• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      Empirical Likelihood Statistical Inference for Partially Linear Model with Restricted Condition

      2017-09-03 10:13:32-,-
      湖南師范大學自然科學學報 2017年4期
      關(guān)鍵詞:湖南師范大學線性經(jīng)驗

      -, -

      (Department of Mathematics and Physics, Henan University of Urban Construction, Pingdingshan 467000, China)

      Empirical Likelihood Statistical Inference for Partially Linear Model with Restricted Condition

      LIUChang-sheng*,LIYong-xian

      (DepartmentofMathematicsandPhysics,HenanUniversityofUrbanConstruction,Pingdingshan467000,China)

      Inthispaper,weapplytheempiricallikelihoodmethodtopartiallylinearmodelwithparameterlinearrestrictedhypothesis.Forthesakeoftestinghypothesis,anempiricallog-likelihoodratioteststatisticbasedonthedifferenceofthenullandalternativehypothesesisconstructed.Furthermore,thelimitingdistributionoftheteststatisticsisprovedtobeastandardChi-squareddistribution.Numericalsimulationconfirmstheadvantageoftheproposedmethod.

      empiricallikelihood;restrictedcondition;partiallylinearmodel;hypothesistest;Chi-squaredistribution

      1 Empirical likelihood estimation on parameter

      For the need of constructing the test statistic, we first develop estimating approach for model (1) under the null hypothesis in this section. That is, we estimate the unknown quantities in model (1) with the restricted condition Aβ=b.Thenmodel(1)canbewrittenas

      (3)

      whereKh(·) =K(·/h)/h,K(·) is a kernel function andh=hnis a sequence of positive numbers tending to zero, called bandwidth. Simple calculation yields that

      (4)

      For 1≤i≤n, let

      In order to construct the empirical likelihood ratio function, we now introduce one auxiliary random vectorZi(β),

      (5)

      1.1 Empirical likelihood estimation on parameter without restriction

      Next we discuss profile empirical likelihood estimation without restriction conditionsAβ=b. Whenβis true parameter,E(Zi(β))=0. Thus, by the idea of Owen[1], an empirical likelihood-ratio forβcan similarly be defined as follows:

      (6)

      wherep=(p1,…,pn) is a probability vector.

      Ifβis true parameter, a unique maximum forpin (6) exists. By the Lagrange multiplier method, the supremum occurs at

      (7)

      whereλ(β) is the solution to

      (8)

      By (6) and (7), we can get

      (9)

      In the following, we define the profile empirical likelihood estimator without any restriction conditions

      (10)

      whereZi(β) andλ(β) satisfy (5) and (8), respectively.

      1.2 Empirical likelihood estimation on parameter with restrictionAβ=b

      (11)

      whereηis ak×1 vector that contains the Lagrange multipliers. By differentiating functionF(β,η) with respect toβandη, we obtain the following equations:

      (12)

      and

      (13)

      2 Test statistic and its properties

      In order to formulate the main results, we need the following assumptions. These assumptions are quite mild and can be easily satisfied.

      Lethj(Ti)=E(Xij|Ti),Vi=Xi-E(Xi|Ti), 1≤i≤n, 1≤j≤p.

      Assumption1 E(e|X,T)=0andE(|e|4|X,T)<∞.

      Assumption3 g(·)andhj(·)areofoneorderLipschitzcontinuousfunctions.

      Assumption 5 The kernel functionK(·) is a bounded symmetric density function with compact support and satisfies ∫K(u)du=1,∫uK(u)du=0 and ∫u2K(u)du<∞.

      Assumption 6 The density functionsf(t) ofTis bounded away from zero and have bounded continuous second partial derivatives. Namely, 0

      Under the above assumptions, we can get the following result, proved in Section 4.

      Theorem3Underthenullhypothesisoftestingproblem(1.2)andtheassumptions1-6,wehave

      3 Simulation studies

      In this section, we present the result of some simulations to illustrate our methods. In our simulations, the data are generated from the following model:

      yi=xi1β1+xi2β2+g(ti)+εi,i=1,…,n,

      (14)

      Tab.1 The rejection frequencies for H0:β1-β2=0?H1:β1-β1=c with α=0.05

      We summarize our findings as follows. When the null hypothesis is true (that is,c=0), the rejection frequencies (estimated sizes) of both our proposed test basedTnand the restricted least-squares approach test basedWnare quite good and close to their nominal levels 0.05 under different error distributions. Under the alternative hypothesis, the rejection rate seems very robust to the variation of the type of error distribution. With the increasing ofc, the test power of our proposed test is slightly better than the test based on the residual sum of squares.

      4 Proof of the main results

      In the sequel, letCdenote positive constant whose value may vary at each occurrence.

      Lemma 1 Suppose that Assumptions 1-6 hold.

      whereG0(·)=g(·) andGl(·)=hl(·)(j=1,…,p).

      ProofTheproofissimilartoLemmaA.1inLiang[9]etal.

      Lemma2SupposethatAssumptions1-6hold.Wecanobtain

      ProofTheproofissimilartoLemmaA.2inLiang[9]etal.

      Lemma3SupposethatAssumptions1-6hold.ifβ0istruevalueofβ, We can obtain

      ProofFromthedefinitionofZi(β), we have

      Lemma4SupposethatAssumptions1-6hold.Ifβ0istruevalueofβ,Wehavemax1≤i≤n‖Zi(β0)‖=op(n1/2).

      ProofAsimilarproofcanbefoundinLiang[10]etal.

      Lemma5SupposethatAssumptions1-6hold.Ifβ0isthetruevalueofβinmodel(3),satisfying(7)and(8),thenwehave

      ProofApplyingtheTaylorexpansion,from(8)andLemma1~4,weobtainthat

      (15)

      In view of Lemma 1~4, we have

      This completes the proof.

      TheproofofTheorem1

      (16)

      (17)

      (18)

      where

      (19)

      We can also get

      (20)

      This completes the proof.

      TheproofofTheorem2issimilarasthatofTheorem1andthusisleftforthereaders.

      TheproofofTheorem3

      ProofBy(10)andapplyingtheTaylorexpansion,wehave

      (21)

      where

      Similarly, we can also get

      (22)

      with |r2n|=op(1).

      From (21) and (22), we can get

      I1+I2+op(1).

      Op(n-1)·Op(n1/2)·op(n1/2)=op(1).

      (23)

      [1]OWENAB.Empiricallikelihoodratioconfidenceintervalsforasinglefunctional[J].Biometrika,1988,75(2):237-249.

      [2]OWENAB.Empiricallikelihoodratioconfidenceregions[J].AnnStat, 1990,18(1):90-120.

      [3]SHIJ,LAUTS.Empiricallikelihoodforpartiallylinearmodels[J].JMultivAnal, 2000,72(1):132-148.

      [4]WANGQH,JINGBY.Empiricallikelihoodforpartiallinearmodelswithfixeddesigns[J].StatProbLett, 1999,41(4):425-433.

      [5]WANGQH,JINGBY.Empiricallikelihoodforpartiallylinearmodels[J].AnnInstStatMath, 2003,55(3):585-595.

      [6]FANJ.Locallinearregressionsmoothersandtheirminimaxefficiencies[J].AnnStat, 1993,21(1):196-216.

      [7]FANJ,GIJBELSI.Localpolynomialmodellinganditsapplications[M].NewTork:Chapman&HallPress, 1996.

      [8]WEIC,WANGQ.Statisticalinferenceonrestrictedpartiallylinearadditiveerrors-in-variablesmodels[J].Test, 2012,21(4):757-774.

      [9]LIANGH,HRDLEW,CARROLLRJ.Estimationinasemiparametricpartiallylinearerrors-in-variablesmodel[J].AnnStat, 1999,27(5):1519-1535.

      [10] LIANG H, THURSTON S W, RUPPERT D,etal. Additive partial linear models with measurement errors[J].Biometrika, 2008,95(3):667-678.

      [11] LIANG H Y, JING B Y. Asymptotic normality in partial linear models based on dependent errors[J].J Stat Plan Infer, 2009,139(4):1357-1371.

      [12] 洪圣巖. 一類半?yún)?shù)回歸模型的估計理論[J]. 中國科學:A 輯, 1991,34(12):1258-1272.

      [13] 孫耀東. 分歧泊松自回歸模型的馬爾可夫性[J]. 湖南師范大學自然科學學報, 2011,34(4):18-20.

      [14] WU C. Some algorithmic aspects of the empirical likelihood method in survey sampling[J]. Stat Sin, 2004,14(4):1057-1068.

      [15] XUE L G, ZHU L X. Empirical likelihood for a varying coefficient model with longitudinal data[J]. J Am Stat Assoc, 2007,102(478):642-654.

      [16] ZHU L, XUE L. Empirical likelihood confidence regions in a partially linear single-index model[J].J Royal Stat Soc: Ser B, 2006,68(3):549-570.

      (編輯 HWJ)

      2016-03-27

      河南省科技計劃項目資助(112300410191)

      O

      A

      1000-2537(2017)04-0075-08

      具有限制條件的部分線性模型的經(jīng)驗似然推斷

      劉常勝*,李永獻

      (河南城建學院數(shù)理系, 中國 平頂山 467000)

      本文將經(jīng)驗似然方法應(yīng)用到具有限制假設(shè)條件的部分線性模型中. 為了檢驗假設(shè)條件, 構(gòu)造基于零假設(shè)和對立假設(shè)條件下的極大經(jīng)驗對數(shù)似然比估計值的差值統(tǒng)計量. 而且在零假設(shè)下證明該統(tǒng)計量的極限分布為標準的χ2分布. 數(shù)值模擬表明所提出的檢驗統(tǒng)計量的優(yōu)勢.

      經(jīng)驗似然; 限制條件; 部分線性模型; 假設(shè)檢驗; χ2分布

      10.7612/j.issn.1000-2537.2017.04.013

      *通訊作者,E-mail:csliu@hncj.edu.cn

      猜你喜歡
      湖南師范大學線性經(jīng)驗
      漸近線性Klein-Gordon-Maxwell系統(tǒng)正解的存在性
      2021年第20期“最值得推廣的經(jīng)驗”評選
      黨課參考(2021年20期)2021-11-04 09:39:46
      湖南師范大學作品
      大眾文藝(2021年8期)2021-05-27 14:05:54
      線性回歸方程的求解與應(yīng)用
      湖南師范大學美術(shù)作品
      大眾文藝(2020年11期)2020-06-28 11:26:50
      湖南師范大學作品
      大眾文藝(2019年16期)2019-08-24 07:54:00
      湖南師范大學作品欣賞
      大眾文藝(2019年10期)2019-06-05 05:55:32
      經(jīng)驗
      2018年第20期“最值得推廣的經(jīng)驗”評選
      黨課參考(2018年20期)2018-11-09 08:52:36
      二階線性微分方程的解法
      道孚县| 嘉义市| 冀州市| 托里县| 宁河县| 尤溪县| 库车县| 长沙县| 革吉县| 巴林右旗| 巩留县| 新乐市| 密山市| 繁昌县| 双流县| 新和县| 万年县| 积石山| 武邑县| 乌鲁木齐市| 蓬溪县| 通辽市| 盐津县| 聂荣县| 南乐县| 张家港市| 陇川县| 拜城县| 大洼县| 镇安县| 湾仔区| 阜平县| 莱西市| 包头市| 饶平县| 南江县| 监利县| 朝阳县| 凌源市| 乌海市| 鲁甸县|