué)性質(zhì)見表1。
1.2 試驗(yàn)設(shè)計(jì)
本試驗(yàn)將EGCG溶液設(shè)置成4個(gè)濃度水平和4個(gè)酸堿度水平,濃度分別為0.00、0.25、1.00和5.00 mmol L-1,記為A1、A2、A3、A4;pH分別為3.5、4.5、5.5和對(duì)照CK(去離子水,其pH為7.2),記作B1、B2、B3、B4。采用雙因素完全隨機(jī)試驗(yàn)設(shè)計(jì),共16個(gè)處理(表2),每個(gè)處理重復(fù)3次。
表1 供試土壤的基本性質(zhì)Table 1 Basic properties of tested soil
具體操作步驟:(1)配置濃度分別為0.00、0.25、1.00和5.00 mmol L-1的EGCG溶液。(2)參照Li等[12]的方法配置不同濃度和酸堿度組合的浸提液:先在500 ml容量瓶中加入10 mL 0.5 mol L-1的醋酸/醋酸鈉緩沖溶液,再分別加入上述不同濃度EGCG溶液,接近刻度時(shí),用1∶1 HNO3和5.0 mol L-1NaOH分別調(diào)節(jié)pH至3.5、4.5和5.5,最后定容。(3)準(zhǔn)確稱取48份10 g過10目篩的風(fēng)干土樣于250 ml聚乙烯塑料瓶中,用分液器按1∶10的土液比[13]分別加入100 ml上述浸提液和未調(diào)過pH的不同濃度的EGCG溶液,即CK系列(表2),用恒溫振蕩器在室溫(25℃)下振蕩24 h[14],過濾,測定濾液中Al、Fe、Mn含量(此含量即為本文中提到的可溶態(tài)Al、Fe、Mn含量,記為Als、Fes、Mns)。將過濾后的土樣在60℃[15]的烘箱中烘干48 h,用瑪瑙研缽研磨,過60目篩,以備測定土壤中游離態(tài)、無定形態(tài)和絡(luò)合態(tài)Al、Fe、Mn。所有操作條件均相同。
1.3 指標(biāo)及分析方法
參照文獻(xiàn)[16]測定以下基本指標(biāo):土壤pH采用電位法測定;有機(jī)質(zhì)采用K2Cr2O7-H2SO4消化法測定;土壤全量Al、Fe、Mn提取液采用HFHClO4法消煮得到;土壤游離態(tài)Al、Fe、Mn提取液用檸檬酸鈉—連二亞硫酸鈉—重碳酸鈉(DCB)法浸提獲得,記作Ald、Fed、Mnd;土壤無定形態(tài)Al、Fe、Mn提取液用H2C2O4-(NH4)2C2O4溶液在避光條件下震蕩2 h后過濾得到,記作Alo、Feo、Mno;土壤絡(luò)合態(tài)Al、Fe、Mn提取液采用pH=10的Na4P2O7溶液提取,記作Alp、Fep和Mnp。用電感耦合等離子發(fā)射光譜儀(ICP-AES)測定以上提取液中各形態(tài)Al、Fe、Mn的含量。土壤濾液中的Als、Fes和Mns含量也采用ICP-AES測定。
表2 EGCG濃度和酸堿度設(shè)置情況Table 2 Combinations of concentration and pH of EGCG solution
1.4 數(shù)據(jù)處理
采用SPSS20.0軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行分析,其中,雙因素方差分析與多重比較采用最小顯著差數(shù)法(LSD)法在0.05水平下進(jìn)行,相關(guān)分析為Pearson分析。
2.1 EGCG濃度與酸堿度對(duì)黃壤Al的影響
Als據(jù)表3,EGCG濃度對(duì)黃壤Als含量有極顯著影響,隨EGCG濃度的升高,黃壤Als含量隨之增加,表現(xiàn)為A4>A3>A2≈A1;EGCG溶液酸堿度對(duì)黃壤Als含量也有極顯著影響,表現(xiàn)為B1的含量顯著高于其他pH條件的含量;EGCG濃度×酸堿度對(duì)黃壤Als含量的互作效應(yīng)極顯著,高濃度低pH利于提高其含量,表現(xiàn)為A4B1處理含量最高,顯著高于其他處理的Als含量。
Ald盡管黃壤Ald含量總體上隨EGCG濃度的升高而降低,但EGCG濃度對(duì)黃壤Ald含量無顯著影響;然而,EGCG溶液酸堿度對(duì)黃壤Ald含量有極顯著影響,表現(xiàn)出B4顯著高于B1和B3;EGCG濃度×酸堿度對(duì)黃壤Ald含量無顯著互作效應(yīng)(表3)。
AloEGCG濃度對(duì)黃壤Alo含量有極顯著影響,隨EGCG濃度從0.25 mmol L-1升高至5.00 mmol L-1,黃壤Alo含量顯著減少,即A4<A3<A2≈A1;EGCG溶液酸堿度對(duì)黃壤Alo含量也有極顯著影響,如B2的Alo含量顯著高于B3的Alo含量,B3的Alo含量顯著高于B1的Alo含量;EGCG濃度×酸堿度對(duì)黃壤Alo含量僅有顯著互作效應(yīng),如A1B2和A2B2處理的Alo含量較高,顯著高于A4與B1、B2、B3或B4互作的Alo含量(表3)。
AlpEGCG濃度對(duì)黃壤Alp含量有極顯著影響,如A1的Alp含量顯著高于其他EGCG濃度的Alp含量;EGCG溶液酸堿度對(duì)黃壤Alp含量無顯著影響,而EGCG濃度×酸堿度對(duì)黃壤Alp含量的互作效應(yīng)達(dá)到顯著水平,A1B4、A4B3處理下的Alp含量較高,顯著高于A2B4、A4B1和A4B4的Alp含量(表3)。
綜上,EGCG濃度對(duì)黃壤Als、Alo和Alp含量均有極顯著影響,總體而言,黃壤Als隨EGCG濃度升高而顯著增加,而其余形態(tài)Al含量隨EGCG濃度升高而呈現(xiàn)下降趨勢。EGCG溶液酸堿度對(duì)黃壤Als、Ald和Alo也有極顯著影響,但影響方式較為復(fù)雜。EGCG濃度×酸堿度對(duì)黃壤Als的互作效應(yīng)極顯著,表現(xiàn)為高濃度低pH有利于促進(jìn)黃壤Al的活化,對(duì)黃壤Alo和Alp的互作效應(yīng)僅為顯著水平,而對(duì)Ald無顯著互作效應(yīng)。對(duì)于各形態(tài)而言,表現(xiàn)為Ald>Alo>Alp>Als。
2.2 EGCG濃度與酸堿度對(duì)黃壤Fe的影響
Fes如表4所示,EGCG濃度對(duì)黃壤Fes含量有極顯著影響,其含量隨EGCG濃度的升高而顯著增加,即表現(xiàn)為A4>A3>A2>A1;EGCG溶液酸堿度對(duì)黃壤Fes含量也有極顯著影響,表現(xiàn)為B3的Fes
含量顯著高于其他pH條件的Fes含量;EGCG濃度×酸堿度對(duì)黃壤Fes含量的互作效應(yīng)極顯著,表現(xiàn)為A4B3處理的Fes含量最高,顯著高于其他處理的Fes含量。
表3 EGCG溶液濃度與酸堿度對(duì)黃壤Al的影響Table 3 Effects of EGCG on Al in Yellow Soll relative to concentration and pH of the solution
Fed盡管黃壤Fed含量總體上隨EGCG濃度或酸堿度的升高而升高,但EGCG濃度或酸堿度對(duì)黃壤Fed含量無顯著影響;EGCG濃度×酸堿度對(duì)黃壤Fed含量卻有顯著互作效應(yīng),如A2B1的Fed含量顯著低于A2與B2、B3或B4互作的Fed含量,A3B1的Fed含量顯著低于A3與B2、B3或B4互作的Fed含量(表4)。
FeoEGCG濃度對(duì)黃壤Feo含量有極顯著影響,當(dāng)濃度從0.25 mmol L-1升高至5.00 mmol L-1時(shí),F(xiàn)eo含量呈顯著降低趨勢;EGCG溶液酸堿度對(duì)黃壤Feo含量僅有顯著影響,表現(xiàn)為B2或B3的Feo含量顯著高于B1的Feo含量;EGCG濃度×酸堿度對(duì)黃壤Feo含量卻無顯著互作效應(yīng)(表4)。
FepEGCG濃度對(duì)黃壤Fep含量有極顯著影響,且Fep含量隨著EGCG濃度的升高而顯著降低,表現(xiàn)為A1>A2≈A3>A4;EGCG溶液酸堿度、濃度×酸堿度對(duì)黃壤Fep含量均無顯著互作效應(yīng)(表4)。
綜上,EGCG濃度對(duì)黃壤Fes、Feo和Fep含量均有極顯著影響,黃壤Als隨EGCG濃度升高而顯著增加,而其余形態(tài)Fe含量隨EGCG濃度升高而呈下降趨勢。EGCG溶液酸堿度對(duì)黃壤Fes和 Feo分別有極顯著或顯著影響,且均為B3顯著高于B1的Fes或Feo含量。EGCG濃度×酸堿度對(duì)黃壤Fes和Fed的互作效應(yīng)分別達(dá)到極顯著或顯著水平。對(duì)于各形態(tài)而言,表現(xiàn)為Fed>Feo>Fep>Fes。
2.3 EGCG濃度與酸堿度對(duì)黃壤Mn的影響
Mns據(jù)表5,EGCG濃度對(duì)黃壤Mns含量有極顯著影響,隨EGCG濃度的升高,黃壤Als含量隨之顯著增加;EGCG溶液酸堿度對(duì)黃壤Mns含量也有極顯著影響,表現(xiàn)為B1的Mns含量顯著高于其他pH條件的Mns含量,即B1>B4>B2>B3;EGCG濃度×酸堿度對(duì)黃壤Mns含量的互作效應(yīng)也極顯著,表現(xiàn)為高濃度低pH有利于提高其含量,如A4B1處理含量最高,顯著高于其他處理的Mns含量。
Mnd雖然黃壤Mnd含量隨EGCG濃度的升高而增加,隨EGCG溶液pH值的升高也有增加趨勢,但EGCG濃度和酸堿度均對(duì)黃壤Mnd含量無顯著影響,而且EGCG濃度×酸堿度對(duì)黃壤Mnd含量也無顯著互作效應(yīng)(表5)。
Mno其含量隨著EGCG濃度的升高而逐漸增加,但EGCG濃度對(duì)黃壤Mno含量無顯著影響;EGCG溶液酸堿度對(duì)黃壤Mno含量有顯著影響,如B3的Mno含量顯著高于其他pH條件的Mno含量;但EGCG濃度×酸堿度對(duì)黃壤Mno含量無顯著互作效應(yīng)(表5)。
MnpEGCG濃度對(duì)黃壤Mnp含量有極顯著影響,表現(xiàn)為A1的Mnp含量顯著低于其他濃度的Mnp含量;雖然Mnp含量隨pH升高而升高,但EGCG溶液酸堿度對(duì)黃壤Mnp含量無顯著影響;EGCG濃度×酸堿度互作對(duì)黃壤Mnp含量影響不顯著(表5)。
綜上,EGCG濃度對(duì)黃壤Mns和Mnp含量均有極顯著影響,即EGCG濃度的改變能顯著影響它們的含量;EGCG溶液酸堿度對(duì)黃壤Mns和Mno含量有極顯著影響,除B4外,隨EGCG溶液pH的升高,黃壤Mns含量顯著降低,而Mno含量顯著升高;EGCG濃度×酸堿度互作對(duì)黃壤Mns有極顯著影響,表現(xiàn)為高濃度低pH有利于促進(jìn)黃壤Mn的溶解活化。對(duì)于各形態(tài)而言,表現(xiàn)為Mnd>Mno>Mnp>Mns。
2.4 EGCG濃度與酸堿度作用下黃壤Al、Fe、Mn的相關(guān)關(guān)系
由黃壤各形態(tài)Al、Fe、Mn及濾液pH的相關(guān)分析結(jié)果(表6)可知,濾液pH與Alo、Feo、Mno均呈極顯著正相關(guān),Als與Alo、Fes與Feo以及Mns與Mno間均顯著或極顯著負(fù)相關(guān),表明黃壤Al、Fe、Mn的活化受其對(duì)應(yīng)無定形態(tài)氧化物的影響較大。無定形Al、Fe和Mn含量因進(jìn)入土壤溶液而降低,這造成濾液中Al、Fe和Mn含量相應(yīng)升高,即Al、Fe和Mn被活化;也會(huì)使土壤濾液pH降低,即可能造成土壤酸化。濾液pH與Als、Mns均呈極顯著負(fù)相關(guān),表明濾液中pH受溶液中可溶性Al和Mn影響,并隨它們含量的增加而降低。這是因?yàn)橥寥繟l被活化而進(jìn)入溶液,增加了溶液中Al的含量,當(dāng)Al以離子態(tài)存在于溶液時(shí),作為致酸離子的Al離子將使溶液pH降低,而可溶性Al與可溶性Mn呈極顯著正相關(guān),因而表現(xiàn)出浸出液pH與Als、Mns均呈極顯著負(fù)相關(guān)關(guān)系的特征。
本試驗(yàn)表明,EGCG濃度×酸堿度對(duì)Als、Fes、Mns含量均有極顯著影響,但與濃度或酸堿度單獨(dú)作用相比,Als、Fes、Mns含量的變化特征更復(fù)雜。EGCG溶液濃度的增大使得質(zhì)子和有機(jī)配體數(shù)量增加,質(zhì)子作用和絡(luò)合作用增強(qiáng)[7];在質(zhì)子作用增強(qiáng)的同時(shí),EGCG對(duì)Fe和Mn的還原能力也增強(qiáng)[10],EGCG溶液與Al、Fe、Mn的一系列反應(yīng)將使得Als、Fes、Mns含量增加。Kunito等[17]在研究日本酸性森林土?xí)r發(fā)現(xiàn),可溶性Al水平隨pH的降低而升高;李九玉和徐仁扣[18]的研究表明,Al的活化量隨部分低分子有機(jī)酸體系pH的升高而降低;而何剛等認(rèn)為,隨EGCG溶液pH的升高,質(zhì)子濃度降低,其對(duì)Al、Fe的質(zhì)子作用減弱,對(duì)Fe還原能力減弱,但酚羥基的解離度增加,EGCG對(duì)Al、Fe的絡(luò)合作用卻增強(qiáng)[7]。本研究中,EGCG濃度×酸堿度對(duì)Als、Fes、Mns的互作效應(yīng)極顯著,但它們含量變化無明顯規(guī)律,表明EGCG濃度增大所引起的質(zhì)子作用、絡(luò)合作用或還原作用的增強(qiáng)與EGCG溶液pH上升所引起的質(zhì)子作用、還原作用減弱和絡(luò)合作用增強(qiáng)的差異將使得Als、Fes、Mns含量發(fā)生復(fù)雜的變化;此外,EGCG濃度、酸堿度、EGCG濃度×酸堿度均對(duì)Als、Fes、Mns有極顯著影響(表3~表5),其貢獻(xiàn)大小將在以后的研究中進(jìn)一步確定。
表4 EGCG溶液濃度與酸堿度對(duì)黃壤Fe的影響Table 4 Effects of EGCG on Fe in Yellow Soll relative to concentration and pH of the solution
表5 EGCG溶液濃度與酸堿度對(duì)黃壤Mn的影響Table 5 Effects of EGCG on Mn in Yellow Soll relative to concentration and pH of the solution
表6 黃壤各形態(tài)Al、Fe、Mn之間的相關(guān)關(guān)系Table 6 Correlation coefficients between different forms of Al,F(xiàn)e,Mn oxides in Yellow Soil(n=48)
EGCG溶液對(duì)Al、Fe、Mn各氧化物形態(tài)有不同影響。這是因?yàn)镋GCG溶液濃度、酸堿度或EGCG濃度×酸堿度對(duì)黃壤Al、Fe、Mn各氧化物形態(tài)的作用存在差異(表3~表5)。如濃度對(duì)絡(luò)合態(tài)Al、Fe、Mn含量均有顯著影響,酸堿度對(duì)無定形態(tài)Al、Fe、Mn含量也有顯著或極顯著影響,卻對(duì)絡(luò)合態(tài)Al、Fe、Mn含量無顯著影響,EGCG濃度×酸堿度對(duì)各元素不同形態(tài)的互作效應(yīng)也不同。
在不同濃度和酸堿度的EGCG溶液浸提前后,黃壤Al、Fe和Mn含量均為游離態(tài)>無定形態(tài)>絡(luò)合態(tài)>可溶態(tài);就元素間相對(duì)大小而言,游離態(tài)表現(xiàn)為Fe>Al>Mn,無定形態(tài)或絡(luò)合態(tài)均為Al>Fe>Mn,表明EGCG溶液雖然能使不同形態(tài)Al、Fe、Mn含量發(fā)生變化,但這種變化受自然成土因素的影響大于EGCG溶液對(duì)它們的影響,因此三元素含量的相對(duì)多少在EGCG溶液影響下未發(fā)生變化。一方面是因?yàn)镋GCG溶液活化的Al、Fe、Mn含量較低,即使活化的元素來自無定形態(tài)氧化物,也不會(huì)使這些氧化態(tài)的相對(duì)含量高低發(fā)生變化;另一方面也可能是因?yàn)楦邼舛扔袡C(jī)酸阻礙結(jié)晶態(tài)Al、Fe、Mn氧化物的形成[19],甚至?xí)龠M(jìn)結(jié)晶態(tài)的Al、Fe、Mn向弱結(jié)晶態(tài)或無定形態(tài)轉(zhuǎn)化[20],或者促進(jìn)硅酸鹽礦物態(tài)Al、Fe、Mn向游離態(tài)轉(zhuǎn)化,為元素活化提供了來源。
黃壤可溶態(tài)表現(xiàn)為Al>Fe>Mn,與土壤無定形態(tài)Al、Fe、Mn含量高低一致,可認(rèn)為無定形態(tài)氧化物含量影響著黃壤Al、Fe、Mn的溶解活化,這也與表6的結(jié)論一致。溶液中的Al主要來源于交換態(tài)Al3+和游離氧化鋁的溶解,一方面,黃壤中交換性Al3+含量遠(yuǎn)高于土壤中的交換性Fe2+/ Fe3+[7];另一方面,雖然黃壤游離態(tài)Fe含量高于游離態(tài)Al,但對(duì)可溶態(tài)有較大影響的無定形態(tài)Al高于無定形態(tài)Fe(表1),且無定形態(tài)是游離態(tài)中活性較高的形態(tài)。雖然EGCG對(duì)Fe3+的質(zhì)子作用最強(qiáng)(pKaFe
3+=3.82,pKaAl3+=4.40,pKaFe2+=5.80)[21],但EGCG與Fe3+形成絡(luò)合物的溶解性較Al3+差,當(dāng)EGCG對(duì)Al的絡(luò)合作用和質(zhì)子作用之和強(qiáng)于對(duì)Fe的綜合作用(包括對(duì)Fe3+的還原作用、質(zhì)子作用、絡(luò)合作用以及對(duì)Fe2+的質(zhì)子作用、絡(luò)合作用)時(shí),EGCG對(duì)Al和Fe的活化作用將表現(xiàn)為Al>Fe。對(duì)于Fe和Mn,表現(xiàn)為Fe>Mn,這與何剛等[10]關(guān)于溫度對(duì)Fe和Mn活化影響的結(jié)果相反,也與劉志光和徐仁扣[22]的研究不一致。這是因?yàn)殡m然高價(jià)Mn的還原電位低于高價(jià)Fe[10,23],Mn較Fe更易發(fā)生還原反應(yīng),但還原后的Mn2+的絡(luò)合物穩(wěn)定常數(shù)低于還原后Fe2+的絡(luò)合物穩(wěn)定常數(shù)[8],Mn2+的絡(luò)合能力要弱于Fe2+;土壤中無定形態(tài)Fe含量高于無定形態(tài)Mn含量,由于無定形態(tài)氧化物是活化的主要來源,因此Fe的活化潛力較Mn大。
當(dāng)溶液pH小于4.5時(shí),溶液中的Al一般以Al3+和Al(OH)2+形式存在[24],但EGCG能與Al形成毒性較小的[Al(LH-2)]+或[Al(LH-3)]0(L=EGCG)有機(jī)絡(luò)合物[11],且這種復(fù)合物不能跨膜運(yùn)輸或被根系吸收,從而緩解鋁對(duì)植物的毒害[25-27],這暗示著EGCG使Al活化而有利于降低植物Al毒。同樣地,EGCG溶液對(duì)土壤Mn的活化也可能有利于減輕植物Mn的毒害。然而,要同時(shí)注意的是,EGCG的存在可增加土壤Ald含量,Ald并不一定能夠形成[Al(LH-2)]+或[Al(LH-3)]0(L=EGCG)有機(jī)絡(luò)合物,這種情況可能會(huì)加劇Al的毒害;另一方面,有機(jī)酸復(fù)合物在微生物作用等條件下易受到破壞,從而加劇 Al毒和Mn毒的風(fēng)險(xiǎn)[28]。因此,加入EGCG究竟是有利于緩解植物毒害還是會(huì)加劇毒害風(fēng)險(xiǎn),將在以后的盆栽試驗(yàn)研究中進(jìn)行驗(yàn)證。
EGCG濃度、酸堿度、EGCG濃度與酸堿度互作均對(duì)可溶態(tài)Al、Fe、Mn有極顯著影響,但它們對(duì)可溶態(tài)Al、Fe、Mn的分別貢獻(xiàn)率應(yīng)在今后的研究中進(jìn)行深入探討;此外,EGCG濃度、酸堿度、EGCG濃度與酸堿度互作對(duì)不同元素的不同氧化物的影響程度不同,這一發(fā)現(xiàn)可以為針對(duì)性地改變土壤某形態(tài)Al、Fe、Mn氧化物含量提供理論依據(jù)。研究還發(fā)現(xiàn),黃壤無定形態(tài)Al、Fe、Mn分別是其對(duì)應(yīng)的可溶態(tài)Al、Fe、Mn的來源,而且可溶態(tài)Al、Mn對(duì)黃壤濾液pH有很大影響,因此,控制土壤無定形態(tài)氧化物的含量對(duì)酸化土壤及其導(dǎo)致的Al/Mn毒的防治有重要意義。
[1] 南京農(nóng)學(xué)院. 土壤農(nóng)化分析. 北京:農(nóng)業(yè)出版社,1980
Nanjing Agricultural College. Soil agro-chemistrical analysis(In Chinese). Beijing:Agriculture Press,1980
[2] Delhaize E,Ryan P R. Update on environmental stress:Aluminum toxicity and tolerance in plants. Plant Physiology,1995,107(2):315—321
[3] Schmidt M A,Gonzalez J M,Halvorson J J,et al. Metal mobilization in soil by two structurally defined polyphenols. Chemosphere,2013,90(6):1870—1877
[4] 楊賢強(qiáng),王岳飛,陳留記,等. 茶多酚化學(xué). 上海:上??茖W(xué)技術(shù)出版社,2003
Yang X Q,Wang Y F,Chen L J,et al. Chemistry of tea polyphenols(In Chinese). Shanghai:Shanghai Science and Technology Press,2003
[5] 俞慎,何振立,陳國潮,等. 不同樹齡茶樹根層土壤化學(xué)特性及其對(duì)微生物區(qū)系和數(shù)量的影響. 土壤學(xué)報(bào),2003,40(3):433—439
Yu S,He Z L,Chen G C,et al. Soil chemical characteristics and their impacts on soil microflora in the root layer of tea plants with different cultivating ages(In Chinese). Acta Pedologica Sinica,2003,40(3):433—439
[6] 母媛,袁大剛,蘭永生,等. 植茶年限對(duì)土壤pH、有機(jī)質(zhì)與酚酸含量的影響. 中國土壤與肥料,2016(4):44—48
Mu Y,Yuan D G,Lan Y S,et al. Effects of tea planting age on soil pH value,contents of organic matter and phenolic acids(In Chinese). Soil and Fertilizer Science in China,2016(4):44—48
[7] 何剛,袁大剛,張東坡,等. 不同濃度和pH對(duì)茶多酚活化土壤硅、鋁、鐵的影響. 土壤通報(bào),2015,46(1):111—116
He G,Yuan D G,Zhang D P,et al. Effect of teapolyphenols on mobilization of soil Si,Al and Fe at different concentrations and pH values(In Chinese). Chinese Journal of Soil Science,2015,46(1):111—116
[8] 石碧,狄瑩. 植物多酚. 北京:科學(xué)出版社,2000
Shi B,Di Y. Plant polyphenols(In Chinese). Beijing:Science Press,2000
[9] 何剛,袁大剛,趙燕,等. 茶多酚與低分子有機(jī)酸活化土壤礦質(zhì)元素的差異研究. 土壤學(xué)報(bào),2014,51(6):1379—1387
He G,Yuan D G,Zhao Y,et al. Difference between tea polyphenols and low-molecular-weight organic acids in effect of mobilizing soil(In Chinese). Acta Pedologica Sinica,2014,51(6):1379—1387
[10] 何剛,袁大剛,張俊思,等. 溫度對(duì)EGCG和檸檬酸活化土壤硅鋁鐵錳的影響. 土壤,2015,47(6):1163—1169
He G,Yuan D G,Zhang J S,et al. Effects of EGCG and citric acid on mobilization of soil mineral elements at different temperatures(In Chinese). Soils,2015,47(6):1163—1169
[11] Inoue M B,Inoue M,F(xiàn)ernando Q,et al. Potentiometric and1H NMR studies of complexation of Al3+with(-)-epigallocatechin gallate,a major active constituent of green tea. Journal of Inorganic Biochemistry,2002,88(1):7-13
[12] Li J Y,Xu R K,Ji G L. Dissolution of aluminum in variably charged soils as affected by low-molecular weight organic acids. Pedosphere,2005,15(4):484—490
[13] Vaněk A,Komárek M,Chrastny V,et al. Effect of low-molecular-weight organic acids on the leaching of thallium and accompanying cations from soil-A model rhizosphere solution approach. Journal of Geochemical Exploration,2012,112(1):212—217
[14] 楊杰文,鐘來元,郭榮發(fā). 有機(jī)酸溶解磚紅壤過程中Mn(Ⅱ)的釋放規(guī)律. 環(huán)境化學(xué),2011,30(7):1348—1353
Yang J W,Zhong L Y,Guo R F. Release of Mn(Ⅱ)during organic acid promoted dissolution of latosol(In Chinese). Environmental Chemistry,2011,30(7):1348—1353
[15] Li J Y,Xu R K,Tiwari D,et al. Mechanism of aluminum release from variable charge soils induced by low-molecular-weight organic acids:Kinetic study. Geochimica et Cosmochimica Acta,2006,70(11):2755—2764
[16] 張甘霖,龔子同. 土壤調(diào)查實(shí)驗(yàn)室分析方法. 北京:科學(xué)出版社,2012
Zhang G L,Gong Z T. Soil survey laboratory methods(In Chinese). Beijing:Science Press,2012
[17] Kunito T,Isomura I,Sumi H,et al. Aluminum and acidity suppress microbial activity and biomass in acidic forest soils. Soil Biology & Biochemistry,2016,97:23—30
[18] 李九玉,徐仁扣. 不同pH下低分子量有機(jī)酸對(duì)黃壤中鋁活化的影響. 環(huán)境化學(xué),2005,24(3):275—278
Li J Y,Xu R K. Effect of low-molecular-weight organic acids on the mobilization of aluminum in yellow soil(In Chinese). Environmental Chemistry,2005,24(3):275—278
[19] Ng Kee Kwong K F,Huang P M. Influence of citric acid on the hydrolytic reactions of aluminum. Soil Science Society of America Journal,1977,41(4):692—697
[20] Ng Kee Kwong K F,Huang P M. Comparison of the influence of tannic acid and selected low-molecularweight organic acids on precipitation products of aluminum. Geoderma,1981,26(3):179—193
[21] Kumamoto M,Sonda T,Nagayama K,et al. Effects of pH and metal ions on antioxidative activities of catechins. Soil Biology & Biochemistry,2001,65(1):126—132
[22] 劉志光,徐仁扣. 幾種有機(jī)化合物對(duì)土壤中鐵與錳的氧化物還原和溶解作用. 環(huán)境化學(xué),1991,10(5):43—50
Liu Z G,Xu R K. Reductive dissolution of Fe and Mn oxides in soils by some organic compounds(In Chinese). Environmental Chemistry,1991,10(5):43—50
[23] Shindo H. Relative effectiveness of short-range ordered Mn(IV),F(xiàn)e(III),Al,and Si oxides in the synthesis of humic acids from phenolic compounds.Soil Science & Plant Nutrition,1992,38(3):459—465
[24] 田仁生,劉厚田. 酸性土壤中鋁及其植物毒性. 環(huán)境科學(xué),1990,11(6):41—46
Tian R S,Liu H T. Aluminum in acid soils and its toxicity to plants(In Chinese). Environmental Science,1990,11(6):41—46
[25] Kochian L V. Cellular mechanisms of aluminum toxicity and resistance in plants. Annual Review of Plant Biology,2003,46(1):237—260
[26] Kinraide T B,Hagermann A E. Interactive intoxicating and ameliorating effects of tannic acid,aluminum(Al3+),copper(Cu2+),and selenate(SeO42-)in wheat roots:A descriptive and mathematical assessment. Physiologia Plantarum,2010,139(1):68—79
[27] Zhang L L,Liu R Q,Gung B W,et al. Polyphenol-aluminum complex formation:Implications for aluminum tolerance in plants. Journal of Agricultural and Food Chemistry,2016,64(15):3025—3033
[28] 丁永禎,李志安,鄒碧. 土壤低分子量有機(jī)酸及其生態(tài)功能. 土壤,2005,37(3):243—250
Ding Y Z,Li Z A,Zou B. Low-molecular-weight organic acidsand their ecological roles in soil(In Chinese). Soils,2005,37(3):243—250
Effect of EGCG on Al,F(xiàn)e and Mn in Yellow Soil Relative to Concentration and pH
ZHANG Junsi YUAN Dagang?FU Hongyang WENG Qian WANG Changquan
(College of Resources,Sichuan Agricultural University,Chengdu 611130,China)
【Objective】Plant polyphenols may alter forms of the elements existing in soil through complexation. The study is oriented to explore effects of epigallocatechin gallate(EGCG)relative to concentration and pH and the interactions between its concentration and pH on soluble,free,amorphous and complex forms of Al,F(xiàn)e and Mnin Yellow soil.【Method】A two-factor experiment laid out at random was carried out by extraction of the tested soils,of which each had 3 replicates. Firstly,soil was collected from the 30~50 cm soil layer(surface)in a Yellow soil field as a sample for test,air-dried and ground to pass through a 10-mesh nylon sieve.Then a total of 48 portions,10 g each,were weighed out of the prepared soil sample and placed into 250 ml polyethylene bottles,respectively. Into the bottles,prepared EGCG solution was added,100 mL each. Then the bottles were placed into a constant temperature oscillater for 24 h oscillation under room temperature(25℃). At the end of the oscillation,the suspensions were filtered for extracts,which were then analyzed for soluble Al,F(xiàn)e and Mn(Als,F(xiàn)esand Mns). The second step was to have the remainders from filtration dried up in an oven at 60℃ for 48 h and reground with an agate mortar to pass through a 60-mesh nylon sieve for determination of oxidized forms of Al,F(xiàn)e and Mn. Free Al,F(xiàn)e and Mn(Ald,F(xiàn)edand Mnd),amorphous Al,F(xiàn)e and Mn(Alo,F(xiàn)eoand Mno),complex Al,F(xiàn)e and Mn(Alp,F(xiàn)epand Mnp)were extracted by the dithionite-citrate-bicarbonate(DCB)method,acid ammonium oxalate(AAO)at pH=3 in the dark and Na-pyrophosphate(Na4P2O7)at pH=10,respectively. Contents of all the above-mentioned fractions of Al,F(xiàn)e and Mn were determined with ICP-AES. 【Result】Concentration of the EGCG solution was found to have a very significant effect on the content of Als,F(xiàn)es,Mns,Alp,F(xiàn)ep,Mnp,Aloor Feoin Yellow soil;and pH of the solution had a significant or extremely significant effect on the content of Als,F(xiàn)es,Mns,Alo,F(xiàn)eoor Mnoin Yellow soil,while the interaction between the two did on the content of Als,F(xiàn)es,Mns,Alo,Alpor Mndin Yellow soil. The addition of EGCG affected the elements both in content and in form,but their relative contents did not change much. In terms of content,the soluble forms displayed an order of Al>Fe>Mn,the free forms,did an order of Fe>Al>Mn,and the amorphous and the complex forms both followed an order of Al>Fe>Mn. However,concentration of EGCG was not a factor affecting the content of Ald,F(xiàn)edand Mnd,and neither was pH of EGCG affecting the content of Fed,Mnd,Alp,F(xiàn)epand Mnp,while the interaction between the two did not have much effect on the content of Ald,Mnd,F(xiàn)eo,Mno,F(xiàn)epand Mnd in Yellow soil. Correlations analyses show that Alo,F(xiàn)eoand Mnowas closely related to AlsFesand Mns,respectively,which suggests that EGCG solution affects mobilization of the elements by changing their oxide forms,especially the amorphous ones and hence contents of the soluble ones . The more Aloin the soil,the more Alsin soil solution,and all the same with Fe and Mn. On the other hand,pH of the EGCG solution was significantly and negatively related to Alsand Mns,which suggests that reactivation of Al and Mnmay lower pH of the extractant,posing a potential risk.【Conclusion】The study has further verified that the effect of EGCG solution on Al,F(xiàn)e and Mn mobilization varies with its concentration and pH of the solution and interaction between the two. All the findings in this study may help orient the study on causes of soil acidification in tea gardens and serve as reference for prevention of plant Al/Mn toxication. It is,therefore,worthwhile to note when plant polyphenols are used to prevent Al/Mn toxicity,adequate attention should be given to control of soil acidification.
Epigallocatechingallate(EGCG);Concentration;pH;Mineral elements;Yellow soil
S156.4
A
(責(zé)任編輯:檀滿枝)
10.11766/trxb201612010331
* 國家自然科學(xué)基金項(xiàng)目(41371230)資助 Supported by the National Natural Science Foundation of China(No.41371230)? 通訊作者 Corresponding author,E-mail:690654034@qq.com
張俊思(1990—),女,四川成都人,碩士,主要從事土壤資源可持續(xù)利用研究。E-mail:1158016014@qq.com
2016-12-01;
2017-01-15;優(yōu)先數(shù)字出版日期(www.cnki.net):2017-02-20