柏靜儒, 張慶燕, 王林濤, 白 章, 王 擎
(1.東北電力大學(xué) 油頁巖綜合利用教育部工程研究中心, 吉林 吉林 132012; 2.中國科學(xué)院 工程熱物理研究所, 北京 100190)
柏靜儒1, 張慶燕1, 王林濤1, 白 章2, 王 擎1
(1.東北電力大學(xué) 油頁巖綜合利用教育部工程研究中心, 吉林 吉林 132012; 2.中國科學(xué)院 工程熱物理研究所, 北京 100190)
利用Aspen Plus軟件對基于油頁巖固體熱載體干餾法構(gòu)建的綜合利用系統(tǒng)進行模擬,結(jié)合模擬結(jié)果對系統(tǒng)做了詳細的能量分析和分析,并繪制了系統(tǒng)能流圖與流圖來描述每個熱力過程的能量分布與損分布情況。結(jié)果表明,油頁巖輸入量為100 kg/s時,干餾爐內(nèi)部不可逆損失(即熱解反應(yīng)損失)其損率為47.43%,是系統(tǒng)損失最大環(huán)節(jié),油頁巖中11.03%的燃料化學(xué)能貶值為干餾產(chǎn)物熱能;綜合利用系統(tǒng)各損失中,凈化冷凝單元的熱損失能量品位最高。
油頁巖; 固體熱載體; 綜合利用; 能量分析;分析
油頁巖作為典型的非常規(guī)油氣能源,其儲量約為2×1013t,相當于8×1011t頁巖油[1],加大對油頁巖的開發(fā)利用,對改變我國能源結(jié)構(gòu),改善我國能源不足現(xiàn)狀,具有非常重要的戰(zhàn)略意義。
油頁巖能源既可以干餾制取頁巖油,也可以燃燒發(fā)電[2]?,F(xiàn)有油頁巖干餾技術(shù)包括固體熱載體干餾法和氣體熱載體干餾法,其中固體熱載體干餾技術(shù)規(guī)避了氣體熱載體干餾法中存在的爐內(nèi)氣流分布不均、頁巖流動阻力大等問題,同時還具有干餾時間短、油收率高、干餾強度大、資源利用率高等諸多優(yōu)點[3],受到研究開發(fā)者的重視[4],將成為油頁巖資源開發(fā)利用的主要發(fā)展方向[5-7]。隨著技術(shù)進步和環(huán)保意識的增強,油頁巖已從單一的能源利用發(fā)展到資源的綜合利用[8-9],如“油頁巖干餾煉油-半焦燃燒發(fā)電/供熱-頁巖灰聯(lián)產(chǎn)建材”綜合開發(fā)利用集成技術(shù)[10-13]及“油頁巖干餾-半焦燃燒-油氣提質(zhì)-灰渣綜合利用”的系統(tǒng)集成路線[14]等。為了有效評價綜合利用系統(tǒng),需要對其能量分布、能量轉(zhuǎn)化率及能量損失情況等進行深入計算與分析。
1.1 工藝流程
基于油頁巖固體熱載體干餾法構(gòu)建的綜合利用系統(tǒng)工藝流程包括4個單元,分別為油頁巖干餾單元(RR)、凈化冷凝單元(P/C)、循環(huán)流化床鍋爐加熱發(fā)電單元(CFB-ST)、燃氣-蒸汽聯(lián)合循環(huán)發(fā)電單元(CC),工藝流程見圖1。
圖1 油頁巖固體熱載體綜合利用系統(tǒng)工藝流程示意圖Fig.1 Process diagram of the oil shale comprehensive utilization system with solid heat carrier technology
油頁巖從頁巖儲罐送至破碎機,破碎至15 mm以下粒徑的油頁巖顆粒進入RR單元,與高溫循環(huán)灰(850℃)在混合器內(nèi)混合后送至干餾爐內(nèi)進行干餾,干餾溫度為520℃,離開RR單元的物料為頁巖油氣、頁巖熱解氣、固體半焦及低溫循環(huán)灰的混合物(500℃)。隨后這些混合物進入P/C單元的旋風(fēng)分離器進行分離,分離出固體半焦和低溫循環(huán)灰的混合物(500℃)送至CFB-ST單元進行燃燒發(fā)電,自旋風(fēng)分離器頂部分離出的油氣經(jīng)過凈化和冷凝處理,最終得到頁巖油并送至油罐進行儲存。
干餾產(chǎn)物頁巖熱解氣屬于高熱值氣體燃料,經(jīng)P/C單元的旋風(fēng)分離器分離后送至CC單元,用于電能生產(chǎn)。CFB-ST單元的鍋爐排煙經(jīng)過靜電除塵后和CC單元的余熱鍋爐排煙一起通過煙囪排放。
1.2 油頁巖及干餾產(chǎn)物基礎(chǔ)特性
在本研究中所用的油頁巖樣品取自吉林樺甸的公朗頭礦區(qū)。根據(jù)《油頁巖含油率的測定方法》(SH/T 0508-92)對油頁巖(OS)進行鋁甄分析,結(jié)果列于表1。按照國家標準GB/T 212-2001、GB/T 476-2001 和GB/T 213-2001對油頁巖(OS)及經(jīng)干餾所得半焦(SC)和頁巖油(OIL)進行工業(yè)分析、元素分析和發(fā)熱量的測定,結(jié)果如表2所示。
表1 油頁巖鋁甄實驗測定結(jié)果(空干基)Table 1 Fischer assay of the oil shale sample w/%
表2 樣品的工業(yè)分析、元素分析和發(fā)熱量Table 2 Proximate analysis, ultimate analysis and calorific value of the samples
OS—Oil shale; SC—Semi-coke; OIL—Shale oil
在本研究中所構(gòu)建的流程按照100 kg/s的油頁巖輸入量進行模擬,油頁巖在常溫狀態(tài)下送入干餾爐,吸收850℃高溫?zé)彷d體循環(huán)灰的熱量,使得油頁巖溫度升至520℃的最佳干餾溫度并開始熱解,干餾產(chǎn)物送入旋風(fēng)分離器進行分離,模擬方法見文獻[26-28],利用Aspen Plus模擬得到的物流參數(shù)如表3所示。
表3 系統(tǒng)的主要物流參數(shù)Table 3 Process parameters of some material streams of the system
結(jié)合Aspen Plus模擬得到的物流參數(shù)及油頁巖試樣的基礎(chǔ)特性數(shù)據(jù),采用黑箱模型分別對油頁巖干餾單元(RR)、凈化冷凝單元(P/C)、循環(huán)流化床鍋爐加熱發(fā)電單元(CFB-ST)、燃氣-蒸汽聯(lián)合循環(huán)發(fā)電單元(CC)進行能量分析和分析。
圖2 油頁巖干餾單元(RR)分析計算結(jié)果Fig.2 The analysis results of oil shale retorting unit (RR) (a) Results of energy analysis; (b) Results of exergy analysis
P/C單元的主要目的是將500℃的油氣混合物經(jīng)冷凝、分離、凈化脫硫處理,實現(xiàn)油汽分離,除去熱解氣中的含硫氣體,以減少對環(huán)境的污染。在P/C單元,物流燃料化學(xué)能保持不變,只有物流顯熱大幅度降低。
圖3 油頁巖凈化冷凝單元(P/C)分析計算結(jié)果Fig.3 The analysis results of the oil shale purifier condenser unit (P/C)(a) Results of energy analysis; (b) Results of exergy analysis
CFB-ST單元實現(xiàn)固體半焦的充分利用,干餾產(chǎn)物半焦具有一定熱值并含有多種微量金屬元素,將干餾產(chǎn)生的半焦送入循環(huán)流化床中燃燒,既減少了能量浪費和對環(huán)境的污染,又能實現(xiàn)能量的梯級利用,同時也解決了油頁巖干餾系統(tǒng)需另設(shè)加熱爐加熱熱載體的問題。
圖4 油頁巖循環(huán)流化床鍋爐加熱發(fā)電單元(CFB-ST)分析計算結(jié)果Fig.4 The analysis results of the oil shale circulating fluidized bed boiler power generation unit (CFB-ST)(a) Results of energy analysis; (b) Results of exergy analysis
圖5 油頁巖燃氣-蒸汽聯(lián)合循環(huán)發(fā)電單元(CC)分析計算結(jié)果Fig.5 The analysis results of the oil shale gas-steam combined cycle generating unit (CC)(a) Results of energy analysis; (b) Results of exergy analysis
4.1 綜合利用系統(tǒng)能效分析
4.2 綜合利用系統(tǒng)能量分析
根據(jù)油頁巖固體熱載體綜合利用系統(tǒng)能量分析計算結(jié)果,筆者以油頁巖熱值為100%輸入量,以熱平衡為尺度繪制了油頁巖固體熱載體綜合利用系統(tǒng)能流圖如圖7所示,計算了油頁巖固體熱載體綜合利用系統(tǒng)各環(huán)節(jié)可利用能量與損失能量的百分比如表4所示。
由圖7可以看出,當油頁巖輸入量為100 kg/s時,油頁巖經(jīng)過干餾過程后,其能量的46.84%轉(zhuǎn)換到干餾產(chǎn)物頁巖油中,頁巖油的能量為綜合利用系統(tǒng)有效輸出能量,可以進一步加工利用;CC單元電能總產(chǎn)量為7.53%,其中3.13%的電能應(yīng)用于空氣壓縮機做功,故CC單元有效輸出電能為4.40%,CFB-ST單元有效輸出能量為6.51%的電能;綜合利用系統(tǒng)中不小于5.00%的損失為干餾爐散熱損失12.88%、CFB-ST單元汽輪機冷源損失10.35%、P/C單元冷凝熱損失9.76%,其中RR單元干餾爐散熱損失為系統(tǒng)熱損失最高位置,是綜合利用系統(tǒng)能量利用的薄弱環(huán)節(jié),由于熱量屬于低質(zhì)能,要想回收利用這部分能量十分困難;CFB-ST單元各處熱損失之和為14.42%,其主要能量損失為排煙熱損失為3.45%和汽輪機冷源損失10.35%;CC單元各處熱損失之和為5.12%,其主要能量損失包括排煙熱損失為1.55%和汽輪機冷源損失2.97%,從整體角度分析,CC單元是系統(tǒng)熱損失最小單元,但CC單元的熱效率僅為45.87%(見表4),是綜合利用系統(tǒng)熱效率最低的單元。
圖6 基于能量分析和分析的能效分布情況Fig.6 The distribution of energy efficiency based on energy analysis and exergy analysis(a) The distribution of energy efficiency based on energy analysis; (b) The distribution of energy efficiency based on energy analysis
圖7 油頁巖固體熱載體綜合利用系統(tǒng)能流圖Fig.7 Energy flow diagram of the oil shale comprehensive utilization system with solid heat carrier technology
UnitEnergyefficiency/%Exergyefficiency/%RR88.9681.76P/C85.2482.60CFB-ST61.6256.50CC45.8753.58
圖8 油頁巖固體熱載體綜合利用系統(tǒng)流圖Fig.8 Exergy flow diagram of the oil shale comprehensive utilization system with solid heat carrier technology
(1) 油頁巖固體熱載體綜合利用系統(tǒng)中,系統(tǒng)能效最低的單元是CC單元,其熱效率僅為45.84%,效率為53.58%,但CC單元總熱能損失為5.12%,總損失為3.64%,是綜合系統(tǒng)能量損失最小的單元,故該單元節(jié)能潛力有限。
(3) 油頁巖固體熱載體綜合利用系統(tǒng)中熱損失最高位置發(fā)生在RR單元干餾爐部分,該部分的散熱損失占油頁巖熱值的12.88%,其次是CFB-ST單元汽輪機冷源損失(10.35%)和P/C單元的冷凝熱損失(9.76%),此三部分熱損失相應(yīng)的值百分數(shù)分別為3.63%、1.83%和4.27%,說明P/C單元損失的能量品味最高,故提高利用系統(tǒng)的綜合效率應(yīng)首先從減少該單元的能量損失著手。針對汽輪機冷源損失,可根據(jù)具體運行情況,采用熱泵技術(shù)吸取循環(huán)水的低品位能源,使之提高品位向用戶們供熱。
[1] 王擎, 柏靜儒, 孫佰仲, 等. 油頁巖綜合開發(fā)利用集成技術(shù)[J].長春工業(yè)大學(xué)學(xué)報(自然科學(xué)版), 2007, 28(s): 54-58. (WANG Qing, BAI Jingru, SUN Baizhong, et al. Integrated technology for oil shale exploitation[J].Journal of Changchun University of Technology(Natural Science Edition), 2007, 28(s): 54-58.)
[2] BAI Jingru, BAI Zhang, WANG Qing, et al. Process simulation of oil shale comprehensive utilization system based on Huadian-type retorting technique[J].Oil Shale, 2015, 32(1): 66-81.
[3] 侯吉禮, 馬躍, 李術(shù)元, 等. 世界油頁巖資源的開發(fā)利用現(xiàn)狀[J].化工進展, 2015, 34(5): 1183-1190. (HOU Jili, MA Yue, LI Shuyuan, et al. Development and utilization of oil shale worldwide[J].Chemical Industry and Engineering Progress, 2015, 34(5): 1183-1190.)
[4] 張秋民, 關(guān)珺, 何德民. 幾種典型的油頁巖干餾技術(shù)[J].吉林大學(xué)學(xué)報(地球科學(xué)版), 2006, 36(6): 1019-1026. (ZHANG Qiumin, GUAN Jun, HE Demin. Typical technologies for oil shale retorting[J].Journal of Jilin University(Earth Science Edition), 2006, 36(6): 1019-1026.)
[5] 李術(shù)元, 何繼來, 侯吉禮, 等. 世界油頁巖勘探開發(fā)加工利用近況——并記2014年國外兩次油頁巖國際會議[J].中外能源, 2015, 20(1): 25-32. (LI Shuyuan, HE Jilai, HOU Jili, et al. World oil shale exploration and development utilization situation——Two world oil shale conferences sponsored in 2014[J].Sino-Global Energy, 2015, 20(1): 25-32.)
[6] 馬躍, 李術(shù)元, 藤錦生, 等. 世界油頁巖研究開發(fā)利用現(xiàn)狀——并記2015年美國油頁巖會議[J].中外能源, 2016, 21(1): 21-26. (MA Yue, LI Shuyuan, TENG Jinsheng, et al. Current situation of the research and development of oil shale in the world——American oil shale conference sponsored in 2015[J].Sino-Global Energy, 2016, 21(1): 21-26.)
[7] 秦宏, 岳耀奎, 劉洪鵬, 等. 中國油頁巖干餾技術(shù)現(xiàn)狀與發(fā)展趨勢[J].化工進展, 2015, 34(5): 1191-1198. (QIN Hong, YUE Yaokui, LIU Hongpeng, et al. Current status and prospect of oil shale retorting technologies in China[J].Chemical Industry and Engineering Progress, 2015, 34(5): 1191-1198.)
[8] 張立棟, 劉洪鵬, 賈春霞, 等. 我國油頁巖綜合利用相關(guān)研究進展[J].化工進展, 2012, 31(11): 2359-2363. (ZHANG Lidong, LIU Hongpeng, JIA Chunxia, et al. Research progress of comprehensive utilization of oil shale in China[J].Chemical Industry and Engineering Progress, 2012, 31(11): 2359-2363.)
[9] 柏靜儒, 韓冰, 李夢迪, 等. 黑龍江雞西油頁巖綜合利用過程能效分析[J].東北電力大學(xué)學(xué)報, 2015, 35(12): 56-61. (BAI Jingru, HAN Bing, LI Mengdi, et al. Energy efficiency analysis of oil shale in the process of comprehensive utilization in Jixi area of Heilongjiang[J].Journal of Northeast Dianli University, 2015, 35(12): 56-61.)
[10] ZHANG L D, ZHANG X, LI S H, et al. Comprehensive utilization of oil shale and prospect analysis [J].Energy Procedia, 2012, 17(Part A): 39-43.
[11] WANG S, JIANG X, HAN X, et al. Investigation of Chinese oil shale resources comprehensive utilization performance[J].Energy, 2012, 42(1): 224-232.
[12] 孫鍵, 王擎, 孫東紅, 等. 油頁巖綜合利用集成技術(shù)與循環(huán)經(jīng)濟[J].現(xiàn)代電力, 2007, 24(5): 57-67. (SUN Jian, WANG Qing, SUN Donghong, et al. Integrated technology for shale comprehensive utilization and cycling economy[J].Modern Electric Power, 2007, 24(5): 57-67.)
[13] 姜秀民, 韓向新, 崔志剛. 油頁巖綜合利用技術(shù)的研究[J].自然科學(xué)進展, 2005, 15(11): 1342-1345. (JIANG Xiumin, HAN Xiangxin, CUI Zhigang. Study on comprehensive utilization of oil shale[J].Progress in Natural Science, 2005, 15(11): 1342-1345.)
[14] 楊慶春, 周懷榮, 楊思宇, 等. 油頁巖開發(fā)利用技術(shù)及系統(tǒng)集成的研究進展[J].化工學(xué)報, 2016, 67(1): 109-118. (YANG Qingchun, ZHOU Huairong, YANG Siyu, et al. Research progress on utilization and systemic integration technologies of oil shale[J].CIESC Journal, 2016, 67(1): 109-118.)
[15] 朱明善. 能量系統(tǒng)的分析[M].北京: 清華大學(xué)出版社, 1985: 8-22.
[16] MAGO P J, SRINIVASAN K K, CHAMRA L M, et al. An examination of exergy destruction in organic Rankine cycles[J].International Journal of Energy Research, 2010, 32(10): 926-938.
[17] HEPBASLI A, KE?EBAA. A comparative study on conventional and advanced exergetic analyses of geothermal district heating systems based on actual operational data[J].Energy and Buildings, 2013, 61: 193-201.
[18] ACIKKALP E, ARAS H, HEPBASLI A. Advanced exergy analysis of an electricity-generating facility using natural gas[J].Energy Conversion and Management, 2014, 82: 146-153.
[19] MOROSUK T, TSATSARONIS G. Advanced exergy analysis for chemically reacting systems-application to a simple open gas-turbine system[J].International Journal of Thermodynamics, 2009, 12(3): 105-111.
[20] 劉強, 段遠源. 超臨界600 MW火電機組熱力系統(tǒng)的分析[J].中國電機工程學(xué)報, 2010, 30(32): 8-12. (LIU Qiang, DUAN Yuanyuan. Exergy analysis for thermal power system of a 600 MW supercritical power unit[J].Proceedings of the CSEE, 2010, 30(32): 8-12.)
[21] 柏靜儒, 張慶燕, 白章, 等. 油頁巖固體熱載體綜合利用系統(tǒng)的分析模型[J].東北電力大學(xué)學(xué)報, 2017, 37(1): 18-23. (BAI Jingru, ZHANG Qingyan, BAI Zhang, et al.Exergy analysis model of oil shale comprehensive utilization system on solid heat carrier technology[J].Journal of Northeast Dianli University, 2017, 37(1): 18-23.)
[22] TSATSARONIS G, MOROSUK T. Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas[J].Energy, 2010, 35(2): 820-829.
[23] 王宇, 韓巍, 金紅光, 等. 新型中低溫混合工質(zhì)聯(lián)合循環(huán)[J].中國電機工程學(xué)報, 2003, 23(11): 204-208. (WANG Yu, HAN Wei, JIN Hongguang, et al. A novel binary cycle with mid and low temperature heat recovery[J].Proceedings of the CSEE, 2003, 23(11): 204-208.)
[24] MOROSUK T, TSATSARONIS G. Comparative evaluation of LNG-based cogeneration systems using advanced exergetic analysis[J].Energy, 2011, 36(6): 3771-3779.
[25] 楊博, 周全. 化工過程系統(tǒng)用能評價與優(yōu)化方法研究進展[J].化工裝備技術(shù), 2009, 30(1): 70-73. (YANG Bo, ZHOU Quan. Research progress on evaluation and optimization method of chemical process system[J].Chemical Equipment Technology, 2009, 30(1): 70-73.)
[26] 柏靜儒, 白章, 王擎, 等. 油頁巖固體熱載體綜合利用系統(tǒng)工藝模擬[J].石油學(xué)報(石油加工), 2014, 67(5): 902-908. (BAI Jingru, BAI Zhang, WANG Qing, et al. Process simulation of oil shale comprehensive utilization system on solid heat carrier technology[J].Acta Petrolei Sinica(Petroleum Processing Section), 2014, 67(5): 902-908.)
[27] 柏靜儒, 白章, 王擎, 等. 基于Aspen Plus的樺甸式油頁巖干餾工藝系統(tǒng)模擬[J].化工學(xué)報, 2012, 63(12): 4075-4081. (BAI Jingru, BAI Zhang, WANG Qing, et al. Process simulation for Huandian-type oil shale retorting system by Aspen Plus[J].CIESC Journal, 2012, 63(12): 4075-4081.)
[28] 白章, 柏靜儒, 王擎, 等. 撫順式油頁巖干餾工藝系統(tǒng)模擬及分析[J].中國電機工程學(xué)報, 2014, 34(14): 2228-2234. (BAI Zhang, BAI Jingru, WANG Qing, et al. Process simulation and analysis of the Fushun-type oil shale retorting system[J].Proceedings of the CSEE, 2014, 34(14): 2228-2234.)
[29] DUNBAR W R, LIOR N M. Sources of combustion irreversibility[J].Combustion Science and Technology, 1994, 103(1-6): 41-61.
Energy Analysis and Exergy Analysis of Oil Shale Comprehensive UtilizationSystem on Solid Heat Carrier Technology
BAI Jingru1, ZHANG Qingyan1, WANG Lintao1, BAI Zhang2, WANG Qing1
(1.EngineeringResearchCenterofOilShaleComprehensiveUtilization,MinistryofEducation,NortheastElectricPowerUniversity,Jilin132012,China; 2.InstituteofEngineeringThermophysics,ChineseAcademyofSciences,Beijing100190,China)
The Aspen Plus software was used to simulate the oil shale comprehensive utilization system built with solid heat carrier technology. Moreover, the income and expense distribution of energy and exergy were calculated and analyzed in detail with the simulation results using the energy and exergy analysis approach, and we mapped the flow charts of energy and exergy in the system to describe the energy distribution and energy loss distribution of each thermal process. The results show that when the oil shale input is 100 kg/s, the irreversible exergy loss in internal retort furnace (i.e., the exergy loss in the pyrolysis reaction) is 47.43%, which accounts toward the most of the lost exergies in the whole system. It was also observed that 11.03% of oil shale fuel chemistry energy is devalued as the pyrolysis product heat energy. In addition, among all the heat losses of the comprehensive utilization system, the heat loss energy grade of the condensing unit contributes the most.
oil shale; solid heat carrier; comprehensive utilization; energy analysis; exergy analysis
2016-06-21
吉林市科技計劃項目(201434001)和吉林省重點科技攻關(guān)項目(20140204004SF)資助
柏靜儒,女,教授,博士,研究方向為油頁巖綜合利用;Tel:0432-64807366;E-mail:bai630@mail.nedu.edu.cn
1001-8719(2017)04-0708-09
TE662
A
10.3969/j.issn.1001-8719.2017.04.015