牛小霞,謝亞萍,王 斌,??×x
(1. 甘肅省農(nóng)業(yè)工程技術(shù)研究院,甘肅武威 733007;2. 甘肅省農(nóng)業(yè)科學(xué)院 作物研究所,蘭州 730070;3. 甘肅農(nóng)業(yè)大學(xué) 農(nóng)學(xué)院,蘭州 730070)
磷對胡麻葉和蒴果皮中葉綠素質(zhì)量分?jǐn)?shù)、籽粒產(chǎn)量和品質(zhì)的影響
牛小霞1,謝亞萍2,王 斌2,牛俊義3
(1. 甘肅省農(nóng)業(yè)工程技術(shù)研究院,甘肅武威 733007;2. 甘肅省農(nóng)業(yè)科學(xué)院 作物研究所,蘭州 730070;3. 甘肅農(nóng)業(yè)大學(xué) 農(nóng)學(xué)院,蘭州 730070)
以‘隴亞雜1號’為試驗(yàn)材料,在大田條件下設(shè)置4個(gè)施磷(P2O5)水平(0、75、150、225 kg/hm2), 研究磷素營養(yǎng)對胡麻葉和蒴果皮中葉綠素、籽粒產(chǎn)量和品質(zhì)的影響。結(jié)果表明,葉片和蒴果皮中葉綠素a、葉綠素b和葉綠素a+b質(zhì)量分?jǐn)?shù)均隨施磷量增加而增加,與不施磷相比,葉片中平均分別增加19.05%、32.51%和22.72%,蒴果皮中平均分別增加43.21%、37.50%和41.65%;與不施磷相比,籽粒產(chǎn)量、含油率、油產(chǎn)量和籽粒粗蛋白均隨施磷水平而提高,平均分別提高19.91%、1.20%、23.55%和10.17%;籽粒中亞麻酸質(zhì)量分?jǐn)?shù)隨施磷水平升高先升高后降低,平均升高3.70%。施磷量與籽粒產(chǎn)量、亞麻酸質(zhì)量分?jǐn)?shù)正相關(guān);與含油率、油產(chǎn)量和籽粒粗蛋白質(zhì)量分?jǐn)?shù)顯著正相關(guān);與成熟期葉片和盛花期蒴果皮葉綠素質(zhì)量分?jǐn)?shù)極顯著正相關(guān);子實(shí)期葉片中葉綠素質(zhì)量分?jǐn)?shù)與籽粒產(chǎn)量、含油率和油產(chǎn)量間存在極顯著正相關(guān);子實(shí)期蒴果皮中葉綠素質(zhì)量分?jǐn)?shù)與籽粒產(chǎn)量和油產(chǎn)量間存在極顯著正相關(guān)。試驗(yàn)表明,施磷提高葉片和蒴果皮中葉綠素質(zhì)量分?jǐn)?shù)和籽粒產(chǎn)量,同時(shí)也改善胡麻品質(zhì)。
磷;胡麻;葉綠素;籽粒產(chǎn)量;品質(zhì)
胡麻(LinumusitatissimumL.)為油用亞麻的俗稱,是世界重要的油料作物之一[1]。2012年,中國胡麻種植面積為31.8萬hm2,總產(chǎn)量39.1萬t,分別占全世界種植面積和產(chǎn)量的13.71%和18.80%[2]。由于胡麻具有較強(qiáng)的抗旱、耐寒、耐瘠薄能力和生長期短、適應(yīng)性強(qiáng)等特性,在農(nóng)業(yè)生產(chǎn)中具有其他作物不可替代的地位[3]。胡麻籽粒富含木酚素、a-亞麻酸、纖維素和維生素E等多種有益營養(yǎng)成分,常用來生產(chǎn)各種類型功能性食品、藥品、保健品[4]。特別是籽粒中a-亞麻酸,在人體內(nèi)經(jīng)幾種酶轉(zhuǎn)化為DHA和EPA[5]。亞麻酸具有降低各種疾病的風(fēng)險(xiǎn)[6]。尤其是冠心病、結(jié)腸癌、乳腺癌和動(dòng)脈硬化[5,7-9]。隨著經(jīng)濟(jì)的發(fā)展和人們對高品質(zhì)生活的追求,對胡麻籽粒的需求不斷增加。因此,近幾年,在中國西北和華北干旱和半干旱地區(qū),胡麻種植面積不斷擴(kuò)大。然而,胡麻籽粒產(chǎn)量較低,成為制約胡麻種植和產(chǎn)業(yè)發(fā)展的瓶頸。相對于其他作物而言,有關(guān)胡麻施肥的研究仍處于較落后狀態(tài)。
合理的磷肥運(yùn)籌是改善作物光合特性[10],提高作物產(chǎn)量和品質(zhì)的一項(xiàng)重要調(diào)控措施[11-12]。謝亞萍等[13]研究表明,旱地胡麻籽粒產(chǎn)量隨施磷量增加而增加。楊晴等[14]研究表明,在施用 P2O575~375 kg/hm2時(shí), 隨施磷量增加,小麥 (Triticumaestivum)葉片葉綠素質(zhì)量分?jǐn)?shù)提高,同時(shí)產(chǎn)量增加。Grant等[15]研究表明,通過施用磷肥,增加胡麻籽粒中鋅的質(zhì)量分?jǐn)?shù),進(jìn)而提高品質(zhì)。謝亞萍等[16]研究得出,灌溉地施用磷肥,胡麻莖、葉中葉綠素質(zhì)量分?jǐn)?shù)提高,籽粒產(chǎn)量提高。Rogério等[17]研究表明,隨磷肥用量增加,海甘藍(lán)(CrambeabssynicaHoechst)產(chǎn)量增加,但對油質(zhì)量分?jǐn)?shù)沒有影響;Morshedi[18]研究油菜(Brassicanapus)結(jié)果表明,磷肥提高了油菜產(chǎn)量,卻對油質(zhì)量分?jǐn)?shù)沒有影響。Prystupa等[19]研究大麥(Hordeumvulgarespp.distichumL.)得出,磷肥提高大麥產(chǎn)量。有關(guān)不同施磷水平下灌溉地胡麻葉片和蒴果皮中葉綠素質(zhì)量分?jǐn)?shù)動(dòng)態(tài)變化規(guī)律以及不同磷水平對胡麻籽粒產(chǎn)量和品質(zhì)的影響的研究鮮見報(bào)道。本研究旨在明確不同磷素用量對灌溉地胡麻整個(gè)生育期葉片和蒴果皮中葉綠素質(zhì)量分?jǐn)?shù)、籽粒產(chǎn)量和品質(zhì)的影響;全面揭示胡麻葉片和蒴果皮中葉綠素的動(dòng)態(tài)變化特征,從而闡明磷素對胡麻生產(chǎn)力的調(diào)控效應(yīng)。為生產(chǎn)中磷肥的合理施用提供理論依據(jù)。
1.1 研究區(qū)概況
試驗(yàn)于2012年在甘肅省蘭州市榆中縣良種場進(jìn)行,試驗(yàn)區(qū)年平均氣溫6.7 ℃,無霜期120 d左右,年降雨量350 mm,年蒸發(fā)量1 450 mm。試驗(yàn)地為砂壤土。播前土層(0~30 cm)有機(jī)質(zhì)16.56 g/kg,全氮1.10 g/kg,堿解氮59.01 mg/kg,速效磷13.83 mg/kg,速效鉀127.67 mg/kg,pH 7.75。
1.2 試驗(yàn)設(shè)計(jì)
試驗(yàn)采用單因素隨機(jī)區(qū)組法。磷肥(P2O5)施用量設(shè)置為0 kg/hm2(P0)、75 kg/hm2(P1)、150 kg/hm2(P2)、225 kg/hm2(P3)4個(gè)水平,小區(qū)面積20 m2,重復(fù)3次。小區(qū)、重復(fù)間分別設(shè)置30 cm、50 cm寬的走(過)道,四周設(shè)寬1 m的保護(hù)行。供試品種為‘隴亞雜1號’。3月28日播種,人工條播,種植密度為833株/m2,播深3 cm,行距20 cm。磷肥為過磷酸鈣,全部基施;氮肥和鉀肥分別為尿素和硫酸鉀。氮肥2/3基施,1/3于現(xiàn)蕾前追施;鉀肥175 kg/hm2K2O基施。8月1日收獲,并進(jìn)行實(shí)際產(chǎn)量測定和室內(nèi)考種。胡麻生育期灌溉2次,現(xiàn)蕾期100 m3/667 m2,分莖期80 m3/667 m2。
1.3 測定指標(biāo)及方法
葉綠素質(zhì)量分?jǐn)?shù)的測定:在胡麻苗期、現(xiàn)蕾期、盛花期、青果期和成熟期,每小區(qū)選取長勢基本一致的植株20株,選定具有代表性的植株葉片,在盛花期、青果期和成熟期,選擇長勢一致的蒴果,去皮;采用丙酮提取法[20]測定葉片和蒴果皮中葉綠素質(zhì)量分?jǐn)?shù)。
按試驗(yàn)小區(qū)收獲,測定其實(shí)際產(chǎn)量。
籽粒粗蛋白測定采用凱氏定氮法[21],粗蛋白質(zhì)量分?jǐn)?shù)=籽粒氮質(zhì)量分?jǐn)?shù)×6.25;高效氣相法測定籽粒脂肪酸組分[22];索氏提取法測定籽粒含油量[23]。
1.4 數(shù)據(jù)處理
采用Microsoft Excel 2003、SPSS 17.0進(jìn)行數(shù)據(jù)整理和分析。
2.1 不同施磷量對葉片葉綠素質(zhì)量分?jǐn)?shù)的影響
由表1可見,胡麻葉片中葉綠素a質(zhì)量分?jǐn)?shù)整個(gè)生育期先升后降呈倒V型,最高質(zhì)量分?jǐn)?shù)出現(xiàn)在盛花期,最低質(zhì)量分?jǐn)?shù)在成熟期。隨施磷量增加,葉綠素a質(zhì)量分?jǐn)?shù)增加,且現(xiàn)蕾期和盛花期差異不顯著。
從苗期至現(xiàn)蕾期葉綠素a質(zhì)量分?jǐn)?shù)增加最快,增幅10.86%~34.07%;現(xiàn)蕾期至盛花期,葉綠素a質(zhì)量分?jǐn)?shù)變化平緩,增幅3.36%~7.30%。盛花期開始,葉綠素a質(zhì)量分?jǐn)?shù)開始降低,子實(shí)期至成熟期降幅最大,達(dá)63.53%~68.86%。盛花期至成熟期,葉綠素a質(zhì)量分?jǐn)?shù)降低70.94%~76.86%。與不施磷相比,施磷處理葉綠素a質(zhì)量分?jǐn)?shù)平均增加19.05%。
隨施磷量增加,胡麻葉片中葉綠素b質(zhì)量分?jǐn)?shù)增加。與葉綠素a變化趨勢一致。在整個(gè)生育期,胡麻葉片葉綠素b質(zhì)量分?jǐn)?shù)先升后降,呈單峰狀,最高峰在盛花期,最低值在成熟期。從苗期至現(xiàn)蕾期葉綠素b質(zhì)量分?jǐn)?shù)增加最快,增幅46.82%~97.56%;現(xiàn)蕾期至盛花期,葉綠素b質(zhì)量分?jǐn)?shù)變化平緩,增幅9.35%~46.68%。盛花期開始,葉綠素b質(zhì)量分?jǐn)?shù)開始降低,子實(shí)期至成熟期降幅最大,達(dá)73.16%~76.28%。盛花期至成熟期,葉綠素b質(zhì)量分?jǐn)?shù)降低83.42%~86.62%。與不施磷相比,施磷處理葉綠素b質(zhì)量分?jǐn)?shù)增加14.39%~46.86%,平均增加32.51%。
胡麻葉片葉綠素a+b質(zhì)量分?jǐn)?shù)隨施磷量的變化,和葉綠素b質(zhì)量分?jǐn)?shù)一致,隨施磷量增加而增加。整個(gè)生育期動(dòng)態(tài)趨勢同于葉綠素a和葉綠素b,先升后降,呈倒V型;最高值在盛花期,最低值在成熟期。與不施磷相比,施磷處理葉綠素a+b質(zhì)量分?jǐn)?shù)增加15.58%~27.27%,平均增加22.72%。苗期至現(xiàn)蕾期葉綠素a+b質(zhì)量分?jǐn)?shù)升高最快,增幅26.01%~41.96%;子實(shí)期至成熟期降低最快,降幅66.26%~70.82%。盛花期至成熟期,葉綠素質(zhì)量分?jǐn)?shù)降低75.19%~80.06%??梢?,從盛花期開始,葉綠素開始降解,子實(shí)期至成熟期降低最快。
2.2 不同施磷量對蒴果皮中葉綠素質(zhì)量分?jǐn)?shù)的影響
蒴果皮中葉綠素a、葉綠素b和葉綠素a+b質(zhì)量分?jǐn)?shù)隨施磷量的增加而增加(表2)。與不施磷相比,施磷處理葉綠素a、葉綠素b和葉綠素a+b質(zhì)量分?jǐn)?shù)增幅分別為27.50%~57.69%、26.39%~52.78%和33.33%~50.93%,分別平均增加43.21%,37.50%和41.65%。
蒴果皮中葉綠素a、葉綠素b和葉綠素a+b質(zhì)量分?jǐn)?shù)從盛花期開始持續(xù)下降,從子實(shí)期至成熟期降幅最大,分別為36.51%~45.16%、37.50%~50.00%和39.53%~44.35%;從盛花期至成熟期,分別降低48.72%~63.89%、52.78%~60.00%和51.85%~61.90%,分別平均降低55.64%,55.54%和55.73%。
表1 不同磷水平下胡麻葉片葉綠素質(zhì)量分?jǐn)?shù)±s)Table 1 Chlorophyll mass fraction in leaves of oilseed flax under different phosphorus conditions mg/g
注:不同小寫字母表示處理間在0.05水平上差異顯著。下同。
Note:Different lowercase letters indicate significant difference among treatment at 0.05 level.The same below.
表2 不同磷水平下胡麻蒴果皮葉綠素質(zhì)量分?jǐn)?shù)±s)Table 2 Chlorophyll mass fraction in capsule pericarps of oilseed flax under different phosphorus conditions mg/g
2.3 不同施磷量對胡麻籽粒產(chǎn)量和品質(zhì)的影響
隨著施磷量增加,胡麻籽粒產(chǎn)量和粗蛋白質(zhì)量分?jǐn)?shù)持續(xù)增加(圖1和圖2)。與不施磷相比,施磷處理P1、P2和P3處理胡麻籽粒產(chǎn)量分別提高15.11%、20.53%和24.10%,施磷處理平均增產(chǎn)19.91%; 胡麻籽粒中粗蛋白質(zhì)量分?jǐn)?shù)分別提高7.63%、8.16%和14.72%,平均提高10.17%。胡麻籽粒脂肪酸組成中,棕櫚酸與對照差異不顯著,油酸與對照差異顯著,亞油酸中P3與對照差異顯著,P1、P2和對照差異不顯著,說明棕櫚酸不受施磷影響(表3)。與不施磷相比,施磷處理P1、P2和P3胡麻籽粒亞麻酸質(zhì)量分?jǐn)?shù)分別提高2.05%、 6.49%和2.55%,平均提高3.70%。胡麻籽粒中含油率隨著磷水平升高而升高(圖3), 但P0與P1處理間,P1處理與P2和P3處理間差異不顯著。與不施磷相比,處理P1、P2和P3含油率分別增加0.77、1.35和1.49個(gè)百分點(diǎn),平均提高1.20個(gè)百分點(diǎn)。
不同小寫字母表示處理間差異顯著(P<0.05)。下同。
Different lowercase letters indicate significant difference (P<0.05). The same below.
圖1 磷對胡麻籽粒產(chǎn)量的影響
Fig.1 Effects of different phosphorus rate on seed yield of oilseed flax
油產(chǎn)量隨著磷水平升高而增加(圖4),與不施磷相比,處理P1、P2和P3油產(chǎn)量分別提高17.32%、24.61%和28.72%,平均提高23.55%。由圖3和圖4不難得出,油產(chǎn)量大幅度增加主要是籽粒產(chǎn)量大幅度增加引起。
圖2 磷對胡麻籽粒粗蛋白質(zhì)量分?jǐn)?shù)的影響Fig.2 Effects of different phosphorus rate on crude protein mass fraction in seed of oilseed flax表3 磷對胡麻籽粒中脂肪酸組成的影響±s)Table 3 Effects of phosphorus on fatty acid components in seed of oilseed flax
%
圖3 磷對胡麻籽粒含油率的影響Fig.3 Effects of different phosphorus on oil content of oilseed flax
圖4 磷對胡麻油產(chǎn)量的影響Fig.4 Effects of different phosphorus on oil yield of oilseed flax
2.4 磷水平、胡麻葉片和蒴果皮中葉綠素a+b與胡麻籽粒產(chǎn)量和品質(zhì)的相關(guān)性
由表4可見,施磷量與胡麻籽粒產(chǎn)量和籽粒中亞麻酸質(zhì)量分?jǐn)?shù)正相關(guān);與含油率、油產(chǎn)量和籽粒中粗蛋白質(zhì)量分?jǐn)?shù)顯著正相關(guān)(R=0.96、R=0.95,R=0.96);與苗期、現(xiàn)蕾期和子實(shí)期葉片中葉綠素a+b質(zhì)量分?jǐn)?shù)顯著正相關(guān)(R=0.96、R=0.97、R=0.96),與成熟期葉片中葉綠素a+b質(zhì)量分?jǐn)?shù)極顯著正相關(guān)(R=1.00);與盛花期蒴果皮中葉綠素a+b質(zhì)量分?jǐn)?shù)極顯著正相關(guān)(R=0.99),與子實(shí)期和成熟期蒴果皮葉綠素a+b質(zhì)量分?jǐn)?shù)正相關(guān)。
現(xiàn)蕾期和盛花期葉片中葉綠素與籽粒產(chǎn)量顯著正相關(guān)(R=0.99,P=0.011;R=0.96), 子實(shí)期葉片和蒴果皮中葉綠素a+b質(zhì)量分?jǐn)?shù)與籽粒產(chǎn)量極顯著正相關(guān)(R=1.00;R=0.99,P=0.008), 盛花期和成熟期蒴果皮中葉綠素a+b質(zhì)量分?jǐn)?shù)與含油率顯著正相關(guān)(R=0.96,R=0.98)。現(xiàn)蕾期和子實(shí)期葉片中葉綠素a+b質(zhì)量分?jǐn)?shù)與油質(zhì)量分?jǐn)?shù)和油產(chǎn)量間存在極顯著正相關(guān)(R=1.00;R=0.99,P=0.007;R=0.99,P=0.008;R=1.00); 盛花期和子實(shí)期蒴果皮中葉綠素與油質(zhì)量分?jǐn)?shù)顯著正相關(guān)(R=0.96,R=0.98), 盛花期、成熟期和子實(shí)期蒴果皮中葉綠素分別與油產(chǎn)量存在顯著相關(guān)(R=0.96,R=0.98)和極顯著相關(guān)(R=0.99,P=0.009)。葉片中子實(shí)期和成熟期、蒴果皮中盛花期葉綠素a+b質(zhì)量分?jǐn)?shù)與籽粒中粗蛋白質(zhì)量分?jǐn)?shù)顯著正相關(guān)(R=0.95,R=0.95,R=0.99)。葉片和蒴果皮中葉綠素a+b與籽粒中亞麻酸質(zhì)量分?jǐn)?shù)正相關(guān)。
表4 不同生長階段胡麻葉片和蒴果皮中葉綠素(a+b)質(zhì)量分?jǐn)?shù)與施磷量、 籽粒產(chǎn)量、籽粒中粗蛋白質(zhì)量分?jǐn)?shù)和亞麻酸質(zhì)量分?jǐn)?shù)的相關(guān)系數(shù)Table 4 Correlation coefficients between applied phosphorus and the chlorophyll (a+b) of oilseed flax leaves and capsule pericarps at different growth stages with the applied phosphorus does, seed yield, crude protein mass fraction,and linolenic acid mass fraction
注:*顯著水平(P<0.05) **極顯著水平(P<0.01)。
Note:* significant atP<0.05 level; ** significant atP<0.01 level.
葉片是胡麻營養(yǎng)生長階段和營養(yǎng)生長與生殖生長并進(jìn)階段光合作用的重要器官,葉片中葉綠素質(zhì)量分?jǐn)?shù)影響著胡麻生長器官構(gòu)建以及籽粒產(chǎn)量。蒴果皮是胡麻生育后期生殖生長階段光合作用的重要器官,蒴果皮中葉綠素質(zhì)量分?jǐn)?shù)直接影響著籽粒產(chǎn)量。本研究結(jié)果表明,不同生育時(shí)期胡麻葉片和蒴果皮中葉綠素a、葉綠素b和葉綠素a+b質(zhì)量分?jǐn)?shù)隨施磷量增加而增加,與楊晴等[14]在小麥葉片上研究結(jié)果相一致。王菲等[24]研究得出小麥葉片中葉綠素a、葉綠素b和葉綠素a+b質(zhì)量分?jǐn)?shù)隨供磷量增加而下降,這與本研究結(jié)果不同,可能與作物基因型、土壤類型以及環(huán)境因素有關(guān)。在整個(gè)生育期,胡麻葉片中葉綠素a、葉綠素b和葉綠素a+b動(dòng)態(tài)變化,先升后降,呈倒V型,盛花期達(dá)最大值,這與Karele[25]在研究冬小麥上所得結(jié)果相一致。崔世友等[26]研究得出,大豆整個(gè)生育期葉片葉綠素質(zhì)量分?jǐn)?shù)先升后降,這與本試驗(yàn)結(jié)果相同。蒴果皮中葉綠素a、葉綠素b和葉綠素a+b動(dòng)態(tài)變化,持續(xù)下降,這與油菜角果皮中葉綠素動(dòng)態(tài)變化不相一致[27], 可能與作物基因型有關(guān)外,還與采樣時(shí)間段有關(guān)??梢?,施磷改變胡麻葉片和蒴果皮中葉綠素a、葉綠素b和葉綠素a+b質(zhì)量分?jǐn)?shù),但對其動(dòng)態(tài)變化沒有影響。
胡麻籽粒產(chǎn)量和葉綠素質(zhì)量分?jǐn)?shù)變化一致,隨施磷量增加而增加,這與施磷對旱地胡麻[28, 13]、海甘藍(lán)[17]、小麥[14]、油菜[18]和大麥[19]產(chǎn)量影響相一致。胡麻籽粒含油率隨施磷量增加,與海甘藍(lán)[17]和油菜[18]上研究結(jié)果不同,可能與植物基因型、土壤類型和環(huán)境有關(guān)。胡麻油產(chǎn)量隨施磷增加而升高,類似于Rogério等[17]研究。胡麻油產(chǎn)量增加和籽粒產(chǎn)量升高密切有關(guān),與海甘藍(lán)[17]上研究相一致。籽粒中粗蛋白質(zhì)量分?jǐn)?shù)也隨供磷量增加而增加,與油菜[18]上研究結(jié)果不同。粗蛋白質(zhì)量分?jǐn)?shù)隨供磷量增加,一方面,可能與施磷促進(jìn)了氮的吸收有關(guān)[26],另一方面可能與磷的吸收有關(guān),有待進(jìn)一步研究。相比不施磷處理,供磷處理籽粒中粗蛋白質(zhì)量分?jǐn)?shù)平均升高10.17%。籽粒脂肪酸組成中,棕櫚酸、油酸和亞油酸不受施磷影響,硬脂酸隨施磷量增加而減小,亞麻酸質(zhì)量分?jǐn)?shù)隨供磷水平提高先升高后降低。
本研究中,施磷量與胡麻籽粒產(chǎn)量正相關(guān),這與Prystupa等[19]在大麥上研究結(jié)果相一致。不同氮水平與葉綠素質(zhì)量分?jǐn)?shù)顯著正相關(guān)[29-31],類似于本研究中不同磷水平與葉綠素質(zhì)量分?jǐn)?shù)的相關(guān)性。周可金等[27]研究得出,油菜角果皮中葉綠素質(zhì)量分?jǐn)?shù)與產(chǎn)量無顯著相關(guān),與本試驗(yàn)結(jié)果不一致。玉米[31-32]和大麥[33]研究表明,葉綠素質(zhì)量分?jǐn)?shù)與籽粒產(chǎn)量顯著正相關(guān),與本試驗(yàn)結(jié)果相一致。崔世友等[26]研究得出,大豆生育后期葉綠素質(zhì)量分?jǐn)?shù)與籽粒產(chǎn)量間存在極顯著正相關(guān),這與胡麻生育后期子實(shí)期葉綠素質(zhì)量分?jǐn)?shù)與籽粒產(chǎn)量間存在極顯著正相關(guān)相一致??梢姡訉?shí)期葉片和蒴果皮中葉綠素質(zhì)量分?jǐn)?shù)可以作為衡量籽粒產(chǎn)量的一個(gè)特征指標(biāo)。Araus等[34]研究表明,葉片葉綠素的質(zhì)量分?jǐn)?shù)與作物光合作用能力正相關(guān),與本試驗(yàn)研究結(jié)果相一致。玉米長期施用磷肥能顯著提高葉綠素質(zhì)量分?jǐn)?shù)、改善光合性能、增強(qiáng)光合利用率,進(jìn)而起到增產(chǎn)的作用,說明光合作用強(qiáng)弱會(huì)直接影響到作物的產(chǎn)量高低[35]。磷作為底物或調(diào)節(jié)物直接參與光合作用的各個(gè)環(huán)節(jié)[36],施磷還可以提高作物根系對磷素的吸收量,從而提高作物葉片的光合作用。對植物進(jìn)行缺磷或低磷處理研究光合碳代謝與磷營養(yǎng)的關(guān)系,得出缺磷導(dǎo)致葉綠素質(zhì)量分?jǐn)?shù)降低[37],并使葉綠素b 質(zhì)量分?jǐn)?shù)下降[38],最終導(dǎo)致光合速率降低。本試驗(yàn)施磷提高葉片和蒴果皮素葉綠素質(zhì)量分?jǐn)?shù),促進(jìn)光合作用和產(chǎn)量的提高,同時(shí)也改善胡麻品質(zhì),但是施磷對影響胡麻光合作用的哪個(gè)環(huán)節(jié)以及是怎么影響的還待進(jìn)一步研究。子實(shí)期葉片和蒴果皮中葉綠素a+b質(zhì)量分?jǐn)?shù)與籽粒產(chǎn)量間存在極顯著正相關(guān),表明灌漿期間葉片和蒴果皮把捕獲和吸收的光能充分用于光合作用,促進(jìn)籽粒灌漿,增加光合產(chǎn)物,為籽粒高產(chǎn)奠定基礎(chǔ)。同時(shí),葉綠素也為籽粒含油率、籽粒中粗蛋白和亞麻酸質(zhì)量分?jǐn)?shù)的轉(zhuǎn)化生成,提供了一定物質(zhì)基礎(chǔ),其中原理有待進(jìn)一步深入研究。
Reference:
[1] PALI V,MEHTA N.Evaluation of oil content and fatty acid compositions of flax(LinumusitatissimumL.) varieties of India[J].JournalofAgriculturalScience,2014,6(9):198-207.
[2] FAOSTAT.2015.Food and Agricultural Organization of the United Nations [EB/OL].2015.http://faostat3.fao.org/download/Q/QC/E
[3] 黨占海,張建平.我國亞麻產(chǎn)業(yè)現(xiàn)狀及發(fā)展對策[M].北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版社,2004.
DANG ZH H,ZHANG J P.Flax industry in our country present situation and development countermeasures[M].Beijing:China Agricultural Science and Technology Press,2004(in Chinese).
[4] GOYAL A,SHARMA V,UPADHYAY N,etal.Flax and flaxseed oil:an ancient medicine & modern functional food[J].JournalofFoodScienceandTechnology,2014,51(9):1633-1653.
[5] CHEN J,WANG L,THOMPSON L U.Flaxseed and its components reduce metastasis after surgical excision of solid human breast tumor in nude mice[J].CancerLetters,2006,234(2):168-175.
[6] VISENTAINER J V,DE SOUZA N E,MAKOTO M,etal.Influence of diets enriched with flaxseed oil on the α-linolenic,eicosapentaenoic and docosahexaenoic fatty acid in Niletilapia(Oreochromisniloticus)[J].FoodChemistry,2005,90(4):557-560.
[7] FLOWER G.,FRITZ H,BALNEAVES L G,etal.Flax and breast cancer:a systematic review[J].IntegrativeCancerTherapies,2014,13(3):181-192.
[8] TRUAN J S,CHEN J M,THOMPSON L U.Flaxseed oil reduces the growth of human breast tumors(MCF-7) at high levels of circulating estrogen[J].MolecularNutrition&FoodResearch,2010,54(10):1414-1421.
[9] LINDAHL G,SAARINEN N,ABRAHAMSSON A,etal.Tamoxifen,flaxseed,and the lignan enterolactone increasestroma-and cancer cell-derived IL-1Ra and decrease tumorangiogenesis in estrogen-dependent breast cancer[J].CancerResearch,2011,71(1):51-60.
[10] CHO M H,JANG A,BHOO S H,etal.Manipulation of triose phosphate/phosphate translocator and cytosolic fructose-1,6-bisphosphatase,the key components in photosynthetic sucrose synthesis,enhances the source capacity of transgenic Arabidopsis plants[J].PhotosynthesisResearch,2012,111(3):261-268.
[11] 張 磊,曾勝和,高志建,等.不同氮磷配比對滴灌小麥產(chǎn)量及養(yǎng)分利用效率的影響[J].西北農(nóng)業(yè)學(xué)報(bào),2012,21(5):79-83.
ZHANG L,ZENG SH H,GAO ZH J,etal.Effects of fertilizer N,P on drip irrigation wheat yield and fertilizer use efficiency[J].ActaAgriculturaeBoreali-occidenisSinic,2012,21(5);79-83.
[12] ARDUINI I,MASONI A,ERCOLI L,etal.Grain yield,and dry matter and nitrogen accumulation and remobilization in durum wheat as affected by variety and seeding rate[J].EuropeanJournalofAgronomy,2006,25(4):309-318.
[13] 謝亞萍,李愛榮,閆志利,等.不同供磷水平對胡麻磷素養(yǎng)分轉(zhuǎn)運(yùn)分配及其磷肥效率的影響[J].草業(yè)學(xué)報(bào),2014,23(1):158-166.
XIE Y P,LI A R,YAN ZH L,etal.Effect of different phosphorus levels on phosphorus nutrient uptake,transformation and phosphorus utilization efficiency of oil flax[J].ActaPrataculturaeSinica,2014,23(1):158-166(in Chinese with English abstract).
[14] 楊 晴,韓金玲,李雁鳴,等.不同施磷量對小麥旗葉光合性能和產(chǎn)量性狀的影響[J].植物營養(yǎng)與肥料學(xué)報(bào),2006,12(6):816-821.
YANG Q,HAN J L,LI Y M,etal.Effects of phosphorus fertilization on flag leaves photosynthesis and yield components in wheat[J].PlantNutritionandFertilizerScience,2006,12(6):816-821(in Chinese with English abstract).
[15] GRANT C A,MONREAL M A,IRVINE R B,etal.Preceding crop and phosphorus fertilization affect cadmium and zinc concentration of flaxseed under conventional and reduced tillage[J].PlantandSoil,2010,333(1/2):337-350.
[16] 謝亞萍,安惠惠,??×x,等.氮磷對油用亞麻莖葉中生理指標(biāo)及產(chǎn)量構(gòu)成因子的影響[J].中國油料作物學(xué)報(bào),2014,36(4):476-482.
XIE Y P,AN H H,NIU J Y,etal.Effects of nitrogen and phosphorus on physiological characteristics and yield components of oil flax[J].ChineseJournalofOilCropSciences,2014,36(4):476-482(in Chinese with English abstract).
[17] ROGéRIO F,SILVA T R B,SANTOS J I,etal.Phosphorus fertilization influences grain yield and oil content in crambe[J].IndustrialCropsandProducts,2013,41(1):266-268.
[18] MORSHEDI A.An investigation into the effects of sowing time,N and P fertilizers on seed yield,oil and protein production in canola[J].ArchivesofAgrononyandSoilScience,2011,57(5):533-547.
[19] PRYSTUPA P,SAVIN R,SLAFER G A.Grain number and its relationship with dry matter,N and P in thespikes at heading in response to N×P fertilization in barley[J].FieldCropsResearch,2004,90(2/3):245-254.
[20] 張志良,翟偉菁.植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M].北京:高等教育出版社,2004.
ZHANG ZH L,ZHAI W J.Experimental Instruction of Plant Physiology[M].Beijing:Higher Education Press,2004(in Chinese).
[21] LITHOURGIDIS A S,MATSI T,BARBAYIANNIS N,etal.Effect of liquid cattle manure on corn yield,composition,and soil properties[J].AgrononyJournal,2007,99(4):1041-1047.
[22] ACKMAN R G.The gas chromatograph in practical analyses of common and uncommon fatty acids for the 21st century[J].AnalyticaChimicaActa,2002, 465(1):175-192.
[23] WEHIENBACHER V C E D,WALKER R O,WEHLEN BACHER,etal.Official and tentative methods of the american oil Chemists’ saiety[J].Analyst,1946,72(853):157.
[24] 王 菲,曹翠玲.磷水平對不同磷效率小麥葉綠素?zé)晒鈪?shù)的影響[J].植物營養(yǎng)與肥料學(xué)報(bào),2010,16(3):758-762.
WANG F,CAO C L.Effects of phosphorus levels on chlorophyll fluorescence parameters of wheat(TriticumaestivumL.)with different phosphorus efficiencies[J].PlantNutritionandFertilizerScience,2010,16(3):758-762(in Chinese with English abstract).
[25] KARELE I.Chlorophyll Content Distribution in Leaves’ Stems,and Ears in Winter Wheat[M].Developments in Plant and Soil Sciences,2001:720-721
[26] 崔世友,喻德躍.大豆不同生育時(shí)期葉綠素質(zhì)量分?jǐn)?shù) QTL 的定位及其與產(chǎn)量的關(guān)聯(lián)分析[J].作物學(xué)報(bào),2007,33(5):744-750.
CUI Sh Y,YU D Y.QTL Mapping of chlorophyll c mass fraction at various growing stages and its relationship with yield in soybean [Glycinemax(L.)Merr[J].ActcAgronomicaSinica,2007,33(5):744 -750(in Chinese with English abstract).
[27] 周可金,肖文娜,官春云.不同油菜品種角果光合特性及葉綠素?zé)晒鈪?shù)的差異[J].中國油料作物學(xué)報(bào),2009,31(3):316-321.
ZHOU K J,XIAO W N,GUAN CH Y.Analysis on photosynthetic characteristics and chlorophyll fluore scence of siliques for different winter rapeseed varieties(BrassicanapusL.)[J].ChineseJournalofOilCropSciences,2009,31(3):316-321(in Chinese with English abstract).
[28] XIE Y P,NIU J Y,GAN Y T,etal.Optimizing phosphorus fertilization promotes dry matter accumulation and P remobilization in oilseed flax[J].CropScience,2014,54(4):1729-1736.
[29] RUI Y K,PENG Y F,WANG Z R,etal.Stem perimeter,height and biomass of maize(ZeamaysL.) grown under different N fertilization regimes in Beijing,China[J].InternationalJournalofPlantProduction,2009,3(2):85-90.[30] RAMBO L,MA B L,XIONG Y,etal.Leaf and canopy optical characteristics as crop-N-status indicators for field nitrogen management in corn[J].JournalofPlantNutritionandSoilScience,2010,173(3):434-443.
[31] SZLES A V,MEGYES A,NAGY J.Irrigation and nitrogen effects on the leaf chlorophyll mass fraction and grain yield of maize in different crop years[J].AgriculturalWaterManagement,2012,107(10):133-144.
[32] VETSCH J A,RANDALL G W.Corn production as affected by nitrogen application timing and tillage[J].AgronomyJournal,2004,96(2):502-509.
[33] MONTEMURRO F,MAIORANA M,FERRI D,etal.Nitrogen indicators,uptake and utilization efficiency in a maize and barley rotation cropped atdifferent levels and sources of N fertilization[J].FieldCropsResearch,2006,99(2/3):114-124.
[34] ARAUS J I,BORT J,CECCARELLI S,etal.Relationship between leaf structure and carbon isotope discrimination in field grown barley[J].PlantPhysiologyandBiochemistry,1997,35(7):533-541.
[35] 王 帥.長期不同施肥對玉米葉片光合作用及光系統(tǒng)功能的影響[D].沈陽:沈陽農(nóng)業(yè)大學(xué),2014.
WANG SH.Effects of long-term different fertilization on photosynthesis and photosystem function in maize leaves[D].Shenyang:Shenyang Agricultural University,2014(in Chinese with English abstract).
[36] 曾洪學(xué),王 俊.鹽害生理與植物抗鹽性[J].生物學(xué)通報(bào),2005,40(9):1-3.
ZENG H X,WANG J.Salt damage physiology and salt tolerance of plants[J].BulletinofBiology,2005,40(9):1-3(in Chinese).
[37] JACOB J,LAWLORD W.Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower,maize and wheat plants [J].JournalofExperimetalBotany,1991,42(241):1003-1011.
[38] RODRIGUEZ D,ANDRADE F H,GOUDRIAAN J.Effects of phosphorus nutrition on tiller emergence inwheat [J].PlantandSoil,1999,209(2):283-295.
(責(zé)任編輯:史亞歌 Responsible editor:SHI Yage)
Effect of Phosphorus on Chlorophyll mass fraction in Leaves and Capsule Pericarps, Seed Yield and Quality of Oilseed Flax
NIU Xiaoxia1, XIE Yaping2, WANG Bin2and NIU Junyi3
(1. Institute of Agricultural Engineering Technology of Gansu Province, Wuwei Gansu 733007,China;2.Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070,China;3.Agronomy College,Gansu Agricultural University, Lanzhou 730070,China)
Using ‘Longyaza No.1’ as the material, four phosphorus(P2O5) levels (0, 75, 150, and 225 kg/hm2) were designed to investigate the effect of on chlorophyll mass fraction in leaves and capsule pericarps, seed yield and quality of oilseed flax under irrigation conditions. The result indicated that the mass fraction of chlorophyll a, chlorophyll b, and chlorophyll a+b increased with phosphorus level, with the average increase of 19.05%, 32.51% and 22.72% in leaves, respectively,and 43.21%,37.50% and 41.65% in capsule pericarps, respectively; seed yield, oil content,oil yield and crude protein mass fraction in seed of oilseed flax increased with phosphorus,with an average rate of 19.91%, 1.20%, 23.55% and 10.17%, respectively; linolenic acid mass fraction first increased then decreased with phosphorus level with an average of 3.70%.Phosphorus fertilization had a positive correlation with seed yield and linolenic acid mass fraction(P<0.05), and significant positive correlation with oil content,oil yield, and crude protein mass fraction in seed and chlorophyll mass fraction in leaves at maturity and in capsule pericarps at anthesis stage(P<0.01). The chlorophyll mass fraction in leaves at kernel stage showed significant positive correlation with seed yield,oil content,and oil yield; the chlorophyll mass fraction in capsule pericarps at kernel stage had significant positive correlation with seed yield and oil yield. In conclusion, the present study indicates that phosphorus fertilization can increase chlorophyll mass fraction in leaves and capsule pericarps, and seed yield, improving quality in oilseed flax.
Phosphorus; Oilseed flax (LinumusitatissimumL.); Chlorophyll; Seed yield; Quality
2016-07-19 Returned 2016-10-18
The National Natural Science Foundation of China (No.31660368,No.31360315);National Modern Agriculture Industry Technology System(No.CARS-17-GW-9).
NIU Xiaoxia, female, research assistant. Research area:crop cultivation technology.E-mail:519077253@qq.com
日期:2017-08-18
2016-07-19
2016-10-18
國家自然科學(xué)基金(31660368,31360315);國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)( CARS-17-GW-9)。 第一作者:牛小霞,女,碩士,助理研究員,從事作物栽培技術(shù)研究。E-mail:519077253@qq.com
S147.2
A
1004-1389(2017)08-1189-08
網(wǎng)絡(luò)出版地址:http://kns.cnki.net/kcms/detail/61.1220.S.20170818.0939.026.html