• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      濾紙法測定干濕循環(huán)下膨脹土基質吸力變化規(guī)律

      2017-09-15 06:17:28吳珺華
      農(nóng)業(yè)工程學報 2017年15期
      關鍵詞:土水濾紙吸力

      吳珺華,楊 松

      濾紙法測定干濕循環(huán)下膨脹土基質吸力變化規(guī)律

      吳珺華1,2,楊 松3※

      (1. 南昌航空大學無損檢測技術教育部重點實驗室,南昌 330063; 2. 南昌航空大學土木建筑學院,南昌 330063;3. 云南農(nóng)業(yè)大學水利學院,昆明 650201)

      為了獲得干濕循環(huán)作用下膨脹土基質吸力的變化規(guī)律, 首先采用人工模擬降雨和蒸發(fā)的方法開展了膨脹土室內(nèi)干濕循環(huán)試驗,然后利用濾紙法進行了不同含水率下試樣的基質吸力測定試驗,獲得了干濕循環(huán)條件下膨脹土的土水特征曲線,求出了相應的進氣值與殘余值,結合Fredlund土水特征曲線模型對經(jīng)歷不同干濕循環(huán)次數(shù)下的土壤土水特征曲線進行了擬合,最終建立了考慮干濕循環(huán)效應的膨脹土土水特征曲線模型。結果表明:1)隨著干濕循環(huán)次數(shù)的增加,土壤的進氣值呈下降趨勢,從循環(huán)1次時的134.5 kPa降至循環(huán)4次時的58.5 kPa,降幅達56.5%。從循環(huán)1次至2次的進氣值下降較大,往后降幅明顯減小,趨于基本穩(wěn)定,這表明對土壤進氣值的影響以初次干濕循環(huán)為主。2)殘余值亦呈下降趨勢,從循環(huán)1次時的1 040.5降至循環(huán)4次時的528.5 kPa,降幅達49.2%。每經(jīng)歷一次干濕循環(huán),殘余值降幅均較大,尚未趨于穩(wěn)定,這表明干濕循環(huán)效應對土壤殘余值的影響比對土壤進氣值的影響要大。3)新建土水特征曲線模型中的擬合參數(shù)與干濕循環(huán)次數(shù)成較好線性關系,表明隨著干濕循環(huán)次數(shù)的增加,土壤進氣值逐漸減小,水分變化速率有所降低,而殘余含水率逐漸增加。該成果可為深入研究土壤基質吸力及其工程應用提供參考。

      土壤;裂隙;含水率;膨脹土;干濕循環(huán);濾紙法;基質吸力;土水特征曲線

      吳珺華,楊 松. 濾紙法測定干濕循環(huán)下膨脹土基質吸力變化規(guī)律[J]. 農(nóng)業(yè)工程學報,2017,33(15):126-132.

      doi:10.11975/j.issn.1002-6819.2017.15.016 http://www.tcsae.org

      Wu Junhua, Yang Song. Changes of matric suction in expansive soil under drying-wetting cycles using filter paper method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 126-132. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.15.016 http://www.tcsae.org

      0 引 言

      土水特征曲線(SWCC)是土壤基質勢與飽和度的關系曲線,表示土壤水的能量與數(shù)量之間的關系,反映了土壤的持水性能[1]。膨脹土是一種富含親水性礦物的粘性土,在干濕循環(huán)作用下易產(chǎn)生脹縮裂隙,其原有結構明顯破壞,持水性能與完整土壤相比大不相同,因此膨脹土的基質勢受土壤飽和度和結構的共同影響而變化,導致膨脹土強度、變形、滲流等性質產(chǎn)生較大改變。部分學者對膨脹土進行了相應的試驗研究,系統(tǒng)開展了基質吸力測定設備研發(fā)[2]、基質吸力的預測方法[3-5]等。此外,膨脹土在水分變化過程中裂隙發(fā)育,裂隙形態(tài)對膨脹土內(nèi)部結構影響較大[6-8],進而影響到膨脹土的強度和變形特性[9-11]。張雪東等[12]以概率論為基礎,從微觀上建立了模擬孔隙率對基質吸力影響規(guī)律的經(jīng)驗模型。陳東霞等[13]采用濾紙法測試了廈門地區(qū)殘積土的土-水特征曲線,認為修正Gardner模型最適合廈門地區(qū)殘積土的土水特征曲線。張欽喜等[14]將試驗測定的土水特征曲線引入至考慮地下水作用時的地表沉降曲線,認為在地表沉降計算中宜考慮土水特征曲線的貢獻。胡冉等[15]假定變形后的孔隙分布函數(shù)可以從參考狀態(tài)孔隙分布函數(shù)求得,基于此建立了考慮土體變形和滯回效應的土水特征曲線模型。Tarantino[16]通過建立含水率與吸力的關系以間接反映孔隙比對土水特征曲線的影響。劉艷等[17]利用土性參數(shù)預測粒狀土和黏性土的土水特征曲線。董倩等[18]利用壓力板儀測定了非飽和粉質砂土的水土特征曲線,獲得了非飽和粉質砂土抗剪強度和基質吸力之間的關系。李濤等[19]采用濾紙法測定了不同干密度下土體的土水特征曲線,建立了考慮基質吸力的破壞包絡面。趙天宇等[20]采用非飽和導水儀和壓力膜儀測定了重塑黃土的土水特征曲線,獲得了黃土土水特征曲線的進氣值與殘余含水率,但并未考慮黃土濕陷性對黃土基質吸力的影響。張昭等[21]通過引入“水土體積比”對已有土壤的土水特征曲線數(shù)據(jù)進行分析,并對VG模型進行改進,提出了一種考慮應力引起孔隙比變化的土水特征曲線模型。楊鋼等[22]發(fā)現(xiàn)SWCC的變化規(guī)律與土壤顆粒級配、蒸發(fā)效應、防護條件、收縮裂紋等試驗條件密切相關。

      可以看出,基質吸力的準確測定對研究膨脹土的力學和變形性質十分重要。膨脹土脹縮過程中通常伴隨著裂隙的張開與閉合,并且不斷有新的裂隙生成。也就是說,不同裂隙形態(tài)的土樣,其內(nèi)部結構與含水率均在不斷變化,每個時刻的土樣狀態(tài)都不相同。傳統(tǒng)測量土壤基質吸力試驗方法所獲得的試驗數(shù)據(jù),均是初始狀態(tài)基本相同的土樣測得的,而干濕循環(huán)下膨脹土在不同時刻的含水率和裂隙形態(tài)均不相同,即試驗開始時的初始狀態(tài)并不相同。若采用傳統(tǒng)試驗方法測量土壤基質吸力,一方面,試樣受到限制難以形成宏觀裂隙,不能完全地反映干濕循環(huán)產(chǎn)生的裂隙特征;另一方面,若直接采用某一裂隙樣進行試驗,試驗結果只能大致反映初始試樣的特征,并不能獲得由于含水率變化引起裂隙形態(tài)變化這一特征對土壤基質吸力的影響。實際工程中,隨著干濕循環(huán)的進行,膨脹土裂隙不斷開展,基質吸力受土壤含水率及裂隙形態(tài)的共同影響,傳統(tǒng)測量土壤基質吸力的方法存在缺陷。

      濾紙法是一種可測量土壤全程基質吸力的試驗方法[23-24],具有價格低廉、操作簡單等優(yōu)點,且可測量較大的基質吸力范圍,已廣泛應用于土壤學領域[25-26]。該方法遵循熱力學平衡原理,當土壤-濾紙-空氣間的水氣達到平衡時,由濾紙的平衡含水率來反映土壤的基質吸力值[27]。當濾紙與土壤直接接觸時,濾紙的平衡吸力相當于土壤的基質吸力;當濾紙與土壤不接觸時,濾紙的平衡吸力相當于土壤的總吸力。由于濾紙法可獲得任意狀態(tài)下土壤的吸力,原理清晰,試驗設備簡單,不干擾土壤的狀態(tài),可同時開展大批量試樣的吸力測定試驗。作者前期開展了基于濾紙法的一次吸濕和脫濕過程中膨脹土基質吸力測定的試驗,驗證了濾紙法可用來有效測定膨脹土在水分變化過程中的基質吸力[28]。實際膨脹土工程中,往往經(jīng)歷是長期、多次的干濕過程,干濕循環(huán)對膨脹土性質的影響非常顯著,相關研究也較多,但關于循環(huán)過程中基質吸力的準確測定鮮見報道,而這對于完善非飽和土相關理論、處治膨脹土工程問題有積極效應。因此本文在已有研究基礎上,采用濾紙法來測量干濕循環(huán)下不同含水率的裂隙膨脹土試樣的基質吸力,獲得了干濕循環(huán)下裂隙膨脹土的土水特征曲線,結合Fredlund土水特征曲線模型,建立了考慮干濕循環(huán)效應的膨脹土土水特征曲線模型,為研究干濕循環(huán)下膨脹土持水性能對土壤性質的影響提供參考。

      1 濾紙法試驗過程

      1.1 濾紙率定

      本文采用美國材料試驗學會(ASTM)推薦的Whatman No. 42型無灰定量分析濾紙開展土壤基質吸力測量試驗。濾紙典型尺寸為55 mm直徑圓狀。濾紙法使用的主要設備包括密封容器、絕緣箱、高精度天平、烘箱及干燥器等。試驗時將土樣與濾紙放在密封容器中若干天以達到平衡,并將密封容器放置于絕緣箱中。絕緣箱必須保持恒溫。采用濾紙法測試樣的基質吸力,首先要獲得濾紙的率定曲線,即濾紙含水率與對應基質吸力之間的定量關系。試驗采用Whatman No.42型標準濾紙,其率定關系見式(1)[29],該型濾紙的含水率w與基質吸力us的關系曲線為雙折線。

      1.2 試樣制備

      采用輕型擊實儀制備的試樣,在人工干濕循環(huán)條件下,既可以保證裂隙發(fā)育良好,又能大大降低制樣的工作量。土樣基本參數(shù)為:液限42.6%,塑限19.6%,塑性指數(shù)23,自由膨脹率56.8%,最大干密度1.8 g/cm3,相對密度2.7,試樣初始干密度1.68 g/cm3。試樣制備過程如下:

      1)采用輕型擊實儀將配制好的土料制成大圓狀樣,高度為40 mm,目的是后期切取環(huán)刀樣時能最大限度地獲得完整試樣。擊實完成后將試樣推出,并將表面整平。然后將試樣置于抽氣飽和裝置中進行抽氣飽和。至此一個圓狀樣制備完畢。

      2)將飽和試樣移出置于室內(nèi)恒溫(22 ℃)環(huán)境下,使其在自然狀態(tài)下蒸發(fā)脫濕??紤]到時間因素,試驗過程中采用小型電風扇吹試樣表面以加速水分蒸發(fā)。轉面與試樣表面平行,距離600 mm。試驗過程中定期稱量試樣質量,當其保持不變時表明一個脫濕過程完成。對于浸水過程,本文采用加濕器噴霧于試樣表面的方法模擬降雨過程,當水分在表面有少許殘留并不再浸入試樣內(nèi)部時停止噴霧。最后用塑料薄膜將其密封。至此一個干濕循環(huán)完成,重復上述步驟即為多次干濕循環(huán)。圖1為經(jīng)歷不同干濕循環(huán)次數(shù)后,試樣表面裂隙的開展情況。隨著干濕循環(huán)次數(shù)的增加,主裂隙首先生成;當循環(huán)至一定次數(shù)后,主裂隙邊緣土顆粒剝落,形態(tài)逐漸模糊,并有新的小裂隙生成,土壤表面破碎程度加劇,這符合實際工程中裂隙的發(fā)育過程。

      圖1 干濕循環(huán)下膨脹土裂隙發(fā)育過程Fig.1 Crack development process of expansive soil under drying-wetting cycles

      3)當試樣含水率達到試驗指定要求后,采用環(huán)刀取樣的方法獲得試驗所需的試樣,環(huán)刀尺寸為Φ61.8 mm× H20 mm。用螺旋式千斤頂緩慢地將環(huán)刀壓入試樣約30 mm,即環(huán)刀頂?shù)酌婢粲?0 mm,以便后期切削時能最大程度地保證試樣的完整性。壓入速率不宜過大,尤其對于含水率低的試樣,其表現(xiàn)出較高硬度和較大脆性,壓入太快易使試樣產(chǎn)生脆性斷裂。對此進行了不同壓入速率的取樣試驗,結果表明對于含水率低的試樣,壓入速率不宜超過0.3 mm/s;對于含水率高的試樣,壓入速率不宜超過0.8 mm/s。

      1.3 試驗方案與步驟

      為研究不同水分變化路徑對膨脹土基質吸力的影響,課題組分別進行了4次干濕循環(huán)下試樣脫濕和吸濕條件下的濾紙法測基質吸力試驗。具體試驗方案見表1。需要說明的是,表1中的數(shù)據(jù)為試驗完成后試樣的實測體積含水率,可根據(jù)試驗完成后試樣的質量含水率、濕密度和土粒密度等參數(shù)換算得到。不同編號分別代表試驗不同階段時所切取的試樣。由于試驗目的主要是獲得整個干濕循環(huán)過程中基質吸力的變化情況,因此具體選取哪個階段時的試樣并無嚴格要求,原則上根據(jù)試樣顏色、軟硬程度等的變化來控制。經(jīng)歷不同干濕循環(huán)次數(shù)下試樣的飽和體積含水率不盡相同,具體見表1中編號11的數(shù)據(jù),是由試驗完成后取樣測得。土粒密度為2.7 g/cm3。采用接觸法測量試樣的基質吸力,每組取相同試樣2個及干濾紙3張。濾紙尺寸小于試樣(1張直徑為55 mm,另2張直徑為58 mm),將小直徑的濾紙夾在2張大直徑濾紙之間并置于下部試樣的頂部,然后將上部試樣置于濾紙上方緊密接觸(圖2),目的是避免測試濾紙(即中間小直徑濾紙)沾染土顆粒而影響試驗結果。用塑料膜將整體包裹后蠟封,置于恒溫環(huán)境下至少7 d[26],保證濾紙與試樣達到水分交換平衡。然后迅速將濾紙取出并稱質量,隨后烘干至少6 h并稱質量。由此可獲得濾紙的含水率,通過式(1)即可計算得該試樣的平均基質吸力。同時量測上下試樣的體積和質量,以獲得試樣的體積含水率,最終獲得試樣的土水特征曲線。

      圖2 濾紙法示意圖[23]Fig.2 Schematic diagram of filter paper method

      表1 濾紙法試驗方案Table 1 Testing program of filter paper method

      2 試驗結果與分析

      非飽和土土水特征曲線通常具有復雜的形態(tài),可用典型特征參數(shù)來反映,以吸力進氣值與殘余值為典型代表:進氣值是空氣進入土體孔隙并將孔隙中的重力水開始排出時所對應的基質吸力,殘余值是重力水開始進入土體孔隙時所對應的基質吸力。在實際應用時,進氣值為脫濕曲線在高飽和度下的拐點,殘余值為吸濕曲線在低飽和度下的拐點,具體確定方式見圖3[30]。

      不同干濕循環(huán)次數(shù)下測得的濾紙含水率見表2,結合式(1)求得相應的試樣基質吸力(表3)。結合表1中相應的試樣體積含水率,可獲得經(jīng)歷不同干濕循環(huán)次數(shù)下試樣的土水特征曲線(圖4),其中橫坐標為基質吸力的對數(shù)值。根據(jù)基質吸力進氣值和殘余值的確定方法(圖3),可求出經(jīng)歷不同干濕循環(huán)次數(shù)下試樣的基質吸力進氣值和殘余值,相應的計算結果見圖5。

      圖3 土水特征曲線的進氣值和殘余值確定方法Fig.3 Determination of air-entry and residual values of SWCC

      表2 濾紙含水率測定結果Table 2 Results of water content of filter papers

      表3 濾紙法測定土壤基質吸力試驗結果Table 3 Results of soil matric suction by filter paper method

      圖4 試樣土水特征曲線及特征參數(shù)Fig.4 Soil SWCC and its characteristic parameters

      圖5 不同干濕循環(huán)次數(shù)下試樣的進氣值與殘余值Fig.5 Air-entry and residual values of soil under drying-wetting cycles

      隨著干濕循環(huán)次數(shù)的增加,土壤的進氣值呈下降趨勢,從循環(huán)1次時的134.5 kPa降至循環(huán)4次時的58.5 kPa,降幅達56.5%。從循環(huán)1次至2次的進氣值減小較大,往后降幅明顯減小,趨于基本穩(wěn)定,這表明對土壤進氣值的影響主要出現(xiàn)在初次干濕循環(huán)下;殘余值亦呈下降趨勢,從循環(huán)1次時的1 040.5 kPa降至循環(huán)4次時的528.5 kPa,降幅達49.2%。每經(jīng)歷一次干濕循環(huán),殘余值的降幅均較大,尚未趨于穩(wěn)定,這表明干濕循環(huán)效應對土壤殘余值的影響比對土壤進氣值的影響要大。本文中經(jīng)歷4次干濕循環(huán)的試樣,其殘余值仍有較大的下降空間,而進氣值已基本趨于穩(wěn)定。

      可以看出,干濕循環(huán)效應對膨脹土結構影響十分明顯,導致土壤結構松散破碎,裂隙發(fā)育,持水能力總體下降。干濕循環(huán)效應對土壤殘余值影響較大,對土壤進氣值的影響相對較小??傮w上看,干濕循環(huán)對膨脹土持水性能的影響很大,隨著循環(huán)次數(shù)的增加,膨脹土持水能力迅速衰減,遇水后基質吸力迅速降低,工程性質變差。此外,對一些受水分作用影響明顯的特殊性土,傳統(tǒng)的基質吸力量測方法不能真實完全地反映其持水特性。濾紙法不干擾試樣的初始形態(tài),試驗結果有效地驗證了濾紙法可測定干濕循環(huán)下土體的基質吸力,可作為測量該類特殊性土基質吸力的一種有效方法。

      計算求出不同體積含水率下試樣的基質吸力后,應采用合適的土水特征曲線計算模型進行分析。本文采用Fredlund等[31]提出的三參數(shù)模型(式(2))對試驗結果擬合

      式中ψ為基質吸力,kPa;θw為基質吸力為ψ時的體積含水率;θs為飽和體積含水率;a為與進氣值有關的參數(shù);b為與土壤脫濕速率有關的參數(shù);c為與殘余值有關的參數(shù)。

      利用Origin軟件的自定義函數(shù)擬合功能,對4次干濕循環(huán)下的土水特征曲線進行了擬合,擬合結果見表4??梢钥闯?,隨著干濕循環(huán)次數(shù)的增加,a和b值逐漸減小,c值有所增大。這表明,隨著干濕循環(huán)次數(shù)的增加,土壤進氣值逐漸減小,水分變化速率有所降低,而殘余含水率逐漸增加。這表明,干濕循環(huán)效應導致土壤結構逐漸松散破碎,持水能力逐漸下降,土壤中的水分易從孔隙中逃溢,外界水分也易入滲土壤。

      表4 土水特征曲線模型參數(shù)擬合結果Table 4 Fitted results of parameters in SWCC model

      將參數(shù)a、b、c與干濕循環(huán)次數(shù)的關系繪于圖6??梢钥闯?,脫濕和吸濕條件下,參數(shù)a、b、c與干濕循環(huán)次數(shù)均呈現(xiàn)較好的線性關系,可采用一次線性關系式進行擬合,結果見表5。

      圖6 擬合參數(shù)a、b、c與干濕循環(huán)次數(shù)的關系Fig.6 Relationship between fitted parameters a, b, c and drying-wetting cycle time

      表5 土水特征曲線模型參數(shù)與干濕循環(huán)次數(shù)關系Table 5 Relationship between parameters of SWCC model anddrying-wetting cycle time

      將擬合結果代入式(2)中,即可獲得考慮干濕循環(huán)效應的膨脹土土水特征曲線模型,見式(3)。

      式中ad、bd、cd、aw、bw、cw的具體表達式見表5,其余參數(shù)物理意義與式(2)中的參數(shù)相同。

      3 結 論

      1)隨著干濕循環(huán)次數(shù)的增加,土壤的進氣值呈下降趨勢,初次干濕循環(huán)對進氣值影響最大,往后降幅明顯減小,趨于基本穩(wěn)定;殘余值亦呈下降趨勢,每經(jīng)歷一次干濕循環(huán),殘余值的降幅均較大,尚未趨于穩(wěn)定,這表明干濕循環(huán)效應對土壤殘余值的影響比對土壤進氣值的影響要大。經(jīng)歷4次干濕循環(huán)的試樣,其殘余值仍有較大的下降空間,而進氣值已基本趨于穩(wěn)定。

      2)采用了Fredlund土水特征曲線模型對干濕循環(huán)下膨脹土的土水特征曲線結果進行擬合,建立了考慮干濕循環(huán)效應的土水特征曲線模型。模型參數(shù)與干濕循環(huán)次數(shù)均呈現(xiàn)較好的線性關系。隨著干濕循環(huán)次數(shù)的增加,土壤進氣值逐漸減小,水分變化速率有所降低,而殘余含水率逐漸增加。該成果可為深入研究土壤基質吸力及應用提供參考。

      [1] Fredlund D G, Rahardjo H. Soil Mechanics for Unsaturated Soils[M]. Beijing: China Building Industry Press, 1997.

      [2] 任淑娟,孫宇瑞,任圖生. 測量土壤水分特征曲線的復合傳感器設計[J]. 農(nóng)業(yè)機械學報,2009,40(5):56-58.

      Ren Shujuan, Sun Yurui, Ren Tusheng. Design of dual-sensor for measuring soil water characteristic curve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(5): 56-58. (in Chinese with English abstract)

      [3] Puppala A J, Punthutaecha K, Vanapalli S K. Soil-water characteristic curves of stabilized expansive soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(6): 736-751.

      [4] Fredlund M D, Wilson G W, Fredlund D G. Use of the grain-size distribution for estimation of the SWCC[J]. Canadian Geotechnical Journal, 2002, 39: 1103-1117.

      [5] Simms P H, Yanful E K. Predicting SWCC of compacted plastic soils from measured pore-size distributions[J]. Geotechnique, 2002, 4: 269-278.

      [6] 李文杰,張展羽,王策. 干濕循環(huán)過程中壤質黏土干縮裂縫的開閉規(guī)律[J]. 農(nóng)業(yè)工程學報,2015,31(8):126-132.

      Li Wenjie, Zhang Zhanyu, Wang Ce. Propagation and closure law of desiccation cracks of loamy clay during cyclicdrying-wetting process[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2015, 31(8): 126-132. (in Chinese with English abstract)

      [7] Aubertin M, Mbonimpa M, Bussiere B. A model to predict the water retention curve from basic geotechnical properties[J]. Canadian Geotechnical Journal, 2003, 40: 1104-1122.

      [8] 王曉燕,姚志華,黨發(fā)寧,等. 裂隙膨脹土細觀結構演化試驗[J]. 農(nóng)業(yè)工程學報,2016,32(3):92-100.

      Wang Xiaoyan, Yao Zhihua, Dang Faning, et al. Meso-structure evolution of cracked expansive soils[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(3): 92-100. (in Chinese with English abstract)

      [9] Vanapalli S K, Fredlund D G, Pufahl D E. Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal, 1996, 33: 379-392.

      [10] Patil N G, Rajput G S. Evaluation of water retention functions and computer program ‘Rosetta’ in predicting soil water characteristics of seasonally impounded shrink-swell soils[J]. Journal of Irrigation and Drainage Engineering, 2009, 135(3): 286-294.

      [11] 吳珺華,楊松. 干濕循環(huán)下膨脹土基質吸力測定及其對抗剪強度影響試驗研究[J]. 巖土力學,2017,38(3):678-684.

      Wu Junhua, Yang Song. Experimental study of matric suction measurement and its impact on shear strength under drying-wetting cycles for expansive soils[J]. Rock and Soil Mechanics, 2017, 38 (3): 678-684. (in Chinese with English abstract)

      [12] 張雪東,趙成剛,劉艷. 變形對土水特征曲線影響規(guī)律模擬研究[J]. 土木工程學報,2011,44(7):119-126.

      Zhang Xuedong, Zhao Chenggang, Liu Yan. Modeling study of the relationship between deformation and water retention curve[J]. China Civil Engineering Journal, 2011, 44(7): 119-126. (in Chinese with English abstract)

      [13] 陳東霞,龔曉南. 非飽和殘積土的土水特征曲線試驗及模擬[J]. 巖土力學,2014,35(7):1885-1891.

      Chen Dongxia, Gong Xiaonan. Experiment and modeling of soil-water characteristic curve of unsatuated residual soil[J]. Rock and Soil Mechanics, 2014, 35(7): 1885-1891. (in Chinese with English abstract)

      [14] 張欽喜,陳鵬,楊宇友. 非飽和土土水特征曲線試驗及在工程中的應用[J]. 北京工業(yè)大學學報,2012,38(8):1185-1189.

      Zhang Qinxi, Chen Peng, Yang Yuyou. SWCC test of unsaturated soil and its applications in engineering[J]. Journal of Beijing University of Technology, 2012, 38(8): 1185-1189. (in Chinese with English abstract)

      [15] 胡冉,陳益峰,周創(chuàng)兵. 基于孔隙分布的變形土土水特征曲線模型[J]. 巖土工程學報,2013,35(8):1451-1462.

      Hu Ran, Chen Yifeng, Zhou Chuangbing. A water retention curve model for deformable soils based on pore size distribution[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1451-1462. (in Chinese with English abstract)

      [16] Tarantino A. A water retention model for deformable soils[J]. Géotechnique, 2009, 59(9): 751-762.

      [17] 劉艷,趙成剛,王靖安. 基于土性參數(shù)的土水特征曲線的預測方法[J]. 北京工業(yè)大學學報,2010,36(11):1457-1464.

      Liu Yan, Zhao Chenggang, Wang Jingan. Study on the prediction of SWCC from basic soil properties[J]. Journal of Beijing University of Technology, 2010, 36(11): 1457-1464. (in Chinese with English abstract)

      [18] 董倩,侯龍,趙寶云. 基質吸力對非飽和粉質砂土抗剪強度的影響[J]. 中南大學學報:自然科學版,2012,43(10):4017-4021.

      Dong Qian, Hou Long, Zhao Baoyun. Influence of matric suction on shear strength of unsaturated silty sand[J]. Journal of Central South University: Science and Technology, 2012, 43(10): 4017-4021. (in Chinese with English abstract)

      [19] 李濤,劉波,楊偉紅. 基質吸力對重塑紅粘土抗剪強度影響的試驗研究[J]. 中國礦業(yè)大學學報,2013,42(3):375-381.

      Li Tao, Liu Bo, Yang Weihong. Experimental research on the influence of matric suction on the shear strength of remolded red clay[J]. Journal of China University of Mining and Technology, 2013, 42(3): 375-381. (in Chinese with English abstract)

      [20] 趙天宇,王錦芳. 考慮密度與干濕循環(huán)影響的黃土土水特征曲線[J]. 中南大學學報:自然科學版,2012,43(6):2445-2453.

      Zhao Tianyu, Wang Jinfang. Soil-water characteristic curve for unsaturated loess soil considering density and wetting-drying cycle effects[J]. Journal of Central South University: Science and Technology, 2012, 43(6): 2445-2453. (in Chinese with English abstract)

      [21] 張昭,劉奉銀,趙旭光. 考慮應力引起孔隙比變化的土水特征曲線模型[J]. 水利學報,2013,44(5):578-585.

      Zhang Zhao, Liu Fengyin, Zhao Xuguang. A soil water characteristic curve model considering void ratio variation with stress[J]. Journal of Hydraulic Engineering, 2013, 44(5): 578-585. (in Chinese with English abstract)

      [22] 楊鋼,楊慶. 土-水特征曲線測定過程中潛在影響因素與異?,F(xiàn)象研究[J]. 巖土力學,2014,35(2):397-406.

      Yang Gang, Yang Qing. Experimental research on potential factors and abnormal phenomenon for measuring soil-water characteristic curve[J]. Rock and Soil Mechanics, 2014, 35(2): 397-406. (in Chinese with English abstract)

      [23] Wu Junhua, Yuan Junping, Ng C W W. Theoretical and experimental study of initial cracking mechanism of an expansive soil due to moisture-change[J]. Journal of Central South University, 2012, 19(5): 1437-1446.

      [24] Houston S L, Houston W N, Wagner A M. Laboratory filter paper suction measurements[J]. Geotechnical Testing Journal, 1994, 17(2): 185-194.

      [25] 白福青,劉斯宏,袁驕. 濾紙法測定南陽中膨脹土土水特征曲線試驗研究[J]. 巖土工程學報,2011,33(6):928-933.

      Bai Fuqing, Liu Sihong, Yuan Jiao. Measurement of SWCC of Nanyang expansive soil using the filter paper method[J].Chinese Journal of Geotechnical Engineering, 2011, 33(6): 928-933. (in Chinese with English abstract)

      [26] Sposito G. The Thermodynamics of Soil Solutions[M]. New York: Oxford University Press, 1981.

      [27] Chandler R J, Crilly M S. A low cost method of assessing clay desiccation for low-rise buildings[C]// Proceedings of the Institution of Civil Engineers: Civil Engineers, 1992: 82-89.

      [28] 吳珺華,袁俊平,楊松. 基于濾紙法的裂隙膨脹土土水特征曲線試驗[J]. 水利水電科技進展,2013,33(5):61-64.

      Wu Junhua, Yuan Junping, Yang Song. Experimental study on SWCC of expansive soil with cracks using filter paper method[J]. Advances in Science and Technology of Water Resources, 2013, 33(5): 61-64. (in Chinese with English abstract)

      [29] 張家俊. 干濕循環(huán)條件下裂隙、體變與滲透特性研究[D].廣州:華南理工大學,2010.

      Zhang Jiajun. Study of the Fissures, Volume Change and Permeability of Expansive Soil Under Wetting and Drying Cycles[D]. Guangzhou: South China University of Technology, 2010. (in Chinese with English abstract)

      [30] 謝定義. 非飽和土土力學[M]. 北京:高等教育出版社,2015:10-36.

      [31] Fredlund D G, Xing A. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532.

      Changes of matric suction in expansive soil under drying-wetting cycles using filter paper method

      Wu Junhua1,2, Yang Song3※
      (1. Key Laboratory of Nondestructive Testing , Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China; 2. College of Civil Engineering and Architecture, Nanchang Hangkong University, Nanchang 330063, China; 3. College of Water Conservancy, Yunnan Agricultural University, Kunming 650201, China)

      Soil water characteristic curve (SWCC) can show the soil water holding capacity, and is the relationship between the soil matric potential and saturation. The expansive soil has the characteristics of strong swell-shrink, developing fissures and over consolidation, especially under drying-wetting cycles. Its water holding capacity, which has an important impact on the soil properties, is totally different from the capacity of full soil. Therefore, how to exactly obtain the matric suction of expansive soil under drying-wetting cycles is very important to analyze the characteristics of mechanics and deformation of expansive soil. In order to analyze the change rule of matric suction of expansive soil under drying-wetting cycles, the artificial rainfall and evaporation was applied in drying-wetting tests of expansive soil. The specimens sized at 102 mm × 40 mm (diameter × height) were made by compaction apparatus and the initial dry density was 1.68 g/cm3. All the specimens were saturated after compaction and undergoing drying-wetting cycles in constant temperature (22 ℃) environment. The small electric fans were adopted to increase the rate of evaporation until the mass of specimens was kept constant under the condition of drying. Then the water vapours were sprayed to the surface of specimens by humidifiers until the process of infiltration stopped under the condition of wetting. That is one drying-wetting cycle so far. In this paper, 4 set of experiments under drying-wetting cycles were carried out and the cycle times were 1, 2, 3 and 4 respectively. Then 11 specimens sampled by cutting rings (61.8 mm × 20 mm (diameter × height)) in different volumetric water content were obtained in each process of drying and wetting respectively. The matric suction of each specimen was measured with filter paper of Whatman No. 42 and then the SWCCs were obtained under drying-wetting cycles. The corresponding air-entry values and residual values in different drying-wetting cycle times were calculated from SWCC. Ulteriorly, the different SWCCs obtained in different drying-wetting cycle times were fitted by the Fredlund SWCC model. Based on the above analysis, an SWCC model of expansive soil considering drying-wetting cycle effect was established finally. The results showed that: 1) With the increase of drying-wetting cycle time, the air-entry value of expansive soil was evidently reduced. Compared with the air-entry value (134.5 kPa) of expansive soil undergoing one drying-wetting cycle, the air-entry value was 58.5 kPa and reduced by 56.5% undergoing 4 drying-wetting cycles. The most effect of drying-wetting cycles on air-entry value occurred in the first cycle. 2) With the increase of drying-wetting cycle time, the residual value of expansive soil was also reduced. Compared with the residual value (1 040.5 kPa) of expansive soil undergoing one drying-wetting cycle, the residual value was 528.5 kPa and reduced by 49.2% undergoing 4 drying-wetting cycles. Moreover, the residual value is reduced evidently after undergoing one drying-wetting cycle and it cannot yet be stabilized with the increase of drying-wetting cycle time. That means the effect of drying-wetting cycles on ari-entry value is much greater than on residual value. 3) The fitted parameters in the SWCC model of expansive soil considering the effect of drying-wetting cycle have a good linear correlation with the drying-wetting cycle time. With the increase of drying-wetting cycle time, the soil air-entry value and change rate of water content reduce while the residual value increases gradually. The results can provide a reference for the further analysis on soil matric suction and its application in engineering.

      soils; cracks; water content; expansive soil; drying-wetting cycles; filter paper method; matric suction; soil water characteristic curve

      10.11975/j.issn.1002-6819.2017.15.016

      S152.7

      A

      1002-6819(2017)-15-0126-07

      2017-01-12

      2017-07-10

      國家自然科學基金資助項目(51408291,41662021);南昌航空大學無損檢測技術教育部重點實驗室開放基金項目(ZD201529002)

      吳珺華,副教授,博士,主要從事非飽和土基本性質研究。南昌南昌航空大學土木建筑學院,330063。Email:wjhnchu0791@126.com

      ※通信作者:楊 松,博士,主要從事非飽和土基本性質研究。昆明 云南農(nóng)業(yè)大學水利學院,650201。Email:yscliff007@126.com

      猜你喜歡
      土水濾紙吸力
      深水大型吸力錨測試技術
      初始孔隙比對高吸力下非飽和土土水特性的影響
      ROV在海上吸力樁安裝場景的應用及安裝精度和風險控制
      化工管理(2022年11期)2022-06-03 07:08:24
      基于粒徑分布曲線的非飽和砂土土水特征曲線概率預測模型*
      深水吸力樁施工技術研究
      干密度對重塑花崗巖殘積土土水特征曲線影響
      山西建筑(2019年3期)2019-01-19 07:15:54
      淺析濾紙的勻度對濾芯過濾性能的影響
      超強吸力
      少年科學(2015年7期)2015-08-13 04:14:32
      高抗水水性丙烯酸酯乳液的合成、表征及其在工業(yè)濾紙中的應用
      應用化工(2014年12期)2014-08-16 13:10:46
      淺析濾紙透氣度與初始壓差的關系
      汽車零部件(2014年2期)2014-03-11 17:46:34
      临武县| 平江县| 晋州市| 赞皇县| 万载县| 武强县| 平原县| 渭南市| 平和县| 黄龙县| 西平县| 清新县| 清水县| 安丘市| 普兰县| 姜堰市| 远安县| 颍上县| 资溪县| 汉沽区| 家居| 峨眉山市| 盘山县| 安龙县| 西吉县| 汪清县| 永昌县| 紫云| 客服| 东光县| 连南| 广南县| 綦江县| 名山县| 邵阳县| 永年县| 阳山县| 柘城县| 丰台区| 丁青县| 汝州市|