胡能杰,邵東國,陳 述,樂志華,農(nóng)翕智
?
基于系統(tǒng)動(dòng)力學(xué)的稻田塘堰系統(tǒng)水轉(zhuǎn)化模擬及驗(yàn)證
胡能杰,邵東國※,陳 述,樂志華,農(nóng)翕智
(武漢大學(xué)水資源與水電工程科學(xué)國家重點(diǎn)實(shí)驗(yàn)室,武漢430072)
為了描述稻田塘堰系統(tǒng)水轉(zhuǎn)化過程,以水量平衡原理為基礎(chǔ),建立稻田塘堰系統(tǒng)水轉(zhuǎn)化系統(tǒng)動(dòng)力學(xué)模型。利用漳河灌區(qū)三干渠中游區(qū)域尺度塘堰日水位觀測資料對(duì)模型進(jìn)行檢驗(yàn),模擬結(jié)果的復(fù)相關(guān)系數(shù)、Nash-Sutcliffe系數(shù)和均方根誤差分別為0.90、0.79和0.155 m/d。在淺水灌溉模式下,對(duì)研究區(qū)域內(nèi)塘堰調(diào)蓄方式進(jìn)行動(dòng)態(tài)模擬,結(jié)果表明,塘堰在完全調(diào)蓄時(shí)可以保障作物充分灌溉,在部分調(diào)蓄與不調(diào)蓄時(shí)作物分別在第72天和45天發(fā)生水分脅迫,塘堰灌溉對(duì)保證作物正常生長天數(shù)具有顯著效果。當(dāng)塘堰完全調(diào)蓄時(shí),在淺水灌溉、濕潤灌溉及間歇灌溉模式下,塘堰最低蓄水量占最大蓄水量的比例分別為2.0%、18.9%和41.3%,塘堰的有效水利用率分別為84.7%、80.9%和67.7%。研究可為稻田塘堰系統(tǒng)合理利用雨水資源、灌溉管理提供理論依據(jù)。
水位;水管理;系統(tǒng)科學(xué);塘堰灌溉系統(tǒng);系統(tǒng)動(dòng)力學(xué);水量平衡;模擬
灌區(qū)水轉(zhuǎn)化過程直接影響灌溉水利用效率。受地形地貌、土壤植被、水文地質(zhì)等自然條件和灌排系統(tǒng)建設(shè)、農(nóng)業(yè)生產(chǎn)等人類活動(dòng)雙重作用,不同地域灌區(qū)的水轉(zhuǎn)化過程存在明顯差異。為此,人們開展了大量蒸發(fā)蒸騰、滲漏、產(chǎn)匯流及地下水補(bǔ)給、排泄等試驗(yàn)觀測和研究,獲取了一些重要的田間水轉(zhuǎn)化或局部水文過程觀測數(shù)據(jù)。Moussa等[1]研究了水管理措施時(shí)空分布對(duì)灌區(qū)水文過程的影響;Davies等[2]研究了局部蓄水設(shè)施條件下的水文過程;蔡明科等[3]提出了節(jié)水對(duì)水平衡的影響及其評(píng)估模型;Janssen等[4]研究了土地利用、耕作與種植等農(nóng)業(yè)措施對(duì)水轉(zhuǎn)化和利用效率的影響;Liu等[5]研究了土壤水分時(shí)空變異性及水平衡要素的尺度特征。受溝塘、土壤、作物等空間變異性影響,灌區(qū)水轉(zhuǎn)化過程均具有隨機(jī)性。在灌區(qū)水轉(zhuǎn)化結(jié)構(gòu)、機(jī)制及其效率、生態(tài)環(huán)境效應(yīng)等問題并不清楚條件下,傳統(tǒng)田間試驗(yàn)觀測及數(shù)值分析方法,難以揭示灌區(qū)水轉(zhuǎn)化特性及其效率提升機(jī)制。需要深入研究灌區(qū)復(fù)雜條件下的水轉(zhuǎn)化試驗(yàn)觀測及其過程描述方法、特征參數(shù)、調(diào)控機(jī)制及效率響應(yīng)規(guī)律。中國南方水稻灌區(qū)分布著眾多塘堰。通過儲(chǔ)存農(nóng)業(yè)排水、灌溉退水和收集雨水,塘堰可以為稻田提供補(bǔ)充性灌溉,是回歸水重復(fù)利用的主體。由于具有儲(chǔ)水靈活、供水及時(shí)可靠等特點(diǎn),許多農(nóng)業(yè)和灌溉專家都對(duì)塘堰灌溉十分認(rèn)可[6-10],并認(rèn)為塘堰對(duì)節(jié)水灌溉的成功實(shí)施和確保干旱年作物生產(chǎn)供水起到重要作用[11-14]。區(qū)域氣候和土壤質(zhì)地、塘堰規(guī)模和用水規(guī)則、田間的灌溉管理措施等深刻影響著稻田塘堰系統(tǒng)水資源的循環(huán)使用[15-18]。Kim等[19]建立了稻田日水量平衡模型,并模擬評(píng)估了水稻生長季稻田的儲(chǔ)水量。毛戰(zhàn)坡等[20]定量研究了水塘系統(tǒng)對(duì)流域水資源短缺及徑流峰值的調(diào)控功能。但目前缺少完善的理論方法描述稻田與塘堰間的水轉(zhuǎn)化動(dòng)力學(xué)過程。系統(tǒng)動(dòng)力學(xué)適用于研究復(fù)雜系統(tǒng)的結(jié)構(gòu)、功能和行為之間的動(dòng)態(tài)關(guān)系,借助于強(qiáng)大的圖形編輯環(huán)境和政策分析工具,建立規(guī)范的、定量的模型。因此,本研究考慮塘堰及稻田的水平衡要素,基于系統(tǒng)動(dòng)力學(xué)的建模思想和Vensim軟件,構(gòu)建了稻田塘堰系統(tǒng)水轉(zhuǎn)化模型,并結(jié)合實(shí)例評(píng)估稻田塘堰水轉(zhuǎn)化系統(tǒng)的性能,以期為稻田塘堰系統(tǒng)合理利用雨水資源、灌溉管理提供理論依據(jù)。
本研究以水量平衡為基礎(chǔ)理論,在某一控制系統(tǒng)內(nèi),用流入量減去流出量等于儲(chǔ)存變化量的方程式來表示。
式中為流入量,m3;為流出量,m3;為儲(chǔ)水量,m3;為時(shí)間,d。
1.1 田間水平衡模擬計(jì)算
將水稻田視為一個(gè)控制系統(tǒng),以田間儲(chǔ)水水深作為狀態(tài)變量,表示在系統(tǒng)中具有積累效應(yīng)的變量。反映狀態(tài)變量輸入或輸出速度的變量稱為速率變量。狀態(tài)變量與各速率變量的關(guān)系用水量平衡方程表示為
式中S1、S分別為時(shí)段初與時(shí)段末的田間儲(chǔ)存水深,等于土壤水儲(chǔ)存量及田間水層的水量之和;P為第時(shí)段降雨量;IR為第時(shí)段灌溉引水量;ET為第時(shí)段作物蒸發(fā)蒸騰量;DP為第時(shí)段深層滲漏量;DR為第時(shí)段排水量。各變量單位均以單位面積上的水深mm表示。
蒸發(fā)蒸騰量為
(4)
(5)
式中K為水稻作物系數(shù),無量綱;K為水分脅迫因子,無量綱;ET0為參考作物蒸發(fā)蒸騰量,通過氣象數(shù)據(jù)由彭曼公式計(jì)算得到,mm;θθθ分別為土壤體積含水率、凋萎系數(shù)、含水率臨界值及田間持水量,mm3/ mm3;為作物可利用水分?jǐn)?shù),水稻取0.2[21],無量綱。
深層滲漏量為
式中0為土壤達(dá)到飽和含水率θ時(shí)的日滲漏量,通過試驗(yàn)等方式確定,mm。假定深層滲漏量只在土壤含水率大于田間持水量時(shí)發(fā)生,當(dāng)土壤含水率在飽和含水率和田間持水量之間時(shí),深層滲漏量與土壤含水率成線性關(guān)系。
排水量為
式中H為第時(shí)段排水口高度,由雨后最大允許蓄水深度確定,mm。當(dāng)田間儲(chǔ)存水深S高于排水口高度H時(shí),會(huì)產(chǎn)生排水量,反之無排水量。
灌溉需水量為
式中DI為第時(shí)段水稻灌溉需水量,mm;IHmint為第時(shí)段灌溉下限,mm;IHmaxt為第時(shí)段灌溉上限,mm。
1.2 塘堰水平衡調(diào)節(jié)計(jì)算
塘堰具有積蓄雨水和灌溉回歸水的功能,在以塘堰為主體的灌溉系統(tǒng)中,根據(jù)水量平衡原理可得
式中V為第時(shí)段塘堰蓄水量;W為第時(shí)段塘堰來水量,包括塘面集水量、水田排水量以及旱地及非耕地地表徑流量;WI為第時(shí)段塘堰供水量;EL為第時(shí)段塘堰損失水量;X為第時(shí)段塘堰泄水量。各單位均以m3表示。
(10)
式中A為塘堰面積,m2;RO為旱地及非耕地地表徑流量,采用降雨徑流法計(jì)算,mm;為降雨入滲系數(shù),當(dāng)P<5 mm時(shí),無徑流與入滲產(chǎn)生,當(dāng)5 mm≤P≤50 mm時(shí),0.8,當(dāng)P>50 mm,0.7[22];A為水田面積,m2;A為旱地及非耕地面積,m2;為塘堰有效集雨面積與灌區(qū)面積之比,主要取決于地形因素。
(12)
式中E為第時(shí)段塘堰蒸發(fā)量,采用蒸發(fā)皿折算系數(shù)法計(jì)算,mm;L為第時(shí)段塘堰滲漏量,通過試驗(yàn)觀測估算,mm。
塘堰在某一時(shí)段的具體調(diào)節(jié)計(jì)算過程如下:
1.3 模型結(jié)構(gòu)及模擬過程
系統(tǒng)動(dòng)力學(xué)是一門研究系統(tǒng)動(dòng)態(tài)復(fù)雜性的科學(xué),采用定性與定量結(jié)合,系統(tǒng)綜合推理的方法,模擬系統(tǒng)在不同策略參數(shù)輸入時(shí)的行為和趨勢[23]。該方法擅長處理高階次、非線性、時(shí)變的復(fù)雜問題,是研究水資源系統(tǒng)的重要方法之一[24-26]。構(gòu)建系統(tǒng)動(dòng)力學(xué)模型一般步驟是:首先明確問題,根據(jù)問題特征繪制其因果關(guān)系圖;然后在此基礎(chǔ)上,進(jìn)一步根據(jù)結(jié)構(gòu)進(jìn)行系統(tǒng)動(dòng)力學(xué)模型流程圖的繪制,輸入各變量關(guān)系式,建立系統(tǒng)動(dòng)力學(xué)模型;最后進(jìn)行仿真試驗(yàn),修改參數(shù)及驗(yàn)證模型,并在模型仿真結(jié)果的基礎(chǔ)上分析戰(zhàn)略與決策[27]。
本文采用Vensim作為建立模型的平臺(tái),該軟件具有可視化界面,用戶可以根據(jù)具體問題采用概念化、模塊化描述系統(tǒng)的結(jié)構(gòu),得到隨時(shí)間連續(xù)變化的系統(tǒng)圖像,并模擬系統(tǒng)的動(dòng)態(tài)行為。稻田塘堰系統(tǒng)水轉(zhuǎn)化模型結(jié)構(gòu)見圖1,模型中采用的參數(shù)有:
1)狀態(tài)變量:田間儲(chǔ)存水深、塘堰蓄水量;
2)速率變量:降雨量、蒸發(fā)蒸騰量、深層滲漏量、排水量、塘堰來水量、塘堰供水量、塘堰損失水量、塘堰泄水量;
3)輔助變量:其他變量。
3種變量分別對(duì)應(yīng)著狀態(tài)方程、速率方程和輔助方程。設(shè)定非線性函數(shù)關(guān)系,確定估計(jì)參數(shù),并為所有變量的初始值、表函數(shù)賦值。對(duì)模型設(shè)定不同的調(diào)控參數(shù),從而有效刻畫各個(gè)調(diào)控參數(shù)對(duì)稻田塘堰系統(tǒng)水轉(zhuǎn)化動(dòng)態(tài)過程的影響。
注:ET0為參考作物蒸發(fā)蒸騰量,mm;ET為作物蒸發(fā)蒸騰量,mm。
2.1 研究區(qū)域概述
研究區(qū)域位于漳河水庫三干渠中游,地處112°15′~112°16′E,30°42′~30°44′N,是由陳池支渠、洪廟支渠及五洋公路圍成的封閉區(qū)域。該區(qū)域?qū)儆趤啛釒Т箨懶詺夂?,多年平均氣溫約16 ℃,多年平均降雨量為947 mm,85%的降雨集中于4—10月。區(qū)域總面積151 hm2,主要灌溉作物為中稻,農(nóng)民普遍采用淺水灌溉的方式,除分蘗末期適當(dāng)曬田和黃熟期落干外,田面保持0~50 mm的水層。區(qū)域內(nèi)部分布著大小塘堰145口,主要通過排水溝渠連通,總調(diào)蓄能力可以達(dá)到155 283 m3。據(jù)調(diào)查了解,為降低灌溉成本,除泡田期引用渠道水泡田外,農(nóng)民優(yōu)先使用塘堰的水灌溉,當(dāng)塘堰供水不足時(shí)再考慮渠首放水,塘堰供水發(fā)揮著重要作用。
2.2 輸入資料與參數(shù)估計(jì)
氣象資料來源于漳河團(tuán)林試驗(yàn)站2015年監(jiān)測的數(shù)據(jù)。水面蒸發(fā)折算系數(shù)取自宜昌蒸發(fā)站的分析結(jié)果[28]。水稻根系層深度取300 mm[29],作物系數(shù)由試驗(yàn)站監(jiān)測資料確定[30]。結(jié)合漳河灌區(qū)實(shí)際,中稻生育期劃分及不同灌溉模式下的水層控制標(biāo)準(zhǔn)參考見表1[31]。由于本模型在水稻插秧過后開始模擬,初始土壤處于飽和狀態(tài),且有田間水層深度40 mm。
研究區(qū)域以黏壤土為主,取樣分析得到凋萎系數(shù):0.15 mm3/mm3;田間持水量:0.37 mm3/mm3;飽和含水率:0.45 mm3/mm3。由于該區(qū)域長期種植水稻,滲漏強(qiáng)度較小,通過布置滲漏井觀測得到土壤達(dá)到飽和含水率時(shí)的深層滲漏量為2 mm/d。模型中假設(shè)各個(gè)田塊的徑流出流量直接匯入排水溝渠,并最終通過塘堰收集??紤]到局部區(qū)域的地表徑流量不能被塘堰攔蓄,根據(jù)漳河灌區(qū)典型村值的計(jì)算結(jié)果[32],結(jié)合該區(qū)域地形條件,取0.95。在區(qū)域內(nèi)實(shí)地監(jiān)測塘堰水位,根據(jù)各塘堰水位容量關(guān)系,計(jì)算得到區(qū)域塘堰的初始蓄水量,約為塘堰最大蓄水容量的70%。
表1 稻田不同灌溉模式下水層控制標(biāo)準(zhǔn)
注:H為水稻根系層深度,mm;sat為飽和含水率,mm3·mm-3。
Note:His root depth of rice, mm; is saturated water content, mm3·mm-3.
3.1 模型驗(yàn)證
根據(jù)研究區(qū)域內(nèi)塘堰的整體特征和分布情況,從中抽取16個(gè)典型塘堰,實(shí)地測量每個(gè)典型塘堰的水面面積、邊坡系數(shù)和最大蓄水容量,確定每個(gè)典型塘堰水位容量關(guān)系。每個(gè)典型塘堰內(nèi)布設(shè)有量水尺,在2015年中稻生育期內(nèi)逐日觀測塘堰水位。通過每個(gè)塘堰的水位容量關(guān)系,可以得到16個(gè)典型塘堰蓄水量日變化過程。將區(qū)域內(nèi)所有塘堰概化為一個(gè)大塘堰,作為灌溉系統(tǒng)的主體水源。在同一時(shí)段,假設(shè)大塘堰的總蓄水量與16個(gè)典型塘堰的總蓄水量成一定比例,即可以由16個(gè)典型塘堰的總蓄水量推求得到大塘堰的總蓄水量,再通過大塘堰的水位容量關(guān)系,可以得到區(qū)域的塘堰水位,由此來驗(yàn)證模擬的塘堰水位。采用復(fù)相關(guān)系數(shù)2、Nash-Sutcliffe 系數(shù)和均方根誤差(root-mean-square error,RMSE)評(píng)價(jià)模擬值與實(shí)測值的相似度[33]。
利用2015年中稻生育期內(nèi)塘堰日水位實(shí)測值與模擬值對(duì)比,如圖2所示,從直觀上看模擬結(jié)果與實(shí)測結(jié)果擬合較好。2和Nash-Sutcliffe系數(shù)的理想值為1,均方根誤差RMSE的理想值為0。2015年中稻生育期內(nèi)塘堰日水位模擬結(jié)果的2值和值分別為0.90和0.79,RMSE值為0.155 m/d,模擬結(jié)果具有較高精度,說明模型可以反映區(qū)域塘堰水位的動(dòng)態(tài)變化過程。
注:E是Nash-Sutcliffe系數(shù);RMSE是均方根誤差。
3.2 塘堰不同調(diào)蓄方式下的系統(tǒng)動(dòng)態(tài)模擬
為了研究塘堰不同調(diào)蓄方式對(duì)稻田塘堰系統(tǒng)水轉(zhuǎn)化的影響,在目前實(shí)施的淺水灌溉模式下,模擬了3種塘堰調(diào)蓄方式。第1種是可以使用塘堰所有的蓄存水量,此方式接近目前的實(shí)際調(diào)蓄方式;第2種是采用部分調(diào)蓄的方式,考慮到生態(tài)養(yǎng)殖等要求,保證塘堰蓄水量不得低于最大蓄水容量的60%;第3種是灌區(qū)內(nèi)無塘堰可以使用,實(shí)行雨養(yǎng)?;?015年資料模擬分析水稻生育期內(nèi)田間儲(chǔ)存水深變化,如圖3所示。
圖3 淺水灌溉塘堰不同調(diào)蓄方式下稻田儲(chǔ)存水深變化
由圖3模擬結(jié)果可知,淺水灌溉下,當(dāng)塘堰完全調(diào)蓄時(shí),水稻在落干前的田間儲(chǔ)存水深一直處于飽和含水率之上,作物得到充分灌溉。當(dāng)塘堰部分調(diào)蓄時(shí),田間儲(chǔ)存水深在第72天低于含水率臨界值,作物發(fā)生水分脅迫,在生育后期出現(xiàn)供水不足的情況。當(dāng)沒有塘堰調(diào)蓄時(shí),田間儲(chǔ)存水深在第45天開始低于含水率臨界值,作物缺水天數(shù)明顯增多。這表明,塘堰的調(diào)蓄作用能夠有效延長作物缺水天數(shù),當(dāng)發(fā)生干旱缺水時(shí),若能充分發(fā)揮塘堰就近取水、灌水及時(shí)的特點(diǎn),合理地調(diào)配塘堰灌溉系統(tǒng),可以緩解作物關(guān)鍵期無水可用的情況,并使灌區(qū)管理部門有時(shí)間擬定相關(guān)應(yīng)對(duì)措施。
3.3 田間不同灌溉模式下的系統(tǒng)動(dòng)態(tài)模擬
為了研究不同灌溉模式對(duì)稻田塘堰系統(tǒng)水轉(zhuǎn)化的影響,當(dāng)塘堰完全調(diào)蓄時(shí),選取用水管理部門推廣較為廣泛的濕潤灌溉與間歇灌溉模式,對(duì)比淺水灌溉,基于2015年資料模擬分析水稻生長季塘堰蓄水量變化,如圖4所示。從模擬結(jié)果可以發(fā)現(xiàn),在生育早期3種灌溉模式下的塘堰蓄水量變化一致;發(fā)育期潤濕灌溉下的塘堰蓄水量相對(duì)最小,而間歇灌溉模式下塘堰產(chǎn)生泄水;生育中后期淺水灌溉下塘堰蓄水量下降最為明顯。從塘堰最低蓄水量占塘堰最大蓄水容量的比例來看,淺水灌溉、濕潤灌溉、間歇灌溉分別為2.0%、18.9%和41.3%。這表明,實(shí)行間歇灌溉模式下,塘堰可以長期保持一定的蓄水量,為塘堰水產(chǎn)養(yǎng)殖、排水水質(zhì)處理等生態(tài)功能提供保障。
圖4 不同灌溉模式下塘堰蓄水量變化
表2展示了水稻生長季不同灌溉模式下塘堰的水平衡要素和有效水利用率。表中蓄水量變化量指黃熟期結(jié)束后,塘堰最終蓄水量與初始蓄水量之差,有效水利用率指供水量占總水量的比例,其中總水量為來水量減去蓄水量變化量。由表中模擬數(shù)據(jù)可知,3種灌溉模式下,塘堰來水量是淺水灌溉>間歇灌溉>濕潤灌溉,供水量以淺水灌溉>濕潤灌溉>間歇灌溉,有效水利用率分別為84.7%、80.9%和67.7%。由于間歇灌溉的灌溉下限明顯低于其他灌溉模式,具有較大的蓄積雨水的空間,在各個(gè)階段灌溉需水量相對(duì)較小,所以塘堰有效水利用率最小。
表2 不同灌溉模式下塘堰水平衡要素及有效水利用率
1)本文分析了南方水稻灌區(qū)水平衡機(jī)制,利用Vensim軟件建立了稻田塘堰系統(tǒng)水轉(zhuǎn)化系統(tǒng)動(dòng)力學(xué)模型。運(yùn)用研究區(qū)域塘堰日水位觀測資料檢驗(yàn),模擬結(jié)果的2為0.90,Nash-Sutcliffe系數(shù)為0.79、相對(duì)均方根誤差為0.155 m/d,證明模型可以定量描述稻田塘堰系統(tǒng)的水轉(zhuǎn)化關(guān)系。
2)模擬分析了塘堰調(diào)蓄方式及灌溉模式對(duì)稻田塘堰系統(tǒng)水轉(zhuǎn)化的影響。結(jié)果表明,在淺水灌溉模式下,塘堰在完全調(diào)蓄時(shí)可以保障作物充分灌溉,在部分調(diào)蓄與不調(diào)蓄時(shí)作物分別在第72天和45天發(fā)生水分脅迫,塘堰灌溉對(duì)保證作物正常生長天數(shù)具有顯著效果。當(dāng)塘堰完全調(diào)蓄時(shí),在淺水灌溉、濕潤灌溉及間歇灌溉模式下,塘堰最低蓄水量占最大蓄水量的比例分別為2.0%、18.9%和41.3%,塘堰的有效水利用率分別為84.7%、80.9%和67.7%。實(shí)行間歇灌溉,塘堰可以長期保持一定的蓄水量,為塘堰水產(chǎn)養(yǎng)殖、排水水質(zhì)處理等生態(tài)功能提供保障。
本文建立的系統(tǒng)動(dòng)力學(xué)模型所需參數(shù)較少且易于掌握,在南方水稻灌區(qū)塘堰灌溉系統(tǒng)中具有良好的適用性。隨著研究尺度的擴(kuò)大,在灌區(qū)不同的地理環(huán)境下,如何科學(xué)分析農(nóng)田、灌排溝渠、水庫塘堰之間的水轉(zhuǎn)化關(guān)系,提高灌溉水利用效率,還有待進(jìn)一步研究。
[1] Moussa R, Voltz M, Andrieux P. Effects of the spatial organization of agricultural management on the hydrological behaviour of a farmed catchment during flood events[J]. Hydrological Processes, 2002, 16(2): 393-412.
[2] Davies B R, Biggs J, Williams P J, et al. A comparison of the catchment sizes of rivers, streams, ponds, ditches and lakes: implications for protecting aquatic biodiversity in an agricultural landscape[J]. Hydrobiologia, 2008, 597(1): 7-17.
[3] 蔡明科,魏曉妹,粟曉玲. 灌區(qū)耗水量變化對(duì)地下水均衡影響研究[J]. 灌溉排水學(xué)報(bào),2007,26(4):16-20. Cai Mingke, Wei Xiaomei, Su Xiaoling. Influence of irrigation area water consumption change to ground water balanced[J]. Journal of Irrigation and Drainage, 2007, 26(4): 16-20. (in Chinese with English abstract)
[4] Janssen M, Lennartz B, W?hling T. Percolation losses in paddy fields with a dynamic soil structure: Model development and applications[J]. Hydrological Processes, 2010, 24(7): 813-824.
[5] Liu L, Luo Y, He C, et al. Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China[J]. Journal of Hydrology, 2010, 391(1): 157-174.
[6] Siderius C, Boonstra H, Munaswamy V, et al. Climate-smart tank irrigation: A multi-year analysis of improved conjunctive water use under high rainfall variability[J]. Agricultural Water Management, 2015, 148(1): 52-62.
[7] Huang S L, Lee Y C, Budd W W, et al. Analysis of changes in farm pond network connectivity in the peri-urban landscape of the Taoyuan area, Taiwan[J]. Environmental Management, 2012, 49(4): 915-928.
[8] Bonachela S, Juan M, Casas J J, et al. Pond management and water quality for drip irrigation in Mediterranean intensive horticultural systems[J]. Irrigation Science, 2013, 31(4): 769-780.
[9] Lezcano J M, González F, Ballester A, et al. Mechanisms
involved in sorption of metals by chemically treated waste biomass from irrigation pond[J]. Environmental Earth Sciences, 2016, 75(10): 1-12.
[10] Palanisami K, Giordano M, Kakumanu K R, et al. The stabilization value of groundwater: evidence from Indian tank irrigation systems[J]. Hydrogeology Journal, 2012, 20(5): 933-941.
[11] Mushtaq S, Dawe D, Lin H, et al. An assessment of the role of ponds in the adoption of water-saving irrigation practices in the Zhanghe Irrigation System, China[J]. Agricultural Water Management, 2006, 83(1): 100-110.
[12] Anbumozhi V, Matsumoto K, Yamaji E. Towards improved performance of pirrigation tanks in semi-arid regions of india: modernization opportunities and challenges[J]. Irrigation and Drainage Systems, 2001, 15(4): 293-309.
[13] 蔣尚明,金菊良,許滸,等. 基于徑流曲線數(shù)模型的江淮丘陵區(qū)塘壩復(fù)蓄次數(shù)計(jì)算模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(18):117-124. Jiang Shangming, Jin Juliang, Xu Hu, et al. Computational model of pond re-storage times in Jianghuai hilly area based on SCS model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 117-124. (in Chinese with English abstract)
[14] Shao Dongguo, Tan Xuezhi, Liu Huanhuan, et al. Performance analysis of on-farm irrigation tanks on agricultural drainage water reuse and treatment[J]. Resources, Conservation and Recycling, 2013, 75(75): 1-13.
[15] 于穎多,焦平金,許迪,等. 排水循環(huán)灌溉驅(qū)動(dòng)的稻區(qū)水循環(huán)模型與評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(11):138-143. Yu Yingduo, Jiao Pingjin, Xu Di, et al. Water cycle model and its assessment under cyclic irrigation of drainage water in paddy district[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(11): 138-143. (in Chinese with English abstract)
[16] Liebe J, van de Giesen N, Andreini M. Estimation of small reservoir storage capacities in a semi-arid environment: A case study in the Upper East Region of Ghana[J]. Physics and Chemistry of the Earth, 2005, 30(6):448-454.
[17] 胡能杰,邵東國,陳述,等. 基于隨機(jī)降雨模擬的灌區(qū)塘壩蓄水方案優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(18):105-110. Hu Nengjie, Shao Dongguo, Chen Shu, et al. Optimal water store control of ponds in irrigation district based on stochastic precipitation simulation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(18): 105-110. (in Chinese with English abstract)
[18] Chen Shu, Shao Dongguo, Li Xudong, et al. Simulation- optimization modeling of conjunctive operation of reservoirs and ponds for irrigation of multiple crops using an improved artificial bee colony algorithm[J]. Water Resources Management, 2016, 30(9): 2887-2905.
[19] Kim T C, Gim U S, Kim J S, et al. The multi-functionality of paddy farming in Korea[J]. Paddy and Water Environment, 2006, 4(4): 169-179.
[20] 毛戰(zhàn)坡,尹澄清,單寶慶,等. 水塘系統(tǒng)對(duì)農(nóng)業(yè)流域水資源調(diào)控的定量化研究[J]. 水利學(xué)報(bào),2003,34(12):76-83. Mao Zhanpo, Yin Chengqing, Shan Baoqing, et al. Regulation function of multi-pond system for water resources in a watershed[J]. Journal of Hydraulic Engineering, 2003, 34(12): 76-83. (in Chinese with English abstract)
[21] Khan S, Luo Y, Ahmad A. Analysing complex behaviour of hydrological systems through a system dynamics approach[J]. Environmental Modelling & Software, 2009, 24(12): 1363-1372.
[22] 張新. 基于系統(tǒng)動(dòng)力學(xué)的稻田回歸水模擬[D]. 武漢:武漢大學(xué),2005.
Zhang Xin. Simulation Return Flow of Paddy Rice Based on System Dynamics Approach[D]. Wuhan: Wuhan University, 2005. (in Chinese with English abstract)
[23] 王其藩. 系統(tǒng)動(dòng)力學(xué):修訂版[M]. 上海:上海財(cái)經(jīng)大學(xué)出版社,2009.
[24] Niazi A, Prasher S O, Adamowski J, et al. A system dynamics model to conserve arid region water resources through aquifer storage and recovery in conjunction with a dam[J]. Water, 2014, 6(8): 2300-2321.
[25] Ryu J H, Contor B, Johnson G, et al. System dynamics to sustainable water resources management in the eastern snake plain aquifer under water supply uncertainty 1[J]. Jawra Journal of the American Water Resources Association, 2012, 48(6): 1204-1220.
[26] Han S J, Suh K, Jang T I, et al. Economic analysis of wastewater reuse systems for agricultural irrigation using a system dynamics approach[J]. Journal of the Korean Society of Agricultural Engineers, 2013, 55(2): 9-20.
[27] 崔遠(yuǎn)來,張新,羅玉峰,等.稻田回歸水模擬及其評(píng)價(jià)[J]. 灌溉排水學(xué)報(bào),2005,24(5):1-4. Cui Yuanlai, Zhang Xin, Luo Yufeng, et al. Simulation and evaluation of return flow in rice paddy[J]. Journal of Irrigation and Drainage, 2005, 24(5): 1-4. (in Chinese with English abstract)
[28] 王遠(yuǎn)明,,李成榮. 宜昌站水面蒸發(fā)折算系數(shù)分析[J]. 人民長江,1999,30(1):41-42. Wang Yuanming, Zhang Yi, Li Chengrong. The study of pan coefficients of evaporation pans of water[J]. Yangtze River, 1999, 30(1): 41-42.
[29] 王傳娟,王少麗,陳皓銳,等. 稻田水量調(diào)控模擬計(jì)算及分析[J]. 中國農(nóng)村水利水電,2016(8):137-143. Wang Chuanjuan, Wang Shaoli, Chen Haorui et al. The simulation and analysis rainfall storage and water conservation[J]. China Rural Water and Hydropower, 2016 (8): 137-143. (in Chinese with English abstract).
[30] 李遠(yuǎn)華. 節(jié)水灌溉理論與技術(shù)[M]. 武漢:武漢水利電力大學(xué)出版社,1999.
[31] 張祖蓮,薛繼亮. 水稻間歇灌溉試驗(yàn)研究[J]. 節(jié)水灌溉,2001(6):23-24. Zhang Zulian, Xue Jiliang. Experimental study on intermittent irrigation for paddy[J]. Water Saving Irrigation, 2001(6): 23-24. (in Chinese with English abstract).
[32] 鄭祖金,崔遠(yuǎn)來,董斌,等. 灌區(qū)塘堰攔蓄地表徑流能力的研究[J]. 中國農(nóng)村水利水電,2005(1):39-40. Zheng Zujin, Cui Yuanlai, Dong Bin, et al. Study on the capacity of surface runoff interception by ponds in irrigation district[J]. China Rural Water and Hydropower, 2005(1): 39-40. (in Chinese with English abstract).
[33] Wu G, Li L, Ahmad S, et al. A dynamic model for vulnerability assessment of regional water resources in arid areas: a case study of bayingolin, China[J]. Water Resources Management, 2013, 27(8): 3085-3101.
Simulation and verification of water transformation of rice paddy and pond system based on system dynamics
Hu Nengjie, Shao Dongguo※, Chen Shu, Le Zhihua, Nong Xizhi
(430072,)
Ponds are widely distributed in Southern China. Considering the regulatory role of pond, Vensim software was used to build a system dynamic model to simulate water transformation in paddy and pond system, based on the system dynamic approach and water balance method. It was assumed that runoff from each land unit directly fed into drainage canal without flowing through other fields. The physical processes, such as irrigation, evapotranspiration, deep percolation, inflow and outflow of pond, were calculated in the model. In addition, various scenarios could be set to research the variation of the system with control factors. The proposed model was applied to simulate water transformation during the growing period of rice in Zhanghe irrigation district to examine its feasibility. The study area features a subtropical continental climate with an average annual precipitation of 947 mm, 85% of which occurs between April and October. There are 145 ponds with the storage capacity of 155 283 cubic meters, which are important for ensuring an adequate water supply for crops. In the simulation, all the ponds were integrated as a large pond. And water storage was obtained from the relation curve between water level and storage. The results showed a good agreement between the observed and simulated daily water level of pond: coefficient of determination of 0.90, coefficient of efficiency of 0.79 and root-mean-square error of 0.155 m/day. To estimate the significance of pond irrigation system for agriculture irrigation, 3 different pond operation modes were set and simulated: 1) pond supply with total operation, 2) pond supply with partial operation, and 3) pond closed irrigation system. The result showsed that pond operation could ensure full irrigation of rice, and water stress occurred for 72 days under partial operation, closing pond irrigation system was bad for the growth of rice. Therefore, the pond irrigation system had a significant effect on ensuring the normal growth of crop. Additionally, water transformation was simulated under 3 different irrigation modes. From the results, in the early growth period, pond storage was consistent under 3 irrigation modes. However, during the developmental stage, pond storage was the smallest under moist irrigation and produced surplus water under intermittent irrigation. Pond storage decreased significantly under the shallow water irrigation in the late growth stage. From the perspective of pond inflow, shallow water irrigation was the best, followed by intermittent irrigation and moist irrigation. For the water supply, shallow water irrigation was also the best, followed by moist irrigation and intermittent irrigation, and effective water use efficiencies were 84.7%, 80.9% and 67.7%, respectively. The proportions, calculated by the minimum pond storage dividing pond capacity, were 2.0%, 18.9% and 41.3% for shallow water irrigation, wet irrigation and intermittent irrigation,respectively. This shows that under intermittent irrigation mode, pond can maintain a certain amount of water for a long period of time, which provides a scope for aquaculture and drainage water treatment. This study provides valuable information for the rational use of water resources and irrigation management in paddy rice and pond system.
water levels; water management; systems sciences; pond irrigation system; system dynamics; water balance; simulation
10.11975/j.issn.1002-6819.2017.12.017
P333.1; N941.3; S274.2
A
1002-6819(2017)-12-0130-06
2016-12-23
2017-03-10
國家自然科學(xué)基金重點(diǎn)項(xiàng)目(51439006);國家自然科學(xué)基金面上項(xiàng)目(51379150);“十三五”國家重點(diǎn)研發(fā)計(jì)劃課題(2016YFC0400101)
胡能杰,男,湖北黃石人,主要從事水資源高效利用與環(huán)境保護(hù)研究。武漢 武漢大學(xué)水資源與水電工程科學(xué)國家重點(diǎn)實(shí)驗(yàn)室,430072。Email:nengjiehu@163.com
邵東國,男,湖南常德人,教授,博士生導(dǎo)師,主要從事水資源高效利用及其生態(tài)環(huán)境效應(yīng)研究。武漢 武漢大學(xué)水資源與水電工程科學(xué)國家重點(diǎn)實(shí)驗(yàn)室,430072。Email:dgshao@whu.edu.cn
胡能杰,邵東國,陳 述,樂志華,農(nóng)翕智. 基于系統(tǒng)動(dòng)力學(xué)的稻田塘堰系統(tǒng)水轉(zhuǎn)化模擬及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(12):130-135. doi:10.11975/j.issn.1002-6819.2017.12.017 http://www.tcsae.org
Hu Nengjie, Shao Dongguo, Chen Shu, Le Zhihua, Nong Xizhi.Simulation and verification of water transformation of rice paddy and pond system based on system dynamics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 130-135. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.12.017 http://www.tcsae.org