楊宗英,張一柳,胡 鯤,楊先樂,*,劉力碩,張鳳翔,蔡紅桂
(1.上海海洋大學(xué) 國(guó)家水生動(dòng)物病原庫(kù),上海 201306; 2.南昌市農(nóng)業(yè)科學(xué)院,江西 南昌 330038; 3.興化市漁業(yè)技術(shù)指導(dǎo)站,江蘇 興化 225700; 4.興化市安豐鎮(zhèn)水產(chǎn)站,江蘇 興化 225766)
溴氰菊酯對(duì)中華絨螯蟹肝胰腺氧化脅迫效應(yīng)和組織結(jié)構(gòu)的影響
楊宗英1,2,張一柳1,胡 鯤1,楊先樂1,*,劉力碩1,張鳳翔3,蔡紅桂4
(1.上海海洋大學(xué) 國(guó)家水生動(dòng)物病原庫(kù),上海 201306; 2.南昌市農(nóng)業(yè)科學(xué)院,江西 南昌 330038; 3.興化市漁業(yè)技術(shù)指導(dǎo)站,江蘇 興化 225700; 4.興化市安豐鎮(zhèn)水產(chǎn)站,江蘇 興化 225766)
為探究溴氰菊酯對(duì)中華絨螯蟹的毒性和致毒機(jī)制,從免疫學(xué)和形態(tài)學(xué)2個(gè)方面研究了溴氰菊酯對(duì)中華絨螯蟹的毒害作用。采用24 h換水式漁藥毒性試驗(yàn)的方法,先測(cè)出溴氰菊酯對(duì)中華絨螯蟹的24 h-LC50、48 h-LC50、96 h-LC50分別為4.289 4、3.481 8、1.319 5 μg·L-1,安全濃度為0.658 9 μg·L-1;再選取96 h-LC50的1/2(濃度Ⅰ)、1/5(濃度Ⅱ)、1/10(濃度Ⅲ)3個(gè)溴氰菊酯濃度組為試驗(yàn)組,空白組和溶劑組為對(duì)照組,分別在給藥后測(cè)定肝胰腺超氧化物歧化酶(SOD)、過氧化氫酶(CAT)的活性和丙二醛(MDA)積累量等氧化脅迫相關(guān)指標(biāo)的變化;同時(shí)在溴氰菊酯脅迫15 d后,觀察各濃度組中華絨螯蟹肝胰腺組織結(jié)構(gòu)的變化。結(jié)果表明:(1)各個(gè)試驗(yàn)組SOD和CAT活力都呈現(xiàn)了先下降后上升再下降的變化趨勢(shì),試驗(yàn)組MDA含量始終高于空白組,空白組和溶劑組各個(gè)時(shí)間點(diǎn)各項(xiàng)指標(biāo)之間無(wú)明顯差異。脅迫6 h后,各試驗(yàn)組的CAT的活力極顯著低于空白組,其中濃度Ⅱ和Ⅲ組比空白組下降了37.96%和38.92%,MDA含量極顯著高于空白組;脅迫12~24 h,SOD和CAT分別受到誘導(dǎo),24 h時(shí)試驗(yàn)組的3個(gè)濃度組SOD活力分別比空白組升高了72.13%、87.93%和83.20%,MDA含量減少;脅迫48 h和72 h時(shí),SOD和CAT活力受到抑制,72 h時(shí),濃度Ⅰ和濃度Ⅲ組的SOD分別比空白組下降了40.94%和51.06%,濃度Ⅲ組的CAT值比空白組下降了32.58%,隨著脅迫時(shí)間的延長(zhǎng),MDA的積累量逐漸增加;(2)在溴氰菊酯脅迫15 d后,各試驗(yàn)組中華絨螯蟹的肝胰腺結(jié)構(gòu)均受到了不同程度的破壞,B細(xì)胞數(shù)量減少,基膜增厚,肝胰腺上皮細(xì)胞腫大并出現(xiàn)空泡樣變性,隨著溴氰菊酯的濃度增大,肝胰腺受損程度加大,空泡數(shù)量增多,上皮細(xì)胞脫落,肝胰腺基膜和上皮細(xì)胞分離且部分破裂,細(xì)胞核固縮。由此得出,溴氰菊酯對(duì)淡水中華絨螯蟹屬于高毒藥物,隨著溴氰菊酯脅迫時(shí)間的延長(zhǎng)和脅迫濃度的增加,肝胰腺M(fèi)DA含量增加,機(jī)體非特異性防御系統(tǒng)受到損傷,肝胰腺正常細(xì)胞結(jié)構(gòu)受到破壞。
溴氰菊酯;中華絨螯蟹;急性毒性;氧化脅迫指標(biāo);肝胰腺組織結(jié)構(gòu)
擬除蟲菊酯(Pyrethroids)因具有高效、廣譜、低毒和能夠生物降解等特性得到廣泛的應(yīng)用[1],溴氰菊酯是擬除蟲菊酯類農(nóng)藥中一種重要的廣譜殺蟲劑[2-3],許多地區(qū)用于清除野雜魚和有害生物,有的甚至用來(lái)清塘[4-5]。擬除蟲菊酯對(duì)哺乳類和鳥類的毒性不大,但是對(duì)水生動(dòng)物屬于高毒藥物,有研究表明,擬除蟲菊酯對(duì)魚類的毒性比鳥類和哺乳動(dòng)物高10~1 000倍[6],目前菊酯類殺蟲藥對(duì)水生生物的研究主要集中在魚類[7-8]和蝦類[9]。
中華絨螯蟹(Eriocheirsinensis)又稱河蟹、毛蟹、清水蟹、大閘蟹,因其味道鮮美而深受人們喜愛,是一種重要的淡水養(yǎng)殖動(dòng)物。我國(guó)的中華絨螯蟹養(yǎng)殖模式在不斷地改善和發(fā)展,養(yǎng)殖產(chǎn)量也在逐年上升,統(tǒng)計(jì)資料顯示,2009年全國(guó)中華絨螯蟹養(yǎng)殖面積達(dá)96.62萬(wàn)hm2,養(yǎng)殖總產(chǎn)值達(dá)320億元[10]。隨著中華絨螯蟹養(yǎng)殖產(chǎn)業(yè)的發(fā)展,中華絨螯蟹的質(zhì)量和安全問題也越來(lái)越受到人們的關(guān)注,由于農(nóng)業(yè)生產(chǎn)中菊酯類農(nóng)藥的廣泛應(yīng)用以及有些養(yǎng)殖戶使用菊酯類農(nóng)藥清塘,易造成菊酯類農(nóng)藥污染養(yǎng)殖水源,而對(duì)中華絨螯蟹產(chǎn)生毒害作用。有研究指出,2015年興化市大面積爆發(fā)的中華絨螯蟹“水癟子”病就是由于溴氰菊酯清塘造成的[11],目前,僅見耿雪冰等[12]做了溴氰菊酯對(duì)中華絨螯蟹的急性毒性研究,致毒機(jī)理的研究還未見報(bào)道。
本文在溴氰菊酯對(duì)中華絨螯蟹急性毒性試驗(yàn)的基礎(chǔ)上,選擇不同的藥物濃度對(duì)中華絨螯蟹進(jìn)行毒害脅迫,研究亞致死濃度下溴氰菊酯對(duì)其抗氧化脅迫指標(biāo)及肝胰腺組織結(jié)構(gòu)的影響,進(jìn)而探究中華絨螯蟹“水癟子”病發(fā)病原因,或可為中華絨螯蟹的健康養(yǎng)殖和疾病防控提供參考。
1.1 試驗(yàn)動(dòng)物
中華絨螯蟹取自江蘇省興化市安豐鎮(zhèn)某養(yǎng)殖場(chǎng),個(gè)體質(zhì)量為(114.04±9.14)g,在室內(nèi)暫養(yǎng)一周,中華絨螯蟹死亡率低于5%且穩(wěn)定時(shí),挑選健康、附肢健全、規(guī)格相對(duì)一致的中華絨螯蟹進(jìn)行試驗(yàn)。試驗(yàn)用水為充分曝氣的居民飲用自來(lái)水,水溫為(23.00±0.05)℃,水體pH值為7.25±0.25,溶解氧為(6.85±0.15)mg·L-1。試驗(yàn)前1 d停止投喂中華絨螯蟹全價(jià)配合飼料。
1.2 主要試驗(yàn)藥物和器材
藥品:溴氰菊酯原藥(≥98%,D9315)購(gòu)于Sigma公司,用丙酮配制為10 mg·L-1的母液;冰醋酸(分析純),二甲苯(分析純),無(wú)水乙醇(分析純),苦味酸均購(gòu)于上海國(guó)藥集團(tuán);蠟塊,蘇木精,伊紅均購(gòu)于上海生工生物工程有限公司;SOD、CAT、MDA和考馬斯亮藍(lán)總蛋白試劑盒均購(gòu)于南京建成生物工程研究所。
儀器:冷凍離心機(jī)(BECKMAN COULTER AgllegraX-15R),紫外分光光度計(jì)(普析通用T6-新世紀(jì)),組織勻漿機(jī)(高信化玻),組織切片機(jī)(LEICA RM2135),Olympus顯微鏡(OLYMPUS BX51)。
1.3 試驗(yàn)方法
1.3.1 溴氰菊酯對(duì)中華絨螯蟹的急性毒性試驗(yàn)
選擇90 L的水族箱,放水20 L,各箱中加入溴氰菊酯的質(zhì)量濃度分別為0.25、0.5、1、2、4、8、16 μg·L-1,進(jìn)行預(yù)試驗(yàn)。正式試驗(yàn)則在致蟹24 h全部死亡的最低濃度和96 h全部存活的最高濃度區(qū)間設(shè)置6個(gè)濃度組,并以等比數(shù)列排布,濃度系數(shù)間隔≤2.2[20],濃度對(duì)應(yīng)為0.5、1、2、4、8、16 μg·L-1,同時(shí)設(shè)置空白組和溶劑組,溶劑組的丙酮濃度和最高濃度藥液中所含丙酮量相同,另設(shè)2個(gè)平行試驗(yàn)組,每個(gè)平行試驗(yàn)組放中華絨螯蟹10只,總共240只試驗(yàn)中華絨螯蟹。試驗(yàn)期間停止喂食,在試驗(yàn)開始的6 h,觀察各組中華絨螯蟹的中毒狀況,分別在24、48、72、96 h記錄各組中華絨螯蟹的死亡數(shù)目,中華絨螯蟹的死亡以鰓停止呼吸為標(biāo)準(zhǔn),一旦發(fā)現(xiàn)死亡立即清理。
1.3.2 氧化脅迫相關(guān)指標(biāo)的測(cè)定
在確定溴氰菊酯對(duì)中華絨螯蟹的96 h-LC50的基礎(chǔ)上,分別設(shè)置96 h-LC50的1/2、1/5、1/10濃度組,同時(shí)設(shè)空白組和溶劑組,各組均設(shè)3個(gè)平行試驗(yàn),每個(gè)平行放中華絨螯蟹10只,總共150只試驗(yàn)中華絨螯蟹,分別在脅迫6、12、24、48、72 h之后,從各組中任意取5只中華絨螯蟹,冰凍麻醉之后,迅速采取肝胰腺,用預(yù)冷的生理鹽水制成10%的勻漿液。
肝胰腺中SOD、CAT和MDA的測(cè)定嚴(yán)格按照南京建成試劑盒使用說(shuō)明書操作。SOD的測(cè)定采用黃嘌呤氧化酶法,定義為每毫克組織蛋白在1 mL反應(yīng)液中SOD抑制率達(dá)到50%時(shí)所對(duì)應(yīng)的數(shù)值為1個(gè)活力單位(U),單位為U·mg-1pro;CAT的測(cè)定采用240 nm紫外分光光度法,定義為每克組織蛋白中CAT每秒鐘分解吸光度為0.50~0.55的底物中過氧化氫相對(duì)量為1個(gè)活力單位,單位為U·mg-1pro;MDA的測(cè)定采用硫代巴比妥酸法,MDA可與硫代巴比妥酸縮合,形成紅色產(chǎn)物,在 532 nm處有最大吸收峰,單位為nmol·mg-1pro;蛋白含量的測(cè)定采用考馬斯亮藍(lán)法,單位為mg pro·mL-1。
1.3.3 肝胰腺組織切片的制備
在96 h-LC50的1/2、1/5、1/10濃度脅迫第15天,再分別從3個(gè)濃度組和空白對(duì)照組隨機(jī)取出3只蟹,迅速取出肝胰腺,Bouin氏液固定24 h,固定樣品經(jīng)70%、80%、95%、100%梯度酒精脫水,二甲苯透明,常規(guī)石蠟包埋。使用手搖式切片機(jī)切片(厚度約5 μm),H.E(蘇木精-伊紅)染色,Olympus顯微鏡觀察、拍片。
1.4 數(shù)據(jù)處理
采用TSK法[21]計(jì)算溴氰菊酯對(duì)中華絨螯蟹的半致死濃度;采用Reed-Muench法[22]計(jì)算安全濃度,試驗(yàn)所得數(shù)據(jù)用平均值±標(biāo)準(zhǔn)差(mean±SD)表示;采用Microsoft Office Excel 2007和SPSS 17.0進(jìn)行統(tǒng)計(jì)計(jì)算并進(jìn)行單因素方差分析(one-way ANOVA),氧化脅迫生理指標(biāo)均為5個(gè)樣品的平均值,運(yùn)用Duncan’s多重比較對(duì)均值進(jìn)行差異顯著性檢驗(yàn),顯著水平設(shè)為P<0.05,極顯著水平設(shè)為P<0.01。
2.1 中華絨螯蟹溴氰菊酯中毒癥狀
試驗(yàn)中發(fā)現(xiàn),剛把中華絨螯蟹放入藥液時(shí),即出現(xiàn)爬箱壁爬氣石試圖逃出水族箱的行為;投藥4 h后,中華絨螯蟹開始出現(xiàn)中毒癥狀,主要表現(xiàn)出躁動(dòng)不安,活動(dòng)頻繁,身體失去平衡;隨著毒害時(shí)間的延長(zhǎng),中華絨螯蟹開始出現(xiàn)肌肉抽搐,附肢僵硬、張開,甚至附肢脫落,并出現(xiàn)明顯的抱團(tuán)和相互攻擊的打架行為。
2.2 溴氰菊酯對(duì)中華絨螯蟹的急性毒性效應(yīng)
暴露在不同濃度中的中華絨螯蟹的死亡情況見表1(為3個(gè)平行試驗(yàn)的平均結(jié)果)。根據(jù)TSK[21]可求出24 h-LC50、48 h-LC50、96 h-LC50分別為4.289 4、3.481 8、1.319 5 μg·L-1,安全濃度為0.658 9 μg·L-1。依據(jù)GB/T 21281—2007[23]危險(xiǎn)化學(xué)品魚類急性毒性分級(jí)試驗(yàn)標(biāo)準(zhǔn),可得出溴氰菊酯對(duì)中華絨螯蟹屬于高毒性,且隨著濃度的增加,中華絨螯蟹的死亡率升高,有明顯的劑量正相關(guān)效應(yīng),空白組和溶劑組中華絨螯蟹的死亡率均為0。
2.3 溴氰菊酯對(duì)中華絨螯蟹肝胰腺SOD活力的影響
不同濃度溴氰菊酯脅迫下,中華絨螯蟹肝胰腺的SOD活力如圖1所示,試驗(yàn)組SOD活力表現(xiàn)出先下降后上升再下降的變化趨勢(shì);在整個(gè)試驗(yàn)過程中空白組和溶劑組的SOD活力變化不明顯(P>0.05),且溶劑組和空白組的差異不顯著(P>0.05),溴氰菊酯脅迫6 h后,3個(gè)濃度組均出現(xiàn)了SOD活力降低,但與空白組相比無(wú)明顯差異;12 h之后,3個(gè)濃度組的SOD活力出現(xiàn)了迅速上升,且極顯著(P<0.01)高于空白組,24 h后,試驗(yàn)組的SOD活力繼續(xù)上升,3個(gè)濃度組分別比空白組升高了72.13%、87.93%和83.20%;48 h后各濃度組SOD活力再次受到抑制,一直持續(xù)到72 h,各濃度組SOD活力均顯著低于空白組,濃度Ⅰ組和Ⅲ組分別比空白組下降了40.94%和51.06%。
2.4 溴氰菊酯對(duì)中華絨螯蟹肝胰腺CAT活力的影響
不同濃度溴氰菊菊酯脅迫下,中華絨螯蟹肝胰腺CAT活力變化見圖2,各時(shí)間點(diǎn)溶劑組和空白組的CAT活力無(wú)明顯變化(P>0.05),溶劑組和空白組的CAT活力差異不顯著(P>0.05),說(shuō)明溶劑對(duì)中華絨螯蟹的肝胰腺CAT活力影響不大。CAT活力出現(xiàn)了與SOD相似的變化規(guī)律,即先下降后上升再下降,溴氰菊酯脅迫6 h后,各濃度組CAT活力均出現(xiàn)了極顯著(P<0.01)的下降;脅迫12 h時(shí),CAT的活力被誘導(dǎo),24 h時(shí)CAT活力繼續(xù)升高,濃度Ⅰ、濃度Ⅱ、濃度Ⅲ組的CAT活力分別比空白組高了56.21%、36.78%和24.74%;48~72 h,各濃度組的CAT活力出現(xiàn)持續(xù)性降低,72 h時(shí),濃度Ⅱ組CAT活力顯著(P<0.05)低于空白組,濃度Ⅲ組極顯著(P<0.01)低于空白組,比空白組下降了32.58%。
表1 不同濃度的溴氰菊酯對(duì)中華絨螯蟹的累積致死數(shù)
Table 1 Cumulative mortality number ofE.sinensisat different deltamethrin concentration
中毒時(shí)間Poisoningtime/h累積死亡數(shù)Cumulativemortalitynumber溴氰菊酯濃度Deltamethrinconcentration/(μg·L-1)0.5124816溶劑組Vehiclegroup空白組Blankgroup240123710004801358100072124691000962579101000
無(wú)相同大寫或小寫字母表示組間差異極顯著(P<0.01)或顯著(P<0.05)。下同The values without the same capital or lowercase letters indicate extremely significant (P<0.01) or significant difference among groups(P<0.05). The same as below圖1 溴氰菊酯對(duì)中華絨螯蟹肝胰腺SOD酶活力的影響Fig.1 Effects of deltamethrim on SOD activities in hepatopancreas of E. sinensis
圖2 溴氰菊酯對(duì)中華絨螯蟹肝胰腺CAT酶活力的影響Fig.2 Effects of deltamethrin on CAT activities in hepatopancreas in E. sinensis
2.5 溴氰菊酯對(duì)中華絨螯蟹肝胰腺M(fèi)DA含量的影響
不同濃度溴氰菊酯脅迫導(dǎo)致的中華絨螯蟹肝胰腺中MDA含量的變化如圖3所示,整個(gè)試驗(yàn)過程,各濃度組的MDA均高于空白組和溶劑組,溶劑組和空白組在各個(gè)時(shí)間點(diǎn)的MDA變化不顯著,且溶劑組和空白組的MDA含量差異不明顯(P>0.05),說(shuō)明溶劑對(duì)中華絨螯蟹肝胰腺中的MDA含量無(wú)顯著影響。溴氰菊酯脅迫6 h后,各個(gè)濃度組的MDA含量均出現(xiàn)了極顯著(P<0.01)升高,到12 h時(shí),濃度Ⅰ組、濃度Ⅱ組和濃度Ⅲ組分別是空白組的2.77倍、3.20倍和3.25倍;24 h時(shí),各濃度組MDA含量出現(xiàn)了明顯的降低,但是在48~72 h,試驗(yàn)組MDA含量又出現(xiàn)了極顯著性(P<0.01)回升,肝胰腺處于脂質(zhì)過氧化狀態(tài)。
圖3 溴氰菊酯對(duì)中華絨螯蟹肝胰腺M(fèi)DA含量的影響Fig.3 Effects of deltamethrin on MDA content in hepatopancreas in E. sinensis
2.6 助溶劑對(duì)中華絨螯蟹的毒性
溴氰菊酯不溶于水,一般用二甲苯為溶劑、農(nóng)乳2201為乳化劑配制成乳油[24],本試驗(yàn)用毒性相對(duì)較小的丙酮作為溶劑,急性毒性試驗(yàn)溶劑組中所含丙酮量等同于試驗(yàn)組最高濃度組中含有的丙酮,結(jié)果表明溶劑組和空白組均沒有出現(xiàn)中華絨螯蟹死亡,且溶劑組中華絨螯蟹肝胰腺抗氧化指標(biāo)和空白對(duì)照組的差異不顯著,可見以丙酮配制的溴氰菊酯藥液沒有顯著影響溴氰菊酯的毒性,溴氰菊酯是關(guān)鍵的致死藥物。
2.7 溴氰菊酯對(duì)中華絨螯蟹肝胰腺組織結(jié)構(gòu)的影響
組織切片觀察發(fā)現(xiàn),空白組中華絨螯蟹的肝小管結(jié)構(gòu)正常,上皮細(xì)胞排列整齊,很少有空泡出現(xiàn)(圖4),3個(gè)溴氰菊酯濃度組中,中華絨螯蟹的肝胰腺組織結(jié)構(gòu)分別出現(xiàn)了不同的變化。濃度Ⅲ組單層柱狀上皮細(xì)胞腫大,B細(xì)胞數(shù)量減少,柱狀上皮細(xì)胞細(xì)胞質(zhì)中出現(xiàn)空泡,肝小管基膜增厚;濃度Ⅱ組可見上皮細(xì)胞中的空泡數(shù)量增多,空泡中出現(xiàn)顆粒物質(zhì),且有部分上皮細(xì)胞和管壁脫離,落入管腔;濃度Ⅰ組,基膜與單層柱狀上皮細(xì)胞之間形成大量的空泡,上皮細(xì)胞大量脫落,部分基膜與管壁脫離,細(xì)胞核固縮。
3.1 溴氰菊酯對(duì)中華絨螯蟹的毒性
溴氰菊酯對(duì)于哺乳動(dòng)物和鳥類屬于中毒低毒[6],對(duì)魚類[25]、海洋無(wú)脊椎動(dòng)物[26]、浮游動(dòng)物[27]以及大型溞[28]屬于高毒的研究已有很多報(bào)道,但是菊酯類藥物對(duì)于甲殼動(dòng)物的毒性,則是蝦類研究較多,研究表明,溴氰菊酯可以影響美國(guó)龍蝦神經(jīng)纖維蛋白的磷酸化和脫磷酸化作用[29],可以使克氏原鰲蝦中毒并造成氧化脅迫[30]。但是關(guān)于溴氰菊酯對(duì)蟹類的毒性研究,目前國(guó)內(nèi)外僅見耿雪冰等[12]做了溴氰菊酯對(duì)中華絨螯蟹的急性毒性研究,并且溴氰菊酯對(duì)中華絨螯蟹成蟹的24 h-LC50、48 h-LC50、96 h-LC50分別為3.16、2.19和0.65 μg·L-1,安全濃度為0.46 μg·L-1,與本試驗(yàn)的24 h-LC50、48 h-LC50、96 h-LC50分別為4.289 4、3.481 8和1.319 5 μg·L-1,安全濃度為0.658 9 μg·L-1相比更低,可能是由于中華絨螯蟹規(guī)格、養(yǎng)殖環(huán)境以及試驗(yàn)條件等不同原因造成的,但兩者的獨(dú)立試驗(yàn)結(jié)果都能說(shuō)明溴氰菊酯對(duì)中華絨螯蟹屬于高毒性藥物。
3.2 溴氰菊酯對(duì)中華絨螯蟹氧化脅迫指標(biāo)的影響
甲殼動(dòng)物具有非特異性免疫,其主要由血細(xì)胞及血細(xì)胞被激發(fā)釋放出的酚氧化酶、溶菌酶和抗氧化酶等多種免疫因子組成[31],其中SOD和CAT是機(jī)體抗氧化系統(tǒng)的關(guān)鍵酶,MDA是脂質(zhì)過氧化的代謝產(chǎn)物,這3個(gè)指標(biāo)的變化能反映機(jī)體受氧化損傷程度。
A, 空白組正常肝小管,肝細(xì)胞排列整齊,管腔(Lu)清晰,基膜(Bm)完整,核圓形位于基底部,→指示Bc為分泌細(xì)胞,F(xiàn)c為吸收細(xì)胞,Ec為胚細(xì)胞,×400;B, 濃度Ⅲ(96h-LC50/10)組,肝細(xì)胞腫大并部分空泡樣變性,基膜增厚,細(xì)胞核固縮,→指示Va為空泡,Lu為管腔,Bm為基膜,×400;C, 濃度Ⅱ(96h-LC50/5)組,空泡數(shù)量增多,體積增大,部分上皮細(xì)胞與管壁脫離,落入管腔,×400;D, 濃度Ⅰ(96h-LC50/2)組,基膜和單層柱狀上皮細(xì)胞之間出現(xiàn)大量的空泡,上皮細(xì)胞大量脫落,部分基膜與上皮細(xì)胞分離甚至斷裂,×400。A, Normal hepatic lobule in control group, hepatopancreas cells arranged well, lumen (Lu) clear, basement membrane(Bm) has integrity structure, nuclear circle located at base; arrows point to the B cells(Bc), F cells(Fc), E cells(Ec), ×400;B, Concentration Ⅲ (96h-LC50/10) group , some hepatic cells were swelling and appear cavity, some vacuoles appear in B cells, nucleus were pyknotic, arrows point to vacuole (Va), basement membrane(Bm), lumen (Lu), ×400;C, Concentration Ⅱ (96h-LC50/5) group, enlarged size and increased number of vacuoles, some hepatic cells appeared crushing and many cell debris appear in the lumen, ×400;D, Concentration Ⅰ (96h-LC50/2) group, many vacuoles appeared between basement membrane and epithelial cells, many epithelial cells fell off, parts of the basement membranes were separated from epithelial cells and ruptured, ×400.圖4 不同濃度的溴氰菊酯對(duì)中華絨螯蟹肝胰腺組織結(jié)構(gòu)的影響Fig.4 Effects of different concentrations of deltamethrin on histological structure of hepatopancreas in E. sinensis
本試驗(yàn)中,在3個(gè)溴氰菊酯藥液濃度脅迫6 h之后,各試驗(yàn)組SOD和CAT的活力均出現(xiàn)了顯著性降低,肝胰腺中的MDA含量升高,說(shuō)明溴氰菊酯對(duì)中華絨螯蟹造成了氧化損傷,在12 h后,SOD和CAT活力都出現(xiàn)了顯著性提高,MDA含量和6 h時(shí)變化不大,說(shuō)明機(jī)體雖然通過增強(qiáng)SOD和CAT的活力對(duì)溴氰菊酯的脅迫做出了適應(yīng)性改變,但是機(jī)體仍然處于脂質(zhì)過氧化狀態(tài);24 h后,SOD和CAT的活力持續(xù)維持高水平,MDA含量也大幅度減少,與空白組的MDA含量差異性減小,這說(shuō)明SOD和CAT的持續(xù)高活力,清除了體內(nèi)的部分活性氧自由基,MDA含量降低,中華絨螯蟹的脂質(zhì)過氧化程度降低;48 h之后,中華絨螯蟹肝胰腺中的SOD和CAT活力再次下降,直至72 h,濃度Ⅰ組和濃度Ⅲ組的SOD活力極顯著低于空白組,濃度Ⅲ組CAT活力極顯著低于空白組,各試驗(yàn)組MDA含量極顯著升高,這可能是由于溴氰菊酯的長(zhǎng)期脅迫產(chǎn)生的大量活性氧超過了SOD和CAT的清除能力,造成MDA大量積累,造成細(xì)胞損傷。
閆海燕等[32]用氰戊菊酯脅迫鯉后,鯉肝臟中的SOD表現(xiàn)出了先上升后下降的趨勢(shì)。本試驗(yàn)中,溴氰菊酯誘導(dǎo)中華絨螯蟹,肝胰腺SOD表現(xiàn)出了先下降后上升再下降的趨勢(shì),這可能與不同的藥物毒性不同有關(guān),氰戊菊酯對(duì)鯉的96 h-LC50為50.35 μg·L-1,而本文計(jì)算溴氰菊酯對(duì)中華絨螯蟹的96 h-LC50為1.319 5 μg·L-1,毒性差別較大。CAT表現(xiàn)出了同SOD一樣抑制-誘導(dǎo)-抑制的變化趨勢(shì),這說(shuō)明隨著溴氰菊酯脅迫時(shí)間的延長(zhǎng),中華絨螯蟹有自身調(diào)節(jié)相關(guān)抗氧化酶的活力,通過自由基的產(chǎn)生和消除對(duì)外界環(huán)境做出了適應(yīng)性改變。
3.3 溴氰菊酯對(duì)中華絨螯蟹肝胰腺組織結(jié)構(gòu)的影響
中華絨螯蟹肝胰腺和其他十足目甲殼動(dòng)物[33]一樣,是甲殼動(dòng)物重要的消化免疫器官,主要由4種細(xì)胞組成,分別是B細(xì)胞(分泌細(xì)胞)、E細(xì)胞(胚細(xì)胞)、F細(xì)胞(吸收細(xì)胞)和R細(xì)胞(儲(chǔ)存細(xì)胞)。動(dòng)物肝胰腺的組織結(jié)構(gòu)變化常??梢苑从钞愇锏亩拘源笮?,毒物的毒性越大,中華絨螯蟹肝胰腺結(jié)構(gòu)受到破壞的程度越高。
本研究中發(fā)現(xiàn),在3個(gè)濃度的溴氰菊酯藥液脅迫下,中華絨螯蟹的肝胰腺結(jié)構(gòu)受到了不同程度的破壞,肝胰腺上皮細(xì)胞出現(xiàn)大面積的空泡,并且溴氰菊酯的濃度越高,中華絨螯蟹的肝胰腺受損越嚴(yán)重,表現(xiàn)出明顯的劑量效應(yīng),這與中華絨螯蟹受到全氟辛烷磺酸鹽脅迫[34]和小龍蝦受到黃曲霉素脅迫[35]時(shí)表現(xiàn)出的癥狀相似,推測(cè)肝胰腺上皮細(xì)胞空泡中出現(xiàn)的顆粒物質(zhì)可能含有溴氰菊酯或溴氰菊酯的代謝物,空泡可將這些毒物排除體外,起到解毒的作用。在溴氰菊酯脅迫下,中華絨螯蟹肝胰腺基膜的增厚是機(jī)體在受到脅迫時(shí)產(chǎn)生的膠原纖維和黑色素引起的,這些物質(zhì)可抑制病原體的幾丁質(zhì)酶和胞外蛋白酶的活性,從而抑制或殺死病原體,是動(dòng)物的一種自我防御[36]。
除此之外,甲殼動(dòng)物肝胰腺中的細(xì)胞比例在環(huán)境脅迫下會(huì)發(fā)生變化[37],不同濃度溴氰菊酯脅迫中華絨螯蟹,肝胰腺的B細(xì)胞減少,這與中華絨螯蟹受到全氟辛烷磺酸鹽脅迫和氨氮脅迫時(shí)[38]的結(jié)果一致。有研究表明,甲殼動(dòng)物B細(xì)胞由F細(xì)胞分化而來(lái)[39],在F細(xì)胞分化為B細(xì)胞過程中存在一種P-糖蛋白,這種蛋白可以消除某些化合物毒性[40],由此判斷中華絨螯蟹在溴氰菊酯脅迫下B細(xì)胞減少可能是因中華絨螯蟹利用了肝胰腺中相當(dāng)數(shù)量的B細(xì)胞進(jìn)行解毒,Cheng等[41]在研究中華絨螯蟹對(duì)Zn2+的解毒作用中也證明了這一點(diǎn),即中華絨螯蟹主要通過肝胰腺的B細(xì)胞進(jìn)行解毒,當(dāng)Zn2+濃度超過B細(xì)胞的解毒能力時(shí),會(huì)導(dǎo)致中華絨螯蟹肝胰腺損傷,溴氰菊酯對(duì)中華絨螯蟹的毒害是否和重金屬的毒害機(jī)制完全一致,還有待進(jìn)一步驗(yàn)證。
[2] MILAM C D, FARRIS J L, WILHIDE J D. Evaluating mosquito control pesticides for effect on target and non-target organisms [J].ArchivesofEnvironmentalContamination&Toxicology, 2000, 39(3):324-328.
[3] PARVEZ S, RAISUDDIN S. Copper modulates non-enzymatic antioxidants in the freshwater fishChannapunctata(Bloch) exposed to deltamethrin [J].Chemosphere, 2006, 62(8):1324-1332.
[4] 林玉鎖, 龔瑞忠, 朱忠林. 農(nóng)藥與生態(tài)環(huán)境保護(hù) [M]. 北京:化學(xué)工業(yè)出版社, 1999.
[5] MANUNZA B, DEIANA S, PINTORE M, et al. A molecular modeling study on the interaction between B-cyclodextrin and synthetic pyretroids [J].CarbohydrateResearch, 1997, 300(1):89-93.
[6] PAUL E A, SIMONIN H A. Toxicity of three mosquito insecticides to crayfish [J].BulletinofEnvironmentalContaminationandToxicology, 2006, 76(4):614-621.
[7] REHMAN H, AZIZ A T, SAGGU S, et al. Systematic review on pyrethroid toxicity with special reference to deltamethrin [J].JournalofEntomology&ZoologyStudies, 2014, 2(5):1-6.
[8] TOMLIN C D S. THE PESTICIDE MANUAL, A world compendium [M]. 14th ed. London: British Crop Protection Council, 2006: 286-287.
[9] L’HOTELLIER M, VINCENT P. Assessment of the impact of deltamethrin on aquatic species [C]// Brighton Crop Protection Conference-Pests and Diseases. 1986: 1109-1116.
[10] 周剛, 宋長(zhǎng)太. 河蟹健康養(yǎng)殖百問百答 [M]. 北京:中國(guó)農(nóng)業(yè)出版社, 2010.
[11] 朱健明, 王志, 蔡春芳, 等. 中華絨螯蟹“水癟子”的誘因及防治技術(shù) [J]. 科學(xué)養(yǎng)魚,2016(6):13-14. ZHU J M, WANG Z, CAI C F, et al. The causes and control technologies of “Shuibiezi” inEriocheirsinensis[J].ScientificFishFarming, 2016(6):13-14. (in Chinese)
[12] 耿雪冰, 沈美芳, 吳光紅, 等. 溴氰菊酯對(duì)河蟹的急性毒性研究 [J]. 水產(chǎn)養(yǎng)殖,2009,30(10):48-50. GENG X B, SHEN M F, WU G H, et al. Acute toxicity effects of Chinese mitten crab on deltamethrin [J].JournalofAquaculture, 2009, 30(10):48-50. (in Chinese with English abstract)
[13] GALETIN A, ITO K, HALLIFAX D, et al. CYP3A4 substrate selection and substitution in the prediction of potential drug-drug interactions [J].JournalofPharmacology&ExperimentalTherapeutics, 2005, 314(1):180-190.
[14] ITO K, HALLIFAX D, OBACH R S, et al. Impact of parallel pathways of drug elimination and multiple CYP involvement on drug-drug interactions: CYP2D6 paradigm [J].DrugMetabolism&Disposition:theBiologicalFateofChemicals, 2005, 33(6): 837-844.
[15] YAMANO K, YAMAMOTO K, KATASHIMA M, et al. Prediction of midazolam-CYP3A inhibitors interaction in the human liver from in vivo/in vitro absorption, distribution, and metabolism data [J].DrugMetabolism&Disposition:theBiologicalFateofChemicals, 2001, 29(4):443-452.
[16] MOULLAC G L, HAFFNER P. Environmental factors affecting immune responses in Crustacea [J].Aquaculture, 2000, 191(1):121-131.
[17] HALLIWELL B, GUTTERIDGE J M C. Free radicals in biology and medicine [M]. New York: Oxford University Press, 1999.
[18] PAPADIMITRIOU E, LOUMBOURDIS N S. Exposure of the frogRanaridibundato copper: impact on two biomarkers, lipid peroxidation, and glutathione [J].BulletinofEnvironmentalContaminationandToxicology, 2002, 69(6):885-891.
[19] PAPATHANASSIOU E, KING P E. Effects of starvation on the fine structure of the hepatopancreas in the common prawnPalaemonserratus, (pennant) [J].ComparativeBiochemistry&PhysiologyPartAPhysiology, 1984, 77(2):243-249.
[20] VIJVERBERG H P M. Neurotoxicological effects and the mode of action of pyrethroid insecticides [J].CriticalReviewsinToxicology, 1990, 21(2):105-126.
[21] HAMILTON M A, RUSSO R C, THURSTON R V. Trimmed Spearman-Karber method for estimating median lethal concentrations in bioassays [J].EnvironmentalScience&Technology, 1978, 12(4):714-719.
[22] 潘建林, 宋勝磊, 唐建清. 五氯酚鈉對(duì)克氏原螯蝦急性毒性試驗(yàn) [J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2005, 24(1):60-63. PAN J L, SONG S L, TANG J Q. Acute toxicity of sodium pentachlorophenate toCambarusclakii[J].JournalofAgro-EnvironmentScience, 2005, 24(1):60-63. (in Chinese with English abstract)
[23] 全國(guó)危險(xiǎn)化學(xué)品管理標(biāo)準(zhǔn)化技術(shù)委員會(huì).危險(xiǎn)化學(xué)品魚類毒性分級(jí)試驗(yàn)方法:GB/T 21281—2007[S].北京:中國(guó)標(biāo)準(zhǔn)出版社,2007.
[24] 王朝輝,尹伊偉. 常見擬除蟲菊酯農(nóng)藥原藥、商品藥及助溶劑對(duì)水生生物毒性的比較研究 [J]. 廣州環(huán)境科學(xué),1997,12(2):14-18. WANG C H, YIN Y W. Comparison on the toxicity of quasi-pyrethrin raw, commodity and solvent promoter to aquatic beings [J].GuangzhouHuanjingKexue, 1997, 12(2):14-18. (in Chinese with English abstract)
[25] GUARDIOLA F A, GNZALEZ-PRRAGA P, MESEGUER J, et al. Modulatory effects of deltamethrin-exposure on the immune status, metabolism and oxidative stress in gilthead seabream (SparusaurataL.) [J].Fish&ShellfishImmunology, 2014, 36(1): 120-129.
[26] KONTRECZKY C, FARKAS A, NEMCS K J, et al. Short-and long-term effects of deltamethrin on filtering activity of freshwater mussel (AnodontacygneaL.) [J].Ecotoxicology&EnvironmentalSafety, 1997, 38(3):195-199.
[27] TIDOU A S, MORETEAU J C, RAMADE F. Effects of lindane and deltamethrin on zooplankton communities of experimental ponds[J].Hydrobiologia, 1992, 232(2):157-168.
[28] TOUMI H, BOUMAIZA M, MILLET M, et al. Effects of deltamethrin (pyrethroid insecticide) on growth, reproduction, embryonic development and sex differentiation in two strains ofDaphniamagna(Crustacea, Cladocera) [J].ScienceoftheTotalEnvironment, 2013, 458-460:47-53.
[29] MIYAZAWA M, MATSUMURA F. Effects of deltamethrin on protein phosphorylation and dephosphorylation process in the nerve fibers of the American lobster,HomerusamericanusL [J].PesticideBiochemistry&Physiology, 1990, 36(2):147-155.
[30] 魏華,吳楠,沈竑,等. 溴氰菊酯對(duì)克氏原鰲蝦的氧化脅迫效應(yīng) [J]. 水產(chǎn)學(xué)報(bào),2010,34(5):733-738. WEI H, WU N, SHEN H, et al. Oxidative stress of deltamethrin to the liver of crayfish(Procambarusclarkia) [J].JournalofFisheriesofChina, 2010, 34(5):733-738. (in Chinese with English abstract)
[31] SODERHALL K. Special issue: Invertebrate immunity [J].Developmental&ComparativeImmunology, 1999, 23(4/5):263-266.
[32] 閆海燕, 曾令兵, 羅宇良. 氰戊菊酯對(duì)鯉SOD活性和MDA含量以及肝腎細(xì)胞形態(tài)的影響 [J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào), 2012, 31(4):499-505. YAN H Y, ZENG L B, LUO Y L. Effect of fenvalerate on activity of SOD, content of MDA and histomorphology of liver and kidney of carp [J].JournalofHuazhongAgriculturalUniversity, 2012, 31(4):499-505. (in Chinese with English abstract)
[33] 吳志強(qiáng), 姜國(guó)良, 李立德. 十足目動(dòng)物消化系統(tǒng)及消化酶生理研究概況 [J]. 海洋科學(xué), 2004, 28(3):50-54. WU Z Q, JIANG G L, LI L D. Study of the digestive system and physiology of decapoda: a review [J].MarineScience, 2004, 28(3):50-54. (in Chinese)
[34] ZHANG F, WEI J, LI Q, et al. Effects of perfluorooctane sulfonate on the immune responses and expression of immune-related genes in Chinese mitten-handed crabEriocheirsinensis[J].ComparativeBiochemistry&PhysiologyPartCToxicology&Pharmacology, 2015, 172-173:13-18.
[35] BAUTISTA M N, LAVILLA PITOGO C R, SUBOSA P F, et al. Aflatoxin B1 contamination of shrimp feeds and its effect on growth and hepatopancreas of pre-adultPenaeusmonodon[J].JournaloftheScienceofFoodandAgriculture, 1994, 65(1):5-11
[36] JIRAVANICHPAISAL P, MIYAZAKI T, LIMSUWAN C. Histopathology, biochemistry, and pathogenicity of Vibrio harveyi infecting black tiger prawnPenaeusmonodon[J].JournalofAquaticAnimalHealth, 1994, 6(1):27-35.
[37] 陶易凡, 強(qiáng)俊, 王輝, 等. 低pH脅迫對(duì)克氏原螯蝦鰓和肝胰腺酶活力及組織結(jié)構(gòu)的影響 [J]. 中國(guó)水產(chǎn)科學(xué), 2016, 23(6): 1279-1289. TAO Y F, QIANG J, WANG H, et al. Acute toxicity of high pH stress and its effect on enzymes activity and histological structure of gill and hepatopancreas inProcambarusclarkia[J].JournalofFisherySciencesofChina, 2016, 23(6): 1279-1289. (in Chinese with English abstract)
[38] 洪美玲, 陳立僑, 顧順樟, 等. 氨氮脅迫對(duì)中華絨螯蟹免疫指標(biāo)及肝胰腺組織結(jié)構(gòu)的影響 [J]. 中國(guó)水產(chǎn)科學(xué), 2007, 14(3):412-418. HONG M L, CHEN L Q, GU S Z, et al. Effects of ammonia exposure on immunity indicators of haemolymph and histological structure of hepatopancreas in Chinese mitten crab(Eriocheirsinensis) [J].JournalofFisherySciencesofChina, 2007, 14(3):412-418. (in Chinese with English abstract)
[39] CACECI T, NECK K F, LEWIS D D H, et al. Ultrastructure of the hepatopancreas of the Pacific White Shrimp,Penaeusvannamei(Crustacea: Decapoda) [J].JournaloftheMarineBiologicalAssociationoftheUnitedKingdom, 1988, 68(2):323-337.
[40] K?HLER A, LAURITZEN B, JANSEN D, et al. Detection of P-glycoprotein mediated MDR/MXR in Carcinus maenas hepatopancreas by immuno-gold-silver labeling [C]// AGU Fall Meeting. AGU Fall Meeting Abstracts, 1998, 387(99):175-180.
[41] CHENG Y, XU Z, CHEN Y. Ultrastructural study of the toxic effect of different content of Zn2+on hepatopancreas in the larvae of Chinese crab,Eriocheirsinensis[J].ZoologicalResearch, 2000, 21(5):343-347.
(責(zé)任編輯 盧福莊)
Effects of deltamethrin exposure on oxidative stress indexes and histological structure of hepatopancreas inEriocheirsinensis
YANG Zongying1,2, ZHANG Yiliu1, HU Kun1, YANG Xianle1,*, LIU Lishuo1, ZHANG Fengxiang3, CAI Honggui4
(1.StateCollectionCenterofAquaticPathogen,ShanghaiOceanUniversity,Shanghai201306,China; 2.NanchangAcademyofAgriculturalSciences,Nanchang330038,China;3.AquaculturePromotionCentersofXinghuaCity,Xinghua225700,China; 4.AquaticStationofAnfengTown,Xinghua225766,China)
In order to explore the toxicological effects and mechanism of deltamethrin onEriocheirsinensis, an acute semi-static toxic test was carried out, the LC50values of 24, 48 and 96 h were 4.289 4, 3.481 8 and 1.319 5 μg·L-1, respectively, and the safe concentration was 0.658 9 μg·L-1. This study also revealed the modulation of antioxidant enzymes such as superoxide dismutase(SOD), catalase(CAT) and malondialdehyde (MDA) content, which was the main product of lipid peroxidation, at 6, 12, 24, 48 and 72 h in different deltamethrin concentration. 96 h-LC50/2(concentration I) group, 96 h-LC50/5(concentration II) group and 96 h-LC50/10(concentration III) group were test groups, and blank group and vehicle group were control groups. Histological structure of hepatopancreas was observed on 15thday in different deltamethrin concentrations. The results were as follows: (1) The oxidative stress indicators were varied in all groups exposed to deltamethrin, SOD and CAT activities showed similar variation of inhibition-induction-inhibition during the test, and the levels of MDA in test groups were all higher than that in blank group. The three indicators had no significant difference at different time in both vehicle group and blank group, and vehicle group also had no obvious difference from blank group. After 6 h exposed to deltamethrin, the CAT activities of all test groups were significantly lower than those of control group, and CAT activities of concentration II and III groups decreased by 37.96% and 38.92% compared with blank groups. MDA levels of test groups were obviously higher than that of control group. After 12 and 24 h, SOD and CAT activities were induced, SOD activities of three test groups were 72.13%, 87.93% and 83.20% higher than that of blank group, and the levels of MDA decreased at 24 h. After 48 h and 72 h, SOD and CAT activities were inhibited again, SOD activities of concentration I and III groups were 40.94% and 51.06% lower than that of blank group, CAT activities of concentration III group were 32.85% lower than that of blank group, and MDA levels of test groups gradually increased along with the increase of stress time of deltamethrin. (2) Histological structure of hepatopancreas was affected at different degrees in different deltamethrin concentration for 15 d. In these three test groups, the number of B cells of hepatopancreas was decreased, the basement membrane became thicker, some hepatic cells were swelling and cavity appeared, some vacuoles appeard in B cells. As deltamethrin concentration increased, the degree of deterioration of hepatopancreas aggravated, the number of vacuoles increased and some hepatic cells were crushing and many cell debris appeared in the lumen, many vacuoles existed between basement membrane and epithelial cells, part of the basement membranes were separated from epithelial cells and ruptured, nucleus were pyknotic. The results indicated that deltamethrin was high toxic pesticide toE.sinensis, with the deltamethrin concentration increasing and stress time prolonging, MDA levels increased, and the non-specific defense system and normal cell structure ofE.sinensiswere destroyed.
deltamethrin;Eriocheirsinensis; acute toxicity; oxidative stress indicators; hepatopancreas structure
10.3969/j.issn.1004-1524.2017.08.06
2017-03-08
河蟹“水癟子”病控制技術(shù)研究(A1-2037-17-000114)
楊宗英(1988—),女,河南駐馬店人,博士研究生,助理工程師,主要從事水產(chǎn)生物免疫學(xué)與病害控制研究。E-mail: lxyangzongying@163.com
*通信作者,楊先樂, E-mail: xlyang@shou.edu.cn
S966.16
A
1004-1524(2017)08-1261-10
楊宗英,張一柳,胡鯤,等. 溴氰菊酯對(duì)中華絨螯蟹肝胰腺氧化脅迫效應(yīng)和組織結(jié)構(gòu)的影響[J]. 浙江農(nóng)業(yè)學(xué)報(bào),2017,29(8): 1261-1270.
浙江農(nóng)業(yè)學(xué)報(bào)2017年8期