孫晨瑜, 謝國勇*,秦民堅*
(1. 中國藥科大學 中藥資源學教研室,江蘇 南京210009;2. 中國藥科大學 天然藥物活性組分與藥效國家重點實驗室,江蘇 南京210009)
芒果苷在植物界的分布及藥理活性研究進展
孫晨瑜1,2, 謝國勇1,2*,秦民堅1,2*
(1. 中國藥科大學 中藥資源學教研室,江蘇 南京210009;2. 中國藥科大學 天然藥物活性組分與藥效國家重點實驗室,江蘇 南京210009)
芒果苷(mangiferin),又稱之為莞知母寧或芒果素,具有良好的抗炎和抗氧化應激活性,藥理作用廣泛,對代謝紊亂,腫瘤,心血管疾病等都有治療作用。已有文獻報道,芒果苷在自然界分布廣泛,在51個科180余種植物中均有發(fā)現(xiàn),集中分布于鳶尾科,龍膽科,藤黃科等。為了開發(fā)富含芒果苷的天然藥物資源,本文就芒果苷在植物界中的分布及其藥理作用進行概述。
芒果苷;植物分布;藥理作用
芒果苷(mangiferin),又稱之為莞知母寧或芒果素,化學名為2-β-D-吡喃葡萄糖苷-1,3,6,7-四羥基-9H-氧雜蒽酮,是一種四羥基吡酮的碳酮苷,屬于雙苯吡酮類黃酮化合物(圖1)。芒果苷主要分布于龍膽科,鳶尾科,藤黃科,豆科等,是百合科植物知母和漆樹科植物杧果的主要有效成分,其藥理作用廣泛,可以抗炎[1],抗菌[2],抗氧化應激[3],抗過敏[4],保護神經(jīng)[5],對癌癥[6],代謝類[7],心血管類[8],免疫類疾病[9]都有治療作用,其中在治療糖尿病及其并發(fā)癥方面療效顯著。本文對芒果苷在自然界的分布及藥理作用進行了綜述,為進一步開發(fā)富含芒果苷的植物資源提供參考。
圖1 芒果苷(mangiferin)
芒果苷在植物界廣泛分布于被子植物和蕨類植物中,在51科81屬180余種植物中均有發(fā)現(xiàn),其中, 蕨類植物8科12屬13種, 單子葉植物5科10
屬18種,雙子葉植物38科59屬149種(表 1)。芒果苷在單子葉植物的鳶尾科,雙子葉植物的龍膽科,豆科和藤黃科集中分布。芒果苷在植物的根,莖,葉,花,果實,樹皮等中均有分布,但在不同的植物及組織中含量有所差異,如對龍膽科11個種進行分析,Gentianellacaucasica芒果苷含量最高(2.34%干燥地上部分),其次是Gentianaschistocalyx(0.98%),深黃花龍膽(Gentianalutea) (0.92%)[10]。相比
之下,知母,杧果中的含量較高。用HPLC-DAD-ESI-qTOF-MS的方法測定杧果及其果皮,種子,種殼中的芒果苷,結(jié)果杧果皮中含量最高,其次是種子,果肉和種殼[11]。由于植物來源,提取方式及檢測方法不同,因此,文獻中芒果苷的含量會有一定差異。一些中藥復方如仙靈骨葆膠囊、百合知母湯、清氣涼營湯、清肺抑火丸等也含有芒果苷。
表1 芒果苷在植物界的分布
續(xù)表1
科屬種拉丁名雙子葉植物翅子藤科Hippocrateaceae五層龍屬Salacia網(wǎng)狀五層龍Salaciareticulata—Salaciachinensis—Salaciaoblonga海南五層龍Salaciahainanensis—Salaciaroxburghii漆樹科Anacardiaceae杧果屬Mangifera杧果Mangiferaindica天桃木Mangiferapersiciformis林生杧果Mangiferasylvatica九子母屬Dobinea羊角天麻Dobineadelavayi瑞香科Thymelaeaceae沉香屬Aquilaria土沉香Aquilariasinensis厚葉沉香Aquilariacrassna皇冠果屬Phaleria大皇冠果Phaleriamacrocarpa—Phalerianisidai皇冠果Phaleriacumingii續(xù)斷香屬Gyrinops—Gyrinopswalla龍膽科Gentianaceae獐牙菜屬Swertia大籽獐牙菜Swertiamacrosperma川西獐牙菜Swertiamussotii紫紅獐牙菜Swertiapunicea黃花獐牙菜Swertiakingii抱莖獐牙菜Swertiafranchetiana四數(shù)獐牙菜Swertiatetraptera祁連獐牙菜Swertiaprzewalskii紅直獐牙菜Swertiaerythrosticta毛獐牙菜Swertiapubescens—Swertiachirata狹葉獐牙菜Swertiaangustifolia寬絲獐牙菜Swertiapaniculata藏獐牙菜Swertiaracemosa顯脈獐牙菜Swertianervosa普蘭獐牙菜Swertiaciliata—Swertiadilatata—Swertiapunctata—Swertiaphragmitiphylla—Swertiaperennis瘤毛獐牙菜Swertiapseudochinensis心葉獐牙菜Swertiacordata—Swertiaperfoliata短筒獐牙菜Swertiaconnata—Swertiaiberica多種假龍膽屬Gentianella—Gentianellaalbanica—Gentianellacrispata—Gentianellabulgarica—Gentianellaaustriaca新疆假龍膽Gentianellaturkestanorum—Gentianellacaucasica尖葉假龍膽Gentianellaacuta百金花屬Centaurium紅色百金花Centauriumerythraea—Centauriumtenuiflorum—Centauriumlittoralesubsp.uliginosum美麗百金花Centauriumpulchellum—Schenkiaspicata肋柱花屬Lomatogonium肋柱花Lomatogoniumcarinthiacum輻狀肋柱花Lomatogoniumrotatum花錨屬Halenia卵萼花錨Haleniaelliptica扁蕾屬Gentianopsis—Gentianopsisbarbatavar.sinensis龍膽屬Gentiana高山龍膽Gentianaalgida紅花龍膽Gentianarhodantha龍膽草Gentianacruciata—Gentianalactea
續(xù)表1
科屬種拉丁名—Gentianaschistocalyx深黃花龍膽Gentianalutea—Gentianaasclepiadea春龍膽Gentianaverna新疆龍膽Gentianakarelinii條葉龍膽Gentianamanshurica穿心草屬Canscora—Canscoradecussata—Canscoraheteroclita雙蝴蝶屬Tripterospermum高山雙蝴蝶Tripterospermumluzonense日本雙蝴蝶Tripterospermumjaponicum臺灣肺形草Tripterospermumtaiwanense遠志科Polygalaceae遠志屬Polygala遠志Polygalatenuifolia西伯利亞遠志Polygalasibirica小花遠志PolygalaarvensisWilld.尾葉遠志Polygalacaudata香港遠志Polygalahongkongensis華南遠志Polygalaglomerata豆科Fabaceae巖黃芪屬Hedysarum山巖黃芪Hedysarumalpinum烏恰巖黃芪Hedysarumflavescens疏忽巖黃芪Hedysarumneglectum—Hedysarumtheinum華北巖黃芪Hedysarumgmelinii濕地巖黃芪Hedysaruminundatum—Hedysarumtschuense—Hedysarumbrandtii—Hedysarumkomarovii—多種黃芪屬Astragalus黃芪Astragalusmembranaceus松雀花屬Aspalathus松雀茶Aspalathuslinearis蜜茶豆屬Cyclopia—Cyclopiagenistoides—Cyclopiafalcata鹿藿屬Rhynchosia—Rhynchosiasuaveolens紫葳科Bignoniaceae二葉藤屬Arrabidaea —Arrabidaeasamydoides—ArrabidaeapatelliferaCallichlamys—Callichlamyslatifolia茜草科Rubiaceae咖啡屬Coffea—Coffeapseudozanguebariae小??Х菴offeaarabica巴戟天屬Morinda海濱木巴戟Morindacitrifolia番荔枝科Annonaceae暗羅屬Polyalthia細基丸Polyalthiacerasoides藤黃科Guttiferae金絲桃屬Hypericum貫葉連翹Hypericumperforatum元寶草Hypericumsampsonii湖北金絲桃Hypericumhubeiense—Hypericumpulchrum—Hypericumdegenii—Hypericumancheri—Hypericumlinarifolium漿果金絲桃Hypericumandrosaemum波葉金絲桃Hypericumundulatum—Hypericummontbretii—多種藤黃屬Garcinia大葉藤黃Garciniaxanthochymus莽吉柿Garciniamangostana福木Garciniaspicata—Garcinialivingstonei黃牛木屬Cratoxylum紅芽木Cratoxylumformosumsubsp.pruniflo-rum薔薇科Rosaceae李屬Prunus洋杏Prunusamygdalus榅桲屬Cydonia榅桲Cydoniaoblonga蓼科Polygonaceae虎杖屬Reynoutria虎杖Reynoutriajaponica列當科OrobanchaceaeRadamaea—Radamaeamontana蜜花科Melianthaceae娑羽樹屬Bersama娑羽樹Bersamaabyssinica—Bersamayangambiensis
續(xù)表1
科屬種拉丁名—Bersamaengleriana柿科Ebenaceae海柿屬Euclea海柿Euclearacemosa大戟科Euphorbiaceae余甘子屬Emblica—Emblicaofficinalis使君子科Combretaceae欖仁屬Terminalia訶子Terminaliachebula藜科Chenopodiaceae沙蓬屬Agriophyllum沙蓬Agriophyllumsquarrosum木棉科Bombacaceae木棉屬Bombax木棉Bombaxceiba虎耳草科Saxifragaceae扯根菜屬Penthorum扯根菜PenthorumchinensePursh五加科Araliaceae人參屬Panax三七Panaxnotoginseng唇形科Labiatae鞘蕊花屬Coleus毛喉鞘蕊花Coleusforskohlii芝麻科Pedaliaceae芝麻屬Sesamum芝麻Sesamumindicum菊科Compositae千里光屬Senecio弦月Senecioradicans蕓香科Rutaceae柑橘屬Citrus檸檬Citruslimon番木瓜科Caricaceae番木瓜屬Carica番木瓜Caricapapaya茄科Solanaceae茄屬Solanum銀葉茄Solanumelaeagnifolium錦葵科Malvaceae梵天花屬Urena地桃花Urenalobata傘形科UmbelliferaeColladonia—Colladoniatriquetra云實科Caesalpiniaceae盾柱木屬Peltophorum—Peltophorumafricanum胡桐科Calophyllaceae南美杏屬Mammea南美杏Mammeaamericana金虎尾科Malpighiaceae風箏果屬Hiptage風箏果Hiptagebenghalensis山茶科Theaceae澤茶屬Bonnetia—Bonnetiastricta錦葵科Malvaceae木槿屬Hibiscus—Hibiscusvitifolius石竹科Caryophyllaceae石頭花屬Gypsophila大葉石頭花Gypsophilapacifica桑寄生科Loranthaceae五蕊寄生屬Dendrophthoe—Dendrophthoefalcata??芃oraceae橙桑屬Maclura橙桑Maclurapomifera獼猴桃科Actinidiaceae藤山柳屬Clematoclethra獼猴桃藤山柳Clematoclethrascandenssubsp.actinidioides
2.1 改善代謝紊亂
芒果苷是天然的丙酮酸脫氫酶復合體(PDH)催化劑,可增加有氧代謝中碳水化合物的利用,并增加肥胖和胰島素抵抗動物模型中胰島素的敏感性。另一方面,芒果苷能刺激線粒體呼吸,抑制氧化應激和炎癥,并上調(diào)線粒體生物學功能蛋白,同時下調(diào)肝脂肪生成的相關(guān)蛋白,提高碳水化合物的利用,以此改善代謝紊亂。
2.1.1 抗糖尿病及其并發(fā)癥糖尿病腎病
在近三四十年,糖尿病呈急劇上升態(tài)勢,成為人類不得不面對的最常見和最嚴重的疾病之一[12]。有大量文獻報道,芒果苷對糖尿病有良好的改善作用。研究顯示,芒果苷有很好的降糖效果,并能提高胰島素敏感性[13]。而且芒果苷能提高糖苷酶的活性,從而提高葡萄糖的利用。
糖尿病腎病是糖尿病最常見的微血管并發(fā)癥之一,也是終末期腎病的主要原因。其發(fā)病機制復雜,糖尿病腎病會導致多種細胞事件和信號通路被激活,包括血糖過多介導的晚期糖基化產(chǎn)物(AGEs)生成、蛋白激酶C(PKC)激活、轉(zhuǎn)化增長因子β(TGF-β)和GTP結(jié)合蛋白的表達增加以及活性氧的生成。除了造成生物代謝的紊亂,它還能夠通過激活腎素-血管緊張素系統(tǒng)引起血流動力學的改變,加重高血糖癥誘發(fā)型損傷[14]。近來有研究發(fā)現(xiàn),在以瘦素缺乏的BTBR ob/ob鼠為糖尿病腎病模型中,補充瘦素增加鼠足細胞,進而減少腎小球系膜溶解,降低系膜基質(zhì)堆積,改善腎臟的結(jié)構(gòu)和功能。這提示我們,足細胞的修復和改善可能是糖尿病腎病治療的新靶點[15]。
Sellamuthu等的實驗表明,在鏈脲佐菌素(STZ)誘導的糖尿病小鼠中,40 mg/(kg·d)芒果苷口服30天,可降低血糖并增加胰島素敏感性,而且抗氧化酶,如超氧化物歧化酶(SOD),過氧化氫酶(CAT)等都有所升高,GSH水平下降。病理組織學結(jié)果顯示,肝和腎臟的結(jié)構(gòu)得到了修復[16]。在體內(nèi)體外芒果苷都能增加乙二醛酶(Glo-1)活性,降低AGEs及其受體RAGE,在糖尿病小鼠的腎皮質(zhì)中,可以降低氧化應激損傷來改善糖尿病腎病[17]。越來越多的研究表明芒果苷能改善糖尿病腎病大鼠的腎纖維化,而且,在STZ誘導高血糖模型中,大鼠腎臟Ⅳ型膠原蛋白(ColⅣ),α-平滑肌肌動蛋白(α-SMA)在使用芒果苷后均有所下降。其可能是通過抑制NF-κB通路抑制炎癥的發(fā)生,并下調(diào)骨橋蛋白表達來改善糖尿病腎病大鼠的腎纖維化[18]。
有研究表明,氧化應激主要由線粒體中的NADPH氧化酶(Nox)產(chǎn)生,會引起線粒體上HKII脫落[33]。在高脂肪酸狀態(tài)下,PDH活性明顯降低,導致糖酵解-丙酮酸氧化之間脫耦聯(lián),造成線粒體功能紊亂[34]。因此,HKII脫落與糖酵解-丙酮酸氧化脫耦聯(lián)這兩個病理環(huán)節(jié)相互促進,加重線粒體結(jié)構(gòu)和能量代謝功能障礙,誘發(fā)細胞凋亡。而芒果苷可以減少氧化應激,也是PDH的催化劑。因此抑制Nox表達及HKII從線粒體膜脫落導致的氧化應激,對改善糖尿病并發(fā)癥及腎損傷具有有益作用,具體機制有待研究。
2.1.2 改善脂代謝紊亂疾病
不健康的生活方式會導致脂肪酸和脂質(zhì)代謝紊亂,血漿,肝和脂肪組織脂質(zhì)沉積,引起肥胖,高血脂,非酒精性脂肪肝等脂代謝紊亂疾病。芒果苷可以降低高脂飼喂大鼠肝臟中的甘油三酯和游離脂肪酸[19]。Lim等以15N代謝標記的肝臟蛋白為內(nèi)參,高脂飼喂18周后進行定量蛋白組學分析,發(fā)現(xiàn)在865個定量蛋白中,有87個在芒果苷的調(diào)節(jié)下差異顯著。其中,線粒體生物學功能蛋白上調(diào),同時,脂肪從頭合成蛋白得到下調(diào),使得芒果苷能加強能量消耗并抑制脂質(zhì)合成[20]。
2.2 改善心血管疾病
研究表明連續(xù)口服芒果苷100 mg/kg 28天預保護可以改善心肌梗塞大鼠心臟能量代謝,保護線粒體超微結(jié)構(gòu),改善氧化損傷[8]。通過結(jié)扎左前降支冠狀動脈建立心肌梗死(MI)模型中,芒果苷通過抑制p38絲裂原活化蛋白激酶(MAPK)降低腫瘤壞死因子α(TNF-α)水平,改善細胞間隙纖維化,減少心肌凋亡,以此保護心肌細胞改善MI[21]。此外,在STZ和高脂共同誘導的糖尿病大鼠體內(nèi),芒果苷可通過NF-κB核易位失活并抑制RAGE表達,降低心肌酶和炎癥介質(zhì)水平,顯著改善糖尿病心臟病[22]。
2.3 抗腫瘤
黃酮類可發(fā)揮各種抗致癌作用,包括誘導的腫瘤細胞凋亡,抑制癌細胞增殖和預防腫瘤細胞的血管生成和侵襲。早在1987年就有研究表明芒果苷有抗腫瘤 的活性[23]。芒果苷可調(diào)節(jié)細胞凋亡,減少病毒復制,減少腫瘤發(fā)生,抑制炎癥和各種自身免疫疾病重要基因的表達,并提高其在炎性疾病或癌癥的可能性[24]。Tomoya Takeda等在細胞水平,發(fā)現(xiàn)芒果苷可以降低多發(fā)性骨髓瘤細胞的細胞活力,而且呈現(xiàn)濃度依賴性。芒果苷通過抑制NF-κB誘導激酶,抑制NF-κB核易位誘導骨髓瘤細胞系凋亡[6]。芒果苷通過ATR-Chk1應激反應DNA損傷通路,使其細胞周期停滯在G2/M期,從而抑制HL-60白血病細胞[25]。芒果苷可抑制A549細胞生長并凋亡其誘導。此外,芒果苷在A549移植小鼠體內(nèi)表現(xiàn)出抗腫瘤的特性。芒果苷通過下調(diào)細胞周期蛋白依賴性激酶1-細胞周期蛋白B1(cdc2-cyclin B1)信號傳導,觸發(fā)G2/M期細胞周期阻滯通路,并通過PKC-NF-κB通路誘導細胞凋亡[26]。
2.4 其他
此外,芒果苷還有調(diào)節(jié)免疫的作用[9]和胃保護作用[27]等。芒果苷廣泛的藥理作用主要以抗炎和抗氧化應激為作用基礎,成為許多疾病的主要作用機理。
在某些病理條件下,細胞內(nèi)ROS水平的異常升高導致氧化應激,會潛在地調(diào)節(jié)許多信號分子的活性,并誘導線粒體損傷,最終導致細胞死亡[28-29]。而芒果苷可以降低氧化應激,減少凋亡。Saha等用50 μm叔丁基過氧化氫(tBHP)刺激人腎上皮細胞18 h后,加20 μm芒果苷2 h,芒果苷可激活PI3K/AKt通路,增加抗氧化蛋白HO-1,SOD2表達,降低由于tBHP刺激產(chǎn)生的細胞內(nèi)ROS及其他氧化應激產(chǎn)物,而且,芒果苷能抑制tBHP介導的各種凋亡前信號的激活,減少了細胞線粒體的通透性,以此保護腎細胞[30]。
研究的結(jié)果表明,芒果苷在體外顯著抑制LPS / IFN-γ刺激誘導的巨噬細胞的經(jīng)典激活,并顯著降低促炎細胞因子釋放。此外,細胞IRF5表達顯著下調(diào)。這些結(jié)果表明,芒果苷對巨噬細胞的經(jīng)典激活的抑制作用可以通過下調(diào)細胞IRF5表達水平發(fā)揮作用,減少炎癥反應[1]。
芒果苷在自然界中分布廣,而且藥理作用廣泛,其藥效基礎主要基于抗炎和抗氧化應激活性,但具體疾病的作用機制有待進一步闡明。芒果苷由于其水溶性差而且生物利用度低因而在臨床使用受限。因此,開發(fā)新的芒果苷劑型或進行結(jié)構(gòu)修飾對提高其藥效很有意義,如將芒果苷加載到磁性PCEC微球(MG-MS)上,可顯著提高芒果苷體內(nèi)外的抗腫瘤活性[31]。或?qū)γ⒐哲赵獮榛灸负诉M行結(jié)構(gòu)改造[32],新合成的芒果苷衍生物有較強的藥理作用。
[1] WEI Z Q, YAN L, CHEN Y X, et al. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression [J]. Molecular Medicine Reports, 2016, 14: 1091-1098.
[2] SRINIVASAN K, SUBRAMAINAN S, MOHAN K, et al. Antibacterial activity of mangiferin [J]. Arogya, 1982, 8(2): 178-180.
[3] LUO Y, FU C F, WANG Z Y, et al. Mangiferin attenuates contusive spinal cord injury in rats through the regulation of oxidative stress, inflammation and the Bcl-2 and Bax pathway [J]. Molecular medicine reports, 2015, 12(5): 7132-7138.
[4] DAGAR G R, IVONES H B, ALINA A L, et al. Anti-allergic properties of Mangifera indica L. extract (Vimang) and contribution of its glucosylxanthone mangiferin [J]. Journal of Pharmacy and Pharmacology, 2006, 58(3): 385-392.
[5] JUNG K, LEE B, HAN S J, et al. Mangiferin ameliorates scopolamine-induced learning deficits in mice [J]. Biological & Pharmaceutical Bulletin, 2009, 32(2): 242-246.
[6] TOMOYA T, MASANOBU T, TOSHIKI K, et al. Mangiferin induces apoptosis in multiple myeloma cell lines by suppressing the activation of nuclear factor kappa B-inducing kinase [J]. Chemico-Biological Interactions, 2016, 251: 26e33.
[7] APONTES P, LIU Z B, SU K, et al. Mangiferin stimulates carbohydrate oxidation and protects against metabolic disorders induced by high-fat diets [J]. Diabetes, 2014, 63:3626-3636.
[8] PRABHU S, JAINU M, SABITHA K E, et al. Effect of mangiferin on mitochondrial energy production in experimentally induced myocardial infarcted rats [J]. Vascul Pharmacol, 2006, 44(6):519-525.
[9] LUCZKIEWICZ P, KOKOTKIEWICZ A, DAMPC A, et al. Mangiferin: A promising therapeutic agent for rheumatoid arthritis treatment [J]. Medical Hypotheses, 2014, 84: 570-574.
[10] LUBSANDORZHIEVA P B, NIKOLAEVA G G, GLYZIN V I, et al. Content of mangiferin in species of the family Gentianaceae [J]. Rastitel′nye Resursy, 1986, 22(2), 233-236.
[11] CARAVACA G, MARIA A. HPLC-DAD-q-TOF-MS as a powerful platform for the determination of phenolic and other polar compounds in the edible part of mango and its by-products (peel, seed, and seed husk) [J]. Electrophoresis, 2016, 37(7-8): 1072-1084.
[12] KENNETH S, POLONSKY M D. The past 200 years in diabetes [J]. N Engl J Med, 2012, 367: 1332-1340.
[13] ZHOU L, PAN Y, CHONAN R, et al. Mitigation of insulin resistance by mangiferin in a rat model of fructose-induced metabolic syndrome is associated with modulation of CD36 redistribution in the skeletal muscle [J]. J Pharmacol Exp Ther, 2016, 356(1):74-84.
[14] KANWAR Y S, SUN L, XIE P, et al. A glimpse of various pathogenetic mechanisms of diabetic nephropathy [J]. Annu Rev Pathol, 2011, 6: 395-423.
[15] WARANGKANA P, HUDKINS K L, WIETECHA T, et al. Reversibility of structural and functional damage in a model of advanced diabetic nephropathy [J]. J Am Soc Nephrol, 2013, 24: 1088-1102.
[16] SELLAMUTHU P S, ARULSELVAN P, KAMALRAJ S, et al. Protective nature of mangiferin on oxidative stress and antioxidant status in tissues of streptozotocin-induced diabetic rats [J]. Isrn Pharmacology, 2013 (1): 750109.
[17] LIU Y W, ZHU X, ZHANG L, et al. Up-regulation of glyoxalase 1 by mangiferin prevents diabetic nephropathy progression in streptozotocin-induced diabetic rats [J]. European Journal of Pharmacology, 2013, 721: 355-364.
[18] ZHU X, CHENG Y Q, DU L, et al. Mangiferin attenuates renal fibrosis through down-regulation of osteopontin in diabetic rats [J]. Phytother Res, 2015, 29: 295-302.
[19] XING X, LI D, CHEN D, et al. Mangiferin treatment inhibits hepatic expression of acyl-coenzyme A: diacylglycerol acyltransferase-2 in fructose-fed spontaneously hypertensive rats: a link to amelioration of fatty liver [J]. Toxicol Appl Pharmacol, 2014, 280: 207-215.
[20] LIM J, LIU Z B, APONTES P, et al. Dual mode action of mangiferin in mouse liver under high fat diet [J]. PLoS ONE, 2014, 9(3): e90137.
[21] ZHENG D Z, HOU J, XIAO Y B, et al. Cardioprotective effect of mangiferin on left ventricular remodeling in rats [J]. Pharmacology, 2012, 90:78-87.
[22] HOU J, ZHENG D, FUNG G, et al. Mangiferin suppressed advanced glycation end products (AGEs) through NF-kappaB deactivation and displayed anti-inflammatory effects in streptozotocin and high fat diet-diabetic cardiomyopathy rats [J]. Can J Physiol Pharmacol, 2016, 94: 331-340.
[23] CHATTOPADHY U, DAS S, GUHA S, et al. Activation of lymphocytes of normal and tumor bearing mice by mangiferin, a naturally occurring glucosylxanthone [J]. Cancer Lett, 1987, 37: 293-299.
[24] LEIRO J, ARRANZ J A, YANEZ M, et al. Expression profiles of genes involved in the mouse nuclear factor-kappa B signal transduction pathway are modulated by mangiferin [J]. Int Immunopharmacol, 2004, 4(6):763-78.
[25] PENG Z G , YAO Y B, YANG J, et al. Mangiferin induces cell cycle arrest at G2/M phase through ATR-Chk1 pathway in HL-60 leukemia cells [J]. Genet Mol Res, 2015, 14 (2): 4989-5002.
[26] SHI W, DENG J G, TONG R S, et al. Molecular mechanisms underlying mangiferin-induced apoptosis and cell cycle arrest in A549 human lung carcinoma cells [J]. Molecular Medicine Reports, 2016, 13: 3423-3432.
[27] MAGDY M A , AHMED S A, MOHAMED F A, et al. Mangiferin mitigates gastric ulcer in ischemia/reperfused rats: Involvement of PPAR-γ, NF-κB and Nrf2/HO-1 signaling pathways [J]. PLOS ONE, 2015, 10: 1371.
[28] MANNA P, GHOSH J, DAS J, et al. Streptozotocin induced activation of oxidative stress responsive splenic cell signaling pathways: protective role of arjunolic acid, Toxicol [J]. Appl Pharmacol, 2010, 244: 114-129.
[29] SINHA K, DAS J, PAL P B, et al. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis [J]. Arch Toxicol, 2013, 87: 1157-1180.
[30] SAHA S, PRITAM S, KRISHNENDU S, et al. Mangiferin attenuates oxidative stress induced renal cell damage through activation of PI3K induced Akt and Nrf-2 mediated signaling pathways [J]. Biochemistry and Biophysics Reports, 2016, 5: 313-327.
[31] XIAO W J, HOU J, MA J, et al. Mangiferin loaded magnetic PCEC microspheres: preparation, characterization and antitumor activity studies in vitro [J]. Arch Pharm Res, 2014, 10:1007.
[32] 胡麗娜.苯并吡喃酮衍生物的設計、合成及其生物活性研究[D].上海:第二軍醫(yī)大學, 2011.
[33] NEDERLOF R, EERBEEK O, HOLLMANN M W, et al. Targeting hexokinase II to mitochondria to modulate energy metabolism and reduce ischaemia-reperfusion injury in heart [J]. British Journal of Pharmacology, 2014, 171: 2067-2079.
[34] BUCHANAN J, MAZUMDER P K, HU P, et al. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity[J]. Endocrinology, 2005, 146:5341-5349.
Distribution of Mangiferin in Plant Kingdom and Its PharmacologicalResearch Progress
Sun Chenyu1,2, Xie Guoyong1,2*, Qin Minjian1,2*
(1.Department of Resources Science of Traditional Chinese Medicines;2.State Key Laboratory of Natural Medicines,China Pharmaceutical University,Nanjing 211198,China)
Mangiferin is a C-glucosyl xanthone, a natural polyphenol existing in many kinds of plants and folk medicines. It performs a good anti-inflammatory and antioxidant activity and has been widely used in metabolic syndrome, cardiovascular and cancer. The data have shown that mangiferin distribute in more than 180 plants in over 51 families, such as Iridaceae, Gentianaceae, Guttiferae. This paper provides clues to new medicine resources development and further pharmacological research. In order to develop mangiferin and enrich natural resources,its distribution and pharmacological researches are overviewed.
mangiferin; distribution in plant kingdom; pharmacology
10.3969/j.issn.1006-9690.2017.04.009
2016-03-18
國家自然科學基金資助項目(81373918)。
孫晨瑜(1992—),女,碩士研究生,從事生藥學研究。E-mail: sysq310@163.com
*通訊作者: 秦民堅,男,教授,博士生導師,從事中藥資源與開發(fā)研究。 E-mail: minjianqin@163.com; 謝國勇,男,講師,從事中藥資源與開發(fā)研究。E-mail:guoyongxie321@163.com
R284;R285
A
1006-9690(2017)04-0039-07