• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      微型谷物聯(lián)合收割機(jī)割臺(tái)最小振幅點(diǎn)分析及掛接點(diǎn)優(yōu)化

      2017-10-14 14:57:16姬江濤徐龍姣耿令新王升升
      關(guān)鍵詞:收割機(jī)振幅幅值

      姬江濤,徐龍姣,龐 靖,耿令新,王升升

      ?

      微型谷物聯(lián)合收割機(jī)割臺(tái)最小振幅點(diǎn)分析及掛接點(diǎn)優(yōu)化

      姬江濤,徐龍姣,龐 靖※,耿令新,王升升

      (河南科技大學(xué)農(nóng)業(yè)裝備工程學(xué)院,洛陽 471003)

      針對(duì)聯(lián)合收割機(jī)的振動(dòng)問題,該文以4L-0.2微型聯(lián)合收割機(jī)為研究對(duì)象,利用最小幅值點(diǎn)法,通過優(yōu)化割臺(tái)與整機(jī)的連接點(diǎn),減小振動(dòng)能量的傳遞。首先,對(duì)比割臺(tái)有限元仿真模態(tài)和試驗(yàn)?zāi)B(tài),驗(yàn)證仿真模型和試驗(yàn)數(shù)據(jù)的正確性,為后續(xù)分析確定模態(tài)分析的階次。其次,利用電機(jī)驅(qū)動(dòng)割刀模擬工作工況,發(fā)現(xiàn)5、10和15 Hz 3個(gè)頻率的頻譜幅值較大,對(duì)整機(jī)的振動(dòng)影響明顯。而后,利用激振器作激勵(lì)源,測量單頻激勵(lì)時(shí)分布在擬掛接區(qū)域內(nèi)選定點(diǎn)的振動(dòng)幅值,以這些點(diǎn)的坐標(biāo)和振幅為采樣,擬合二次曲線,(擬合度取值范圍0.879~0.975),得到單頻極小振動(dòng)幅值點(diǎn)。最后,以頻譜幅值比例和人體對(duì)不同方向振動(dòng)的敏感度作為影響系數(shù),求出3個(gè)頻率極小振動(dòng)幅值點(diǎn)的加權(quán)重心,作為連接點(diǎn)的優(yōu)化解。為了驗(yàn)證優(yōu)化解的正確性,試驗(yàn)測量該點(diǎn)在工作工況下的振幅,結(jié)果表明振幅小于擬掛接區(qū)其他各點(diǎn),為該區(qū)域平均加權(quán)幅值29.707 m/s2的89.29%,最大振幅點(diǎn)幅值35.044 m/s2的74.92%,達(dá)到優(yōu)化要求。

      農(nóng)業(yè)機(jī)械;聯(lián)合收割機(jī);優(yōu)化;模態(tài)分析;最小振動(dòng)幅值點(diǎn);曲線擬合;加權(quán)綜合

      0 引 言

      谷物聯(lián)合收割機(jī)經(jīng)多年發(fā)展,收獲性能如損失率、清潔率、破碎率、生產(chǎn)率等都已達(dá)到國際先進(jìn)水平,但由于成本限制,減振研究時(shí)間短等原因,國產(chǎn)收割機(jī)廣泛存在振動(dòng)強(qiáng)、噪聲大等問題[1-3]。這些問題進(jìn)一步會(huì)造成零部件快速失效[4-5],駕駛員易疲勞[6-8]等一系列不良后果。為了降低收割機(jī)的振動(dòng)強(qiáng)度,減弱不了影響,多位學(xué)者分別從振動(dòng)特性檢測、振源辨識(shí)、減振方法等多方面進(jìn)行了研究。如徐立章等[9-10]對(duì)谷物收割機(jī)的振動(dòng)進(jìn)行了測試,認(rèn)為引起收割機(jī)振動(dòng)的振源有發(fā)動(dòng)機(jī)活塞、割刀、往復(fù)式清選篩的往復(fù)運(yùn)動(dòng),脫粒滾筒、傳動(dòng)軸的不平衡轉(zhuǎn)動(dòng),和行走過程中的地面激勵(lì)等。陳建恩等[11-12],認(rèn)為割刀的往復(fù)運(yùn)動(dòng)是主要振源之一。Krolczyk等[13]通過對(duì)脫粒滾筒進(jìn)行動(dòng)平衡,龐鳳斌等[14]通過優(yōu)化發(fā)動(dòng)機(jī)的隔震墊,李耀明等[15-16]通過優(yōu)化底盤、割臺(tái)的結(jié)構(gòu)避開共振頻率,韓正晟等[17]通過改變切割器工作方式降低收割機(jī)的振動(dòng)。

      國內(nèi)外對(duì)割臺(tái)振動(dòng)的研究主要集中于振動(dòng)檢測[12-18]、驅(qū)動(dòng)機(jī)構(gòu)動(dòng)力學(xué)分析建模[19-23]等方面,減振措施大多為在曲柄連桿機(jī)構(gòu)的合適位置增加平衡塊[23-25]。機(jī)械裝備的減振可從三方面入手:降低振源強(qiáng)度;振動(dòng)傳遞路徑增加阻尼隔振;結(jié)構(gòu)件優(yōu)化降低對(duì)振源激勵(lì)的響應(yīng)[26]。收割機(jī)切割裝置的運(yùn)動(dòng)參數(shù)受作業(yè)效果的限制不宜改動(dòng)。而給割刀驅(qū)動(dòng)裝置增加配質(zhì)量的方法,受結(jié)構(gòu)尺寸限制,平衡塊質(zhì)量不易達(dá)到最優(yōu)化的要求,減振效果不明顯。結(jié)構(gòu)優(yōu)化避開共振頻率的方法只對(duì)存在共振的機(jī)型有效。對(duì)于無共振現(xiàn)象的機(jī)型,從割臺(tái)振動(dòng)向收割機(jī)機(jī)體傳遞的路徑入手,將割臺(tái)與機(jī)體的連接點(diǎn)布置在振幅較小的位置,可明顯減小割臺(tái)對(duì)機(jī)體的激勵(lì),從而減小機(jī)體的振動(dòng)強(qiáng)度,達(dá)到減振的目的。

      本文以4L-0.2微型聯(lián)合收割機(jī)為例,利用模態(tài)分析法獲取各階振型[27-28],綜合分析后預(yù)估出振幅較小的擬連接點(diǎn)區(qū)域,利用振幅加權(quán)綜合得出區(qū)域內(nèi)各測點(diǎn)的振動(dòng)評(píng)價(jià)指標(biāo)-各方向加速度的加權(quán)綜合,利用二次曲線擬合估算出區(qū)域內(nèi)振幅最小點(diǎn),并用試驗(yàn)驗(yàn)證,以期為連接點(diǎn)的選點(diǎn)優(yōu)化提供參考。

      1 最小幅值點(diǎn)法概述

      對(duì)于一個(gè)多自由度線性系統(tǒng),其基本振動(dòng)方程為:

      式中[]為質(zhì)量矩陣,[]為阻尼矩陣,[]為剛度矩陣。{}為系統(tǒng)的位移響應(yīng)向量,和為位移對(duì)時(shí)間的一階和二階導(dǎo)數(shù),即節(jié)點(diǎn)的速度響應(yīng)向量和加速度響應(yīng)向量,{()}為系統(tǒng)的激勵(lì)向量。在進(jìn)行模態(tài)分析時(shí),可看作系統(tǒng)不受外部激勵(lì),即{()}0,同時(shí)若忽略阻尼的影響,即[]0,則振動(dòng)微分方程可簡化為:

      (2)

      其對(duì)應(yīng)的特征方程為:

      求解該方程即可得到{和{},即系統(tǒng)的多階固有頻率和相應(yīng)振型。通常與激勵(lì)頻率相近的模態(tài)導(dǎo)致部件的變形較大,考慮到割臺(tái)工作頻率較低,本文取前四階模態(tài)。

      考察方程(1)、(3)可以發(fā)現(xiàn),解析方程中沒有結(jié)構(gòu)點(diǎn)的位置坐標(biāo),求解方程不能獲得振動(dòng)幅值最小點(diǎn)的位置。同時(shí),大多數(shù)商業(yè)模態(tài)分析軟件并不能給出各點(diǎn)在各階模態(tài)中的陣型系數(shù),也不能給出各階模態(tài)節(jié)點(diǎn)的具體坐標(biāo)。因此,除直接測出幅值外,利用解析方法和有限元仿真方法無法確定最小真的能夠幅值點(diǎn)的具體位置。而結(jié)構(gòu)件上有無數(shù)個(gè)點(diǎn),要測出所有點(diǎn)的振動(dòng)幅值是不可能實(shí)現(xiàn)的,必須通過工程方法解決。

      本文提出一種尋找最小振動(dòng)幅值點(diǎn)的方法,稱最小幅值點(diǎn)法。該方法是通過模態(tài)分析,獲取各階模態(tài)節(jié)點(diǎn)的大致區(qū)域,在這塊區(qū)域內(nèi)選取若干個(gè)點(diǎn),測量其振動(dòng)特性和坐標(biāo),建立振動(dòng)幅值擬合曲線,推測最小振動(dòng)幅值點(diǎn),最后試驗(yàn)驗(yàn)證最小幅值點(diǎn)的準(zhǔn)確性。

      考慮到二次函數(shù)在極值點(diǎn)求解的便利性,本文構(gòu)建三元二次待定系數(shù)方程作為擬合曲線:

      (4)

      式中()為點(diǎn)的振動(dòng)幅值,,,為點(diǎn)在三維空間內(nèi)的坐標(biāo),11,22,33122331,1,2,3,4為待定系數(shù),將試驗(yàn)測得的各點(diǎn)振幅帶入式中,可求得極值點(diǎn)坐標(biāo)。為考察擬合曲線的準(zhǔn)確性,用擬合度方程(5)進(jìn)行檢驗(yàn)。

      (5)

      式中2為擬合度,TSS為總體平方和,ESS為回歸平方和,RSS為殘差平方和。

      2 割臺(tái)的模態(tài)分析與擬掛接區(qū)確定

      圖1為試驗(yàn)用微型聯(lián)合收割機(jī)割臺(tái)。為了保證試驗(yàn)?zāi)B(tài)估計(jì)的可信度,本文采用有限元仿真模態(tài)和試驗(yàn)?zāi)B(tài)相結(jié)合的方法,建立有限元仿真模型,并進(jìn)行模態(tài)分析,與試驗(yàn)?zāi)B(tài)數(shù)據(jù)進(jìn)行對(duì)比,觀察振型結(jié)構(gòu)和頻率,如兩者相符或相近,則說明根據(jù)試驗(yàn)數(shù)據(jù)估計(jì)的模態(tài)頻率、振型接近于理論真值,可作為后續(xù)計(jì)算的依據(jù)。

      圖1 微型聯(lián)合收割機(jī)割臺(tái)

      2.1 割臺(tái)的有限元仿真模態(tài)

      割臺(tái)機(jī)架主要是由低碳鋼板、角鋼、矩形管等焊接而成??紤]到撥禾輪、割臺(tái)攪龍對(duì)結(jié)構(gòu)的整體模態(tài)影響較小,故將其質(zhì)量附加在軸上,而省略其外形結(jié)構(gòu),同時(shí)將伸縮扒指的曲軸簡化為直軸。在Solidworks中建立割臺(tái)三維數(shù)學(xué)模型,并將該模型導(dǎo)入Workbench中進(jìn)行有限元模態(tài)分析。割臺(tái)材料為結(jié)構(gòu)鋼,采用六面體網(wǎng)格,網(wǎng)格尺寸為15 mm。為使模型接近實(shí)際,采用約束模態(tài)。依據(jù)實(shí)物結(jié)構(gòu),約束位置分別是2個(gè)連接點(diǎn)和割臺(tái)提升裝置與割臺(tái)的焊接區(qū),設(shè)置為面約束。計(jì)算得到前四階有限元模態(tài)如圖2所示。

      圖2 前四階有限元模態(tài)陣型與頻率

      2.2 割臺(tái)的試驗(yàn)?zāi)B(tài)分析

      為計(jì)算說明方便,在割臺(tái)上建立笛卡爾坐標(biāo)系,割臺(tái)寬度方向?yàn)橄?,前后方向?yàn)橄?,豎直方向?yàn)橄?。割臺(tái)的模態(tài)試驗(yàn)過程為:由力錘激勵(lì)割臺(tái)定刀梁向,由布置在割臺(tái)上的加速度計(jì)采集振動(dòng)信號(hào),同時(shí),力錘中的力傳感器獲取激勵(lì)力信號(hào),隨后將采集到的力信號(hào)和振動(dòng)信號(hào)一起傳遞到動(dòng)態(tài)信號(hào)分析系統(tǒng)中進(jìn)行模態(tài)分析。模態(tài)試驗(yàn)使用的儀器的參數(shù)如表1所示。

      表1 模態(tài)試驗(yàn)所用儀器

      測試由三部分組成,分別是力錘、動(dòng)態(tài)信號(hào)采集系統(tǒng)和模態(tài)分析處理系統(tǒng)。動(dòng)態(tài)信號(hào)采集系統(tǒng)由傳感器和DH5902動(dòng)態(tài)信號(hào)采集儀組成;模態(tài)分析處理系統(tǒng)由DHAM模態(tài)分析系統(tǒng)組成。試驗(yàn)在滿足各點(diǎn)連線能勾勒出割臺(tái)形狀的基礎(chǔ)上,測試了68個(gè)點(diǎn),對(duì)于割刀定刀梁布置了較多的點(diǎn),測點(diǎn)盡量避免布置在各階模態(tài)的節(jié)點(diǎn)位置,以便能激起更多的模態(tài),同時(shí),為了減小地面對(duì)試驗(yàn)?zāi)B(tài)的影響,割臺(tái)下墊有海綿墊。割臺(tái)的前四階試驗(yàn)?zāi)B(tài)如圖3所示。圖中標(biāo)尺為比例化振幅,無量綱。

      圖3 前四階試驗(yàn)?zāi)B(tài)陣型與頻率

      通過對(duì)比圖2和圖3可以看出,有限元仿真模態(tài)和試驗(yàn)?zāi)B(tài)的陣型相似,都表現(xiàn)為第一階兩側(cè)壁外凸;第二階側(cè)壁凸凹,底面凸起;第三階側(cè)壁和底面凸凹;第四階底面凸凹,側(cè)壁凸凹,背壁內(nèi)凹。有限元仿真模態(tài)和試驗(yàn)?zāi)B(tài)各階次模態(tài)頻率除第二階相差17.685%略大外,其余各階模態(tài)頻率差值均在10%以內(nèi)。進(jìn)一步觀察割臺(tái)振動(dòng)信號(hào)的頻譜圖發(fā)現(xiàn),底面各測點(diǎn)在22.733 Hz附近有明顯的峰值,說明試驗(yàn)?zāi)B(tài)的頻率估計(jì)正確,出現(xiàn)差異的原因可能是由有限元模型簡化造成的,對(duì)下一步掛接區(qū)確定不會(huì)產(chǎn)生影響。

      通過觀察試驗(yàn)?zāi)B(tài)的前四階陣型,并結(jié)合割臺(tái)可掛接區(qū)域,確定擬連接區(qū)如圖4。

      注:1,2,3為擬連接區(qū)。

      3 割臺(tái)的最小幅值點(diǎn)確定

      聯(lián)合收割機(jī)上往復(fù)運(yùn)動(dòng)的部件較多,為了防止其他部件運(yùn)動(dòng)對(duì)割臺(tái)的振動(dòng)產(chǎn)生影響,在試驗(yàn)前,將來自發(fā)動(dòng)機(jī)的動(dòng)力切斷,僅由一臺(tái)調(diào)速電機(jī)通過鏈條帶動(dòng)割刀刀桿驅(qū)動(dòng)軸轉(zhuǎn)動(dòng),這樣保證了整個(gè)割臺(tái)只有切割器一個(gè)振源。

      3.1 工況測量試驗(yàn)

      點(diǎn)的時(shí)域振動(dòng)幅值是頻域內(nèi)所有頻率下振動(dòng)幅值的疊加。為了考察工作工況下對(duì)割臺(tái)振動(dòng)有較大影響的頻率成分,將調(diào)速電機(jī)驅(qū)動(dòng)轉(zhuǎn)速設(shè)置為工作轉(zhuǎn)速300 rad/min??紤]到切割器的振動(dòng)方向?yàn)樽笥覔u擺,即向,因此測量定刀梁靠近中間位置處的向振動(dòng)信號(hào),作為激勵(lì)源信號(hào)。割刀穩(wěn)定運(yùn)動(dòng)時(shí),由加速度計(jì)測得的時(shí)域信號(hào)經(jīng)快速傅里葉變換(fast fourier transform,F(xiàn)FT)得到頻譜圖如圖5所示。由圖5可知,5、10、15 Hz 3個(gè)頻率下切割器的振動(dòng)較強(qiáng),同時(shí)可確定各頻點(diǎn)的幅值大小為0.540,0.300,0.160。

      圖5 切割器振動(dòng)幅頻圖

      3.2 單頻激勵(lì)試驗(yàn)

      考慮到3種頻率激勵(lì)下,割臺(tái)振動(dòng)特性不同,為了獲取單一頻率激勵(lì)下擬掛接區(qū)各測點(diǎn)振動(dòng)幅值,進(jìn)行單頻激勵(lì)試驗(yàn)。

      微型收割機(jī)的割臺(tái)通過割臺(tái)后上部的2個(gè)掛接點(diǎn)和后下部的1個(gè)支撐點(diǎn)與機(jī)架相連。第3區(qū)(見圖4)較為復(fù)雜、典型,因此本文只詳細(xì)介紹第3區(qū)的試驗(yàn)過程和分析方法??紤]到割臺(tái)結(jié)構(gòu)和減小支撐點(diǎn)的支反力以減小變形,下支撐點(diǎn)應(yīng)在割臺(tái)后壁下緣靠近水平轉(zhuǎn)折線的位置選取。選取第3區(qū)內(nèi)能覆蓋全部區(qū)域的同水平線的8個(gè)點(diǎn)進(jìn)行測量,為說明方便建立如圖4所示的坐標(biāo)系,8個(gè)測點(diǎn)的坐標(biāo)分別為:1(0.010,0,0),2(0.055,0,0),3(0.105,0,0),4(0.165,0,0),5(0.230,0,0),6(0.280,0,0),7(0.340,0,0),8(0.390,0,0),單位為m。由于該區(qū)域內(nèi),方向的坐標(biāo)并沒有改變,只有向坐標(biāo)改變,因此二次擬合曲線簡化為:

      本次試驗(yàn)采用激振器正弦信號(hào)激勵(lì),試驗(yàn)過程為:利用信號(hào)發(fā)生器產(chǎn)生單頻正弦信號(hào),信號(hào)經(jīng)功率放大器輸入激振器,激振器的激振點(diǎn)同樣為定刀梁的左端端點(diǎn),激勵(lì)方向向,利用傳感器將采集到的割臺(tái)振動(dòng)信號(hào)輸入動(dòng)態(tài)分析系統(tǒng)中。分析數(shù)據(jù)時(shí),為了減小偶然因素對(duì)被測點(diǎn)振動(dòng)信號(hào)產(chǎn)生的影響,選取較為穩(wěn)定的一段信號(hào)進(jìn)行分析,同時(shí)也為了減小試驗(yàn)誤差,對(duì)被選取片段內(nèi)的采樣數(shù)據(jù)絕對(duì)值前500個(gè)的數(shù)值進(jìn)行平均,得到每一個(gè)方向上的振動(dòng)幅值,測量數(shù)據(jù)如表2。

      由于振動(dòng)幅值在各坐標(biāo)向的分量不同,且人體對(duì)各方向振動(dòng)的敏感度不同[29-30],依據(jù)5 Hz時(shí)各向振動(dòng)對(duì)人體影響(,,)三向的加權(quán)因子為(0.409,0.409,1.039),10 Hz時(shí)的加權(quán)因子為(0.212,0.212,0.988),15 Hz時(shí)的影響因子為(0.125,0.125,0.768),計(jì)算出各點(diǎn)在各頻率下3向綜合振動(dòng)幅值,擬合得到3個(gè)頻率下的振幅擬合方程。

      5 Hz時(shí):

      極值點(diǎn)為:=0.317,同時(shí)求得擬合度2=0.903。

      10 Hz時(shí):

      極值點(diǎn)為:=0.296,同時(shí)求得擬合度2=0.975。

      15 Hz時(shí):

      此時(shí)擬合度2=0.879,因?yàn)榉匠蹋?)中的值為負(fù),即該方程的曲線開口向下,由一元二次方程的性質(zhì)可知最小值點(diǎn)在兩端點(diǎn)上,比較兩個(gè)端點(diǎn)幅值的大小,發(fā)現(xiàn)靠近右端幅值比較小,因此在這種情況下取最小值點(diǎn)的坐標(biāo)為(0,0,0)。

      表2 3號(hào)區(qū)域點(diǎn)各幅值

      3個(gè)頻率下的極值點(diǎn)并不一樣,考慮到工況測量試驗(yàn)中各頻率對(duì)振幅貢獻(xiàn),選定頻譜幅值系數(shù)作為3個(gè)頻率(5,10,15 Hz)的加權(quán)系數(shù),分別為:0.540,0.300,0.160,計(jì)算得到3個(gè)極值點(diǎn)的加權(quán)重心(0.260,0,0)作為第3區(qū)的最小幅值點(diǎn)。

      3.3 驗(yàn)證試驗(yàn)

      為了驗(yàn)證該結(jié)論,進(jìn)行電機(jī)驅(qū)動(dòng)試驗(yàn),試驗(yàn)中電機(jī)轉(zhuǎn)速設(shè)置為300 rad/min。因該轉(zhuǎn)速下5 Hz對(duì)振幅影響較大,因此各測點(diǎn)三向綜合振幅計(jì)算取5 Hz下,,向的幅值加權(quán)因子(0.409,0.409,1.039),驗(yàn)證測點(diǎn)的坐標(biāo)分別為9(0.260,0,0),10(0.010,0,0),11(0.100,0,0),12(0.200, 0,0),13(0.350,0,0),測得數(shù)據(jù)如表3所示。

      表3 驗(yàn)證試驗(yàn)各點(diǎn)幅值

      對(duì)比可知,測點(diǎn)9的加權(quán)幅值最小,為該區(qū)域平均加權(quán)幅值29.707 m/s2的89.29%,最大振幅點(diǎn)幅值 35.044 m/s2的74.92%,因此,割臺(tái)下支撐點(diǎn)的位置應(yīng)在第3區(qū)坐標(biāo)為9(0.260,0,0)的點(diǎn)周圍。同理,對(duì)另外2個(gè)區(qū)域進(jìn)行分析也可得到相應(yīng)的最小幅值點(diǎn)。

      4 優(yōu)化后強(qiáng)度數(shù)值模擬驗(yàn)證

      連接點(diǎn)的位置改變后對(duì)割臺(tái)進(jìn)行結(jié)構(gòu)分析,將簡化后的割臺(tái)三維模型導(dǎo)入Workbench中,并在連接點(diǎn)處施加面約束。割臺(tái)處于工作狀態(tài)時(shí),谷物秸稈的質(zhì)量可忽略不計(jì),因此割臺(tái)的載荷為自身重力。

      由圖6可知,割臺(tái)連接點(diǎn)改變之后,最大應(yīng)力發(fā)生在2個(gè)掛接點(diǎn)及其附近上,其最大應(yīng)力值77.775 MPa小于材料的屈服強(qiáng)度235 MPa,因此,連接點(diǎn)優(yōu)化后割臺(tái)的結(jié)構(gòu)強(qiáng)度滿足要求。

      圖6 割臺(tái)應(yīng)力云圖

      5 結(jié) 論

      1)本文利用模態(tài)分析、振幅加權(quán)綜合、二次曲線擬合等方法估算出研究區(qū)域的振幅最小點(diǎn)的坐標(biāo),并用試驗(yàn)檢測該點(diǎn)的實(shí)際振動(dòng)強(qiáng)度,可看出該方法能較準(zhǔn)確的預(yù)測出最小振動(dòng)幅值點(diǎn)的位置,預(yù)測的最小幅值點(diǎn)3向加權(quán)振幅為該區(qū)域平均幅值29.707 m/s2的89.29%,最大振幅點(diǎn)幅值35.044 m/s2的74.92%。

      2)針對(duì)不同頻率、不同方向的振動(dòng)在整機(jī)振動(dòng)的貢獻(xiàn)度評(píng)價(jià)問題,提出用工作工況的頻譜幅值比例計(jì)算不同頻率的貢獻(xiàn)度,用人體對(duì)不同頻率不同方向振動(dòng)的敏感度計(jì)算不同方向的貢獻(xiàn)度。

      3)采用三元二次多項(xiàng)式作為振動(dòng)幅值擬合的逼近方程,具有方程結(jié)構(gòu)簡單,求解極值點(diǎn)快速的優(yōu)點(diǎn),但機(jī)械結(jié)構(gòu)的振動(dòng)特性復(fù)雜,用二次多項(xiàng)式是否有廣泛的代表性和有效性,或者存在其他代表性更強(qiáng)的擬合方程,需要進(jìn)一步研究、試驗(yàn)。

      利用仿真模型對(duì)新機(jī)型設(shè)計(jì)時(shí)掛接點(diǎn)進(jìn)行預(yù)判,對(duì)新產(chǎn)品優(yōu)化設(shè)計(jì)具有重要意義,可作為后期研究內(nèi)容。

      [1] 陳慶文,韓增德,崔俊偉,等. 自走式谷物聯(lián)合收割機(jī)發(fā)展現(xiàn)狀及趨勢分析[J]. 中國農(nóng)業(yè)科技導(dǎo)報(bào),2015, 17(1):109-114. Chen Qingwen, Han Zengde, Cui Junwei, el al. Development status and trend current situation of self-propelled combine harvester[J]. Journal of Agricultural Science and Technology, 2015, 17(1): 109-114. (in Chinese with English abstract).

      [2] 蘭心敏,杜金. 我國谷物聯(lián)合收割機(jī)質(zhì)量分析[J]. 農(nóng)機(jī)質(zhì)量與監(jiān)督,2009,38(6):19,28-31.

      [3] 陽堯瑞. 微型收獲機(jī)發(fā)展存在的若干問題及對(duì)策[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2006,37(12):226-228. Yang Yaorui. Some problems and countermeasures in the development of micro harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(12): 226-228. (in Chinese with English abstract).

      [4] 方吉,李季濤,王悅東,等.基于隨機(jī)振動(dòng)理論的焊接結(jié)構(gòu)疲勞壽命概率預(yù)測方法研究[J]. 工程力學(xué),2016,33(3):24-30. Fang Ji, Li Jitao, Wang Yuedong, et al. Research on fatigue life probability prediction method of welded structure based on random vibration theory[J]. Engineering Mechanics, 2016, 33(3): 24-30. (in Chinese with English abstract)

      [5] 賀光宗,陳懷海,賀旭東,等.多軸向與單軸向隨機(jī)振動(dòng)疲勞試驗(yàn)對(duì)比研究[J]. 振動(dòng)工程學(xué)報(bào),2015,28(5):754-761. He Guanghong, Chen Huaihai, He Xudong, et al. Comparison study between multiaxial and uniaxial random vibration fatigue test[J]. Journal of Vibration Engineering, 2015, 28(5): 754-761. (in Chinese with English abstract)

      [6] 祝榮欣,王金武,唐漢,等. 基于心率變異性的聯(lián)合收割機(jī)駕駛員疲勞分析與評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(1):77-83. Zhu Rongxin, Wang Jinwu, Tang Han, el al. Analysis and evaluation of combine harvester driver fatigue based on heart rate variability[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 77-83. (in Chinese with English abstract)

      [7] 田曉峰,孔德剛,劉立意,等. 長時(shí)間振動(dòng)對(duì)拖拉機(jī)駕駛員腰部疲勞的影響研究[J]. 農(nóng)機(jī)化研究,2011,33(2): 193-196. Tian Xiaofeng, Kong Degang, Liu Liyi, et al. Study on the influence of long-time vibration to tractor driver’ low back fatigue[J]. Journal of Agricultural Mechanization Research, 2011,33(2): 193-196. (in Chinese with English abstract)

      [8] 劉軍,孔德剛,劉立意,等. 拖拉機(jī)座椅振動(dòng)對(duì)駕駛員腰部疲勞影響研究[J]. 農(nóng)機(jī)化研究,2011,33(1):53-56. Liu Jun, Kong Degang, Liu Liyi, et al. The study on the effect of tractor seat vibration to driver lumbar fatigue [J]. Journal of Agricultural Mechanization Research, 2011, 33(1): 53-56. (in Chinese with English abstract)

      [9] 徐立章,李耀明,孫朋朋,等. 履帶式全喂入水稻聯(lián)合收獲機(jī)振動(dòng)測試與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(8):49-55. Xu Lizhang, Li Yaoming, Sun Pengpeng, el al. Vibration measurement and analysis of tracked-whole feeding rice combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 49-55. (in Chinese with English abstract).

      [10] 馬桂香,陳殿云,王彥生,等.自走式谷物聯(lián)合收割機(jī)的振動(dòng)測試[J]. 現(xiàn)代機(jī)械,2008(2):59-61. Ma Guixiang, Chen Dianyun, Wan Yansheng, et al. Vibration test of a self-moving grain combine harvester[J]. Modern Machinery, 2008(2): 59-61. (in Chinese with English abstract)

      [11] 陳建恩.小麥聯(lián)合收割機(jī)振動(dòng)試驗(yàn)研究[D]. 蘭州:甘肅農(nóng)業(yè)大學(xué),2009.

      Chen Jianen. Experimental Study on Vibration of Wheat Combine[D]. Lanzhou: Gansu Agricultural University,2009.

      [12] 陳樹人,盧強(qiáng),仇華錚. 基于LabVIEW的谷物聯(lián)合收獲機(jī)割臺(tái)振動(dòng)測試分析[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(增刊1):86-89,98. Chen Shuren, Lu Qiang, Qiu Huazheng. Header vibration analysis of grain combine harvester based on LabVIEW[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(Supp.1): 86-89, 98. (in Chinese with English abstract).

      [13] Krolczyk J B, Egutko S, Krolczyk G M. Dynamic balancing of the threshing drum in combine harvesters-the process, sources of imbalance and negative impact of mechanical vibrations[J]. Applied Mechanics & Materials, 2014(693):424-429.

      [14] 龐鳳斌,孟繁昌,方宇鵬. 3060型聯(lián)合收割機(jī)發(fā)動(dòng)機(jī)減振系統(tǒng)的研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2000,31(6):72-74. Pang Fengbin, Meng Fanchang, Fang Yupeng. Study on vibration isolation system of a 3060 combine engine[J] Transactions of the Chinese Society for Agricultural Machinery, 2000, 31(6): 72-74. (in Chinese with English abstract)

      [15] 李耀明,孫朋朋,龐靖,等. 聯(lián)合收獲機(jī)底盤機(jī)架有限元模態(tài)分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(3):38-46. Li Yaoming, Sun Pengpeng, Pang Jing, et al. Finite element mode analysis and experiment of combine harvester chassis[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 38-46. (in Chinese with English abstract)

      [16] 李耀明,李有為,徐立章,等. 聯(lián)合收獲機(jī)割臺(tái)機(jī)架結(jié)構(gòu)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(18):30-37. Li Yaoming, Li Youwei, Xu Lizhang, et al. Structural parameter optimization of combine harvester cutting bench[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 30-37. (in Chinese with English abstract)

      [17] 韓正晟,趙武云,楊天興. 4GG-170型高速收割機(jī)的試驗(yàn)分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2005,36(12):56-59. Han Zhengsheng, Zhao Wuyun, Yang Tianxing. Experimental analysis on 4 GG 170 high speed harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(12): 56-59. (in Chinese with English abstract)

      [18] 何成秀. 小麥聯(lián)合收割機(jī)割臺(tái)振動(dòng)試驗(yàn)與分析[J]. 農(nóng)業(yè)機(jī)械, 2012(7): 107-108.

      [19] 陳昆昌,趙勻,俞高紅. 全喂入水稻聯(lián)合收割機(jī)切割機(jī)構(gòu)的動(dòng)力學(xué)分析與慣性力平衡[J]. 機(jī)械設(shè)計(jì)與研究,2005,21(3):98-100.

      Chen Kunchang, Zhao Yun, Yu Gaohong. Dynamic analysis of cutting mechanism of full feeding rice combine and balance of inertia force[J]. Machine Design and Research, 2005, 21(3): 98-100. (in Chinese with English abstract).

      [20] Chuan Udom. Development of a cutter bar driver for reduction of vibration for a rice combine harvester[J]. Kku Res J, 2010, 15(7): 572-580.

      [21] Fukushima T, Inoue E, Mitsuoka M, et al. Vibration characteristics and modeling of knife driving system of combine harvester (Part 3)[J]. Journal of the Japanese Society of Agricultural Machinery, 2006, 68(5): 65-70.

      [22] Miu Pi. Combine Harvesters: Theory, Modeling, and Design[M]. Boca Raton: Crc Press, 2015: 154-158.

      [23] 井上英二,丸谷一郎,光岡宗司,等. コンバイン刈刃駆動(dòng)部の力學(xué)モデルとその検証[J]. 農(nóng)業(yè)機(jī)械學(xué)會(huì)誌, 2004,66(2): 61-67.

      [24] 嚴(yán)帥. 往復(fù)式切割器的振動(dòng)穩(wěn)態(tài)響應(yīng)分析和減振設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2013(12):32-35.

      Yan Shuai. Steady-state vibration response analysis and vibration attenuation design of reciprocating cutter[J]. Journal of Agricultural Mechanization Research, 2013(12): 32-35. (in Chinese with English abstract).

      [25] 朱聰玲,程志勝,王洪源,等. 聯(lián)合收獲機(jī)割臺(tái)振動(dòng)問題研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2004,35(4): 59-61,65.

      Zhu Congling, Cheng Zhisheng, Wang Hongyuan, el al. Study on the header vibration of a combine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2004, 35(4): 59-61, 65.(in Chinese with English abstract).

      [26] 龐劍,諶剛,何華. 汽車噪聲與振動(dòng)-理論與應(yīng)用[M]. 北京:北京理工大學(xué)出版社,2006:320-328.

      [27] 陳嚴(yán),張林偉,劉雄,等. 水平軸風(fēng)力機(jī)柔性葉片氣動(dòng)彈 性響應(yīng)分析[J]. 太陽能學(xué)報(bào),2014,35(1):74-82. Chen Yan, Zhang Linwei,Liu Xiong, et al. Response analysis of aeroelasticity for hawt flexible blade[J]. Acta Energiae Solaris Sinica, 2014, 35(1): 74-82.

      [28] 任慧龍,于鵬垚,李輝,等. 船體三維變形響應(yīng)的數(shù)值預(yù)報(bào)[J]. 哈爾濱工程大學(xué)學(xué)報(bào),2015,36(1):134-138.

      Ren Huilong,Yu Pengyao,LI Hui, et al. Numerical prediction of three dimensional deformation response of the ship hull[J]. Journal of Harbin Engineering University, 2015, 36(1): 134-138. (in Chinese with English abstract)

      [29] GB/T 10910-2004. 農(nóng)業(yè)輪式拖拉機(jī)和田間作業(yè)機(jī)械駕駛員全身振動(dòng)的測量[S]. 北京:中國標(biāo)準(zhǔn)出版社,2004.

      [30] ISO 2631-1-1997. Mechanical Vibration and shock- Evaluation of human exposure to whole-body vibration-Part 1: General requirements[S]. Switzerland: International Organization for Standardization, 1997.

      Analysis of minimum amplitude points and optimization of connection position for header of micro grain combine

      Ji Jiangtao, Xu Longjiao, Pang Jing※, Geng Lingxin, Wang Shengsheng

      (471003,)

      This paper was aimed to reduce the vibration energy transitivity form the cutting table of the combine harvester to combine. In this paper, the 4 L-0.2 micro combine harvester was chosen as the object, the structure of the machine and the characteristics of the header were analyzed, and the minimum vibration amplitude point of the cutting table was found by using the minimum amplitude point method. Then the finite element modal analysis of the cutting table was carried out by using the modal analysis software Workbench, and the first four order modal frequencies and shapes were obtained, which were also acquired through the modal experiment of the cutting table. The experiment result was proved to be believable by comparison with the finite element modal analysis result. Three different experiments were performed, which included the preliminary experiment, the single-frequency excitation experiment and the verification experiment. In the preliminary experiment, the motor was used to provide the power which was used to drive the cutter installed on the cutting table to reciprocate; the preliminary experiment was done under the condition of low frequency, and 3 different frequencies, which had significant influence on the vibration amplitude of the points, were obtained, which were 5, 10 and 15 Hz respectively. The single- frequency experiments were done on the base of these 3 frequencies. In the single-frequency experiment, a small area that contained the positions of the first four order modal node of the experiment mode was divided out from the experimental area on the cutting table. Some points were randomly chosen in the small area, and the exciter was used to force the cutting table to vibrate. The values of vibration amplitude of the points chosen were obtained, and they were imported into the MATLAB together with the coordinate values of the points. The least square method was used to obtain the fitting curve, which illustrated the relationship between the coordinate value and the value of vibration amplitude of the points. The points that had the minimum value of vibration amplitude were found at each frequency. According to the vibration theory, it could be seen that the value of the vibration amplitude in the time domain was the superimposition of the value of amplitude of each frequency. The weighting factors corresponding to the 3 frequencies were obtained, which were 0.54, 0.3 and 0.16 respectively according to the relationship between the 3 different frequencies obtained from the preliminary experiment. The positions of the points that had the minimum vibration amplitude could be calculated with this set of weighting factors. In the verification experiment, the motor was used to provide the power for driving the cutter installed on the cutting table to reciprocate. The experimental data were calculated and the experimental result was consistent with that of the finite element analysis, and the positions of the points that had the minimum value of the vibration amplitude were obtained, which weighted average magnitude for the region (29.707 m/s2) 89.29%, the maximum amplitude point amplitude (35.044 m/s2) 74.92%. At the end, the optimization scheme which provided the best position for the installation of the cutting table was put forward according to the result.After changing the connection point, the cutting table’s structure was analyzed, and the results showed that the structural strength of the cutting table met the requirements.

      agricultural machinery; combine harvester; optimization; modal analysis; minimum amplitude point; curve fitting; weighted synthesis

      10.11975/j.issn.1002-6819.2017.12.004

      S225

      A

      1002-6819(2017)-12-0028-06

      2017-02-21

      2017-04-05

      國家自然科學(xué)基金(51205110);“十三五”項(xiàng)目子課題(2016YFD0701805-1)

      姬江濤,男,河南洛陽人,博士,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)機(jī)械裝備研制與開發(fā)研究。洛陽 河南科技大學(xué)農(nóng)業(yè)裝備工程學(xué)院,471003。Email:jjt0907@163.com

      龐 靖,男,河南洛陽人,講師,主要從事收獲機(jī)械設(shè)計(jì)及理論研究。洛陽 河南科技大學(xué)農(nóng)業(yè)裝備工程學(xué)院,471003。 Email:jing_pang@163.com

      姬江濤,徐龍姣,龐 靖,耿令新,王升升.微型谷物聯(lián)合收割機(jī)割臺(tái)最小振幅點(diǎn)分析及掛接點(diǎn)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(12):28-33. doi:10.11975/j.issn.1002-6819.2017.12.004 http://www.tcsae.org

      Ji Jiangtao, Xu Longjiao, Pang Jing, Geng Lingxin, Wang Shengsheng. Analysis of minimum amplitude points and optimization of connection position for header of micro grain combine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 28-33. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.12.004 http://www.tcsae.org

      猜你喜歡
      收割機(jī)振幅幅值
      用履帶收割機(jī)送柴油
      自走式油葵收割機(jī)研發(fā)成功
      基于S變換的交流電網(wǎng)幅值檢測系統(tǒng)計(jì)算機(jī)仿真研究
      電子制作(2017年7期)2017-06-05 09:36:13
      未來的收割機(jī)
      十大漲跌幅、換手、振幅、資金流向
      十大漲跌幅、換手、振幅、資金流向
      十大漲跌幅、換手、振幅、資金流向
      麥?zhǔn)諘r(shí)如何進(jìn)行聯(lián)合收割機(jī)跨區(qū)作業(yè)
      滬市十大振幅
      正序電壓幅值檢測及諧波抑制的改進(jìn)
      纳雍县| 潞西市| 囊谦县| 嘉义市| 若尔盖县| 沙坪坝区| 山阴县| 吉水县| 博客| 海口市| 三台县| 许昌县| 中方县| 台州市| 垣曲县| 沐川县| 岳阳县| 阿拉善右旗| 怀集县| 青阳县| 金山区| 彰化市| 长宁县| 中山市| 河南省| 西乌| 张家界市| 称多县| 闻喜县| 辉县市| 望都县| 沐川县| 工布江达县| 淅川县| 阿合奇县| 荆州市| 台中县| 安平县| 兴山县| 海兴县| 阳江市|