• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      不同農(nóng)業(yè)耕作措施下坡耕地填洼量特征與變化

      2017-10-14 14:56:22趙龍山吳發(fā)啟戴全厚
      農(nóng)業(yè)工程學報 2017年12期
      關(guān)鍵詞:洼地耕作坡面

      趙龍山,侯 瑞,吳發(fā)啟,戴全厚

      ?

      不同農(nóng)業(yè)耕作措施下坡耕地填洼量特征與變化

      趙龍山1,2,侯 瑞1,吳發(fā)啟2,戴全厚1

      (1. 貴州大學林學院,貴陽 550025;2. 西北農(nóng)林科技大學資源環(huán)境學院,楊凌 712100)

      洼地蓄水是坡耕地重要的水文要素,由于它與坡耕地產(chǎn)流、土壤入滲能力有關(guān),故也是坡面水土流失研究的重要對象之一。為了進一步認識坡耕地洼地蓄水作用,該研究通過人工模擬降雨試驗方法,對3種常用農(nóng)業(yè)耕作措施(人工鋤耕、人工掏挖、等高耕作)條件下地表填洼量特征與變化進行了深入研究,以平整坡面為對照措施。研究結(jié)果表明,實施農(nóng)業(yè)耕作措施的粗糙坡面平均填洼量較平整坡面提高4~13倍,洼地蓄水量依次為等高耕作>人工掏挖>人工鋤耕>平整坡面;坡度對填洼量具有重要影響,洼地蓄水量隨著坡度的變化可以用冪函數(shù)關(guān)系表達(2>0.70)。對于粗糙坡面,當坡度從15°增大到25°過程中,洼地蓄水量逐漸趨于穩(wěn)定,受坡度的影響變小;在耕作坡面上,由于降雨侵蝕造成地表微地形變化,地表糙度減小,洼地蓄水量減小,地表填洼量變化可以通過地表糙度變化進行計算。

      土壤水分;侵蝕;降水;地表糙度;模擬降雨

      0 引 言

      地表填洼量是指地表相對低洼處蓄存的水量,用地表洼地蓄水量表示(surface depression storage, SDS),由于它與坡耕地產(chǎn)流產(chǎn)沙、土壤入滲能力有關(guān),故也是坡面水土流失研究的重要對象[1]。在水文學中,地表填洼量還是模擬坡面產(chǎn)流與退水過程的一個重要因子[2-3]。近年來,隨著三維激光掃描技術(shù)在土壤侵蝕研究領(lǐng)域的廣泛應(yīng)用,針對填洼量及其相關(guān)內(nèi)容的研究逐漸增多[4-5],為坡面土壤侵蝕與產(chǎn)匯流理論的發(fā)展奠定了科學依據(jù)。

      在坡耕地上,由于耕作活動的影響,地表土壤呈現(xiàn)一定的高低起伏,使地表形成許多大小不同的洼地。對于不同的農(nóng)業(yè)耕作措施,洼地的大小與空間分布特征具有一定差異[6]。在降雨產(chǎn)流過程中,洼地具有滯蓄徑流和沉積泥沙的作用,從而降低水土流失的發(fā)生[7-8]。大量的研究表明[9-11],在不同的產(chǎn)流階段,洼地作用不同,在降雨產(chǎn)流初期,洼地以蓄水作用為主,導致坡面產(chǎn)流延緩,增加降雨入滲的時間和潛在入滲量。Guzha[12]研究表明,在有洼地的坡面,土壤入滲率顯著高于平整坡面,且地表填洼量越大時,對應(yīng)土壤的含水量也越大;在坡面產(chǎn)流后,徑流搬運的部分泥沙在洼地沉積,洼地起到攔截泥沙的作用,進而減小土壤流失量。同時,在坡面產(chǎn)流過程中,對不同坡位上或不同大小的洼地,蓄水時間長短不同,導致產(chǎn)流曲線呈現(xiàn)階梯式上升特征,因此洼地對產(chǎn)流量的影響還與洼地空間特征有關(guān)[13]。當坡面產(chǎn)流達到穩(wěn)定后,地表填洼量對徑流特征的影響不明顯[14]。Darboux等[15-16]研究表明,地表填洼量是逐漸蓄滿的過程,它可以改變徑流方向,是一個重要的徑流模擬特征參數(shù)。

      以上分析表明,地表填洼量是研究地表產(chǎn)流與匯流過程的重要特征量。但是,在降雨侵蝕作用下,地表填洼量并不是固定不變,而是隨著地表微地形的變化而變化,而這種變化目前還不清楚。鑒于此,本研究以坡耕地采用的人工鋤耕、人工掏挖、等高耕作等土地管理措施為研究對象,通過人工模擬降雨試驗的方法,對坡度、降雨侵蝕作用下地表填洼量特征進行定量研究,以期為坡耕地水土流失過程與機理奠定科學基礎(chǔ)。

      1 材料與方法

      1.1 研究方法

      本研究采用室內(nèi)人工模擬降雨的試驗方法。降雨設(shè)備用中國科學院水土保持研究所黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點實驗室研制的側(cè)噴式模擬降雨系統(tǒng),降雨高度15 m,降雨均勻度大于80%,單個試驗區(qū)有效降雨面積約36 m2。侵蝕槽規(guī)格2.0 m′1.0 m′0.5 m(長′寬′深),侵蝕槽坡度可在0~40°范圍內(nèi)任意調(diào)節(jié)。

      試驗土壤取自坡耕地表層土(0~20 cm),經(jīng)測定,土壤顆粒粒徑>0.05 mm占比2.82%,粒徑在0.01~0.05mm占比41.13%,粒徑<0.01 mm占比56.05%。

      土壤自然風干后(土壤含水率控制在10%左右),先過10 mm篩,然后將土壤分層裝入侵蝕槽,槽內(nèi)土壤深度為0.4 m。在填裝土壤過程中,采用體積質(zhì)量隨機實測法,將侵蝕槽內(nèi)土壤容重控制在1.3 g/cm3左右,以使土層均勻且體積質(zhì)量接近土壤自然剖面。侵蝕槽裝土完成后,先利用木塊將表土整平,并將侵蝕槽坡度調(diào)至試驗坡度,然后按傳統(tǒng)的耕作措施在坡面上進行耕作,以模擬不同地表條件或地表糙度[17]。耕作措施包括人工鋤耕、人工掏挖和等高耕作,其中:1)人工鋤耕:沿地表以傳統(tǒng)方式鋤耕,深度4~5 cm;2)人工掏挖:采用镢頭掏挖地表,深度5~8 cm,間距20~25 cm;3)等高耕作:在坡面上垂直于坡面方向進行橫向犁耕,形成溝和壟,壟高7~10 cm,壟距為30 cm。另外,本研究用未實施耕作,土壤表面呈平整狀態(tài)的坡面作為對照措施(平整坡面)。以上措施耕作模擬聘請長期從事相同耕作與農(nóng)業(yè)生產(chǎn)的農(nóng)民進行操作,以保證模擬耕作更接近實際生產(chǎn)。

      耕作措施模擬完成后,立刻用10 mm/h降雨強度對侵蝕槽內(nèi)土壤進行30 min預降雨,降雨后將侵蝕槽靜置24 h再開始正式降雨試驗,以恢復地表土壤粘結(jié)力,降低人為干擾。對每個侵蝕槽,在降雨試驗開始前和降雨后,都需測量地表填洼量。

      試驗設(shè)計5個試驗坡度:5°,10°,15°,20°和25°。試驗降雨強度90 mm/h,降雨歷時60 min。試驗共使用4個侵蝕槽,分別標記為C1,C2,C3和C4,其中C1,C2和C3用來模擬人工鋤耕、人工掏挖和等高耕作,C4為平整坡面。對每一個措施,均從最小坡度5°開始依次完成5個坡度的試驗。每個坡度試驗完成后,侵蝕槽內(nèi)土壤全部更換新土,準備下一次試驗。每個坡度重復3次,重復試驗程序同上。

      運用鏈條法測量不同耕作措施坡面的地表糙度,計算公式如下[18]:

      式中表示地表糙度,%;0和1分別表示鏈條的實際長度和放置地面后鏈條的水平長度,m。通過計算初始地表糙度(0)和雨后地表糙度(t)比值來表征降雨侵蝕作用下地表糙度變化。

      1.2 地表填洼量測量與分析

      本研究中,地表填洼量是指耕作后坡面洼地的最大蓄水量,其值通過在地表覆蓋塑料薄膜的方法進行實測。主要是將農(nóng)用薄膜鋪在坡耕地表面以阻止水分入滲,從坡頂向坡面注水直至坡面全部凹陷處蓄滿水且從坡底集流口出水為止,記錄注水量與出水量,二者作差得最大蓄水量[19]。本研究將5個坡度下地表初始填洼量均值作為衡量耕作措施地表填洼量的數(shù)量指標。

      地表填洼量變化分析公式如下:

      式中表示降雨侵蝕前后地表填洼量變化,%;DS表示雨后地表填洼量,mm;0表示初始地表填洼量,mm。若為正值,表示降雨侵蝕后地表實際填洼量較降雨前初始填洼量增加;反之,則表示減小。

      運用最小二乘法原理對地表填洼量與地表糙度之間的關(guān)系進行回歸分析,建立地表糙度與地表填洼量之間的函數(shù)關(guān)系。

      2 結(jié)果與分析

      2.1 不同耕作措施坡面地表填洼量特征

      不同耕作措施坡面地表填洼量特征結(jié)果見圖1。可以看出,與平整坡面相比,耕作措施顯著提高坡面地表填洼量。對不同耕作措施坡面,初始地表填洼量具有一定區(qū)別,但是,除在坡度為10°、15°和20°時,等高耕作與人工鋤耕、人工掏挖之間有顯著差異外,其余坡度下差異不顯著??傮w上,在不考慮坡度影響下,等高耕作、人工掏挖和人工鋤耕坡面的平均填洼量分別為6.96、3.52和2.48 mm,是平整坡面填洼量的4~13倍。與平整坡面相比,耕作措施具有增加地表糙度的作用。鄭子成等[20]研究表明,在采取人工掏挖、等高耕作和人工鋤耕的坡面上地表糙度的大小與地表填洼量具有相似的趨勢,即等高耕作>人工鋤耕>人工掏挖>平整坡面。可見,在坡耕地上,耕作措施在增加地表糙度的同時顯著提高地表蓄水能力,這一特征為農(nóng)業(yè)耕作措施發(fā)揮水土保持作用提供了基本條件。

      注:不同小寫字母表示不同措施間差異顯著(P<0.05),相同字母表示差異不著性,下同。

      2.2 坡度對初始地表填洼量的影響

      對不同耕作措施坡面地表填洼量與坡度關(guān)系分析結(jié)果見圖2??梢钥闯?,坡度對地表填洼量影響較大,即隨著坡度增加,地表填洼量明顯減小。應(yīng)用最小二乘法對地表填洼量與坡度關(guān)系進行分析發(fā)現(xiàn)地表填洼量隨坡度的減小特征可用冪函數(shù)表達,即:

      =ab(2>0.78) (3)

      式中表示地表填洼量,mm;表示坡度,(°);和為回歸系數(shù)。對于不同的耕作措施,回歸系數(shù)相差較大,而冪指數(shù)較為接近,說明坡度對不同耕作措施坡面地表填洼量的影響程度存在差異。初始地表填洼量越大,坡度的影響也越大。同時,地表填洼量與坡度的冪函數(shù)關(guān)系也說明坡度對地表填洼量的影響存在臨界坡度,當坡度大于該臨界值后,坡度的影響減小,地表填洼量趨于穩(wěn)定值。對于平整坡面,當坡度在10°~25°之間時,平均填洼量在0.21~0.29 mm之間變化;對于人工鋤耕、人工掏挖和等高耕作等粗糙坡面,當坡度從15°增大到25°過程中,平均填洼量趨于穩(wěn)定,隨坡度的變化減小。

      地表糙度是對耕作措施下坡面微地形特征進行量化的指標,已有的研究表明地表糙度的大小與坡面水土流失具有一定關(guān)系[21]。在地表糙度與坡面產(chǎn)流產(chǎn)沙研究中,地表填洼量被認為是影響產(chǎn)流產(chǎn)沙的一個重要抑制因子[22-23]。隨著地表糙度的增加,地表洼地蓄水能力逐漸增強[12,22],本研究也證實了這一觀點。同時,我們也發(fā)現(xiàn)地表填洼量不僅與地表糙度有關(guān),還受坡度的影響,但是坡度對地表填洼量有一定的影響。在坡面水文過程模擬研究中,當?shù)孛嫫露却笥谝欢〝?shù)值后,坡面蓄水能力不再受坡度影響,可以取定值。

      圖2 坡度對地表填洼量的影響

      2.3 降雨侵蝕對地表填洼量的影響

      對不同耕作措施坡面地表填洼量受降雨侵蝕的影響分析結(jié)果見圖3??梢钥闯?,人工鋤耕、人工掏挖和等高耕作等粗糙坡面與平整坡面降雨侵蝕前后地表填洼量變化呈不同的變化特征。對于平整坡面,在連續(xù)降雨(降雨量90 mm)侵蝕作用后,5個坡度條件下雨后地表填洼量均較初始地表填洼量增大,增加量在30%以上;相反,對于等高耕作、人工掏挖和人工鋤耕坡面,地表填洼量均呈減小特征,最大減小量約60%。另外,對于粗糙坡面,除坡度為25°外,初始地表填洼量越大,相應(yīng)的地表填洼量減小量也越大。以上結(jié)果說明降雨侵蝕作用對地表蓄水能力具有重要影響。

      統(tǒng)計分析表明,盡管在個別坡度下,不同耕作措施之間地表填洼量存在顯著差異,但是并無明顯規(guī)律。如,在坡度為5°和10°時,人工掏挖和等高耕作之間并未顯著差異,但是在坡度為15°時,又存在顯著差異。可見,對不同耕作措施坡面,坡度并未對地表填洼量變化產(chǎn)生顯著影響。

      對不同耕作措施地表糙度與地表填洼量變化關(guān)系進行分析(圖4),可以看出,等高耕作、人工掏挖和人工鋤耕坡面雨后地表糙度(t)較初始地表糙度(0)減小。但是,在平整坡面上,t卻增大。可見,地表填洼量的變化與地表糙度變化具有相似趨勢,即對于地表糙度增加的平整坡面,地表填洼量呈增加趨勢;相反,對地表糙度減小的粗糙坡面,地表填洼量呈減小的趨勢。究其原因,筆者認為這與地表土壤侵蝕過程有關(guān)。對于粗糙坡面,受徑流和泥沙沉積影響,地表洼地逐漸被上坡來沙填平,同時,侵蝕產(chǎn)流過程中形成的匯流網(wǎng)絡(luò)將分散的洼地逐漸連通,坡面排水性增強,洼地的蓄水能力降低,導致地表填洼量減小[24-26];相反,對于平整坡面,侵蝕產(chǎn)流過程中坡面形成的魚鱗坑及匯流網(wǎng)絡(luò)反而增加了坡面的區(qū)域,導致地表填洼量呈增加的趨勢[27-28]。

      圖3 降雨后不同耕作措施坡面地表填洼量變化

      圖4 降雨后不同耕作措施坡面地表糙度變化

      為了進一步闡明地表填洼量與地表糙度的關(guān)系,運用最小二乘法原理對地表糙度變化與地表填洼量之間的關(guān)系進行分析,二者存在如下數(shù)量關(guān)系:

      上式表明,降雨前后地表填洼量比值與地表糙度變化之間存在對數(shù)函數(shù)關(guān)系。

      根據(jù)公式(4),在獲得坡面某一時間段內(nèi)地表糙度變化,即可計算該時段后地表填洼量。為了驗證這一關(guān)系的準確性,用35組不同耕作措施坡面降雨資料(表1)對地表填洼量進行模擬計算,并繪制地表填洼量預測值與實測值散點圖,結(jié)果見圖5。運用最小二乘法原理回歸分析表明地表填洼量實測值與預測值之間存在顯著線性關(guān)系(<0.05),進一步表明地表填洼量與地表糙度之間的數(shù)量關(guān)系,即通過降雨前后地表糙度比值可以計算地表填洼量。

      表1 降雨試驗資料

      圖5 地表填洼量預測值與實測值準確性分析

      3 結(jié) 論

      本研究通過人工模擬的試驗方法,對不同耕作措施下坡耕地地表填洼量的特征與變化進行了研究,得出如下結(jié)論:

      1)與無耕作措施的平整坡面相比,實施農(nóng)業(yè)耕作措施的粗糙坡面平均填洼量提高4~13倍,洼地蓄水量依次為等高耕作>人工掏挖>人工鋤耕>平整坡面。

      2)坡度對填洼量具有重要影響,隨著坡度的增加,洼地蓄水量呈冪函數(shù)規(guī)律逐漸減小。當坡度大于15°后,粗糙坡面洼地蓄水量逐漸趨于穩(wěn)定,受坡度的影響變小。

      3)對不同耕作措施坡面,初始地表填洼量越大,在降雨侵蝕中地表填洼量變化也越大。但是,坡度對地表填洼量變化并未顯著影響。

      4)由于降雨侵蝕造成地表微地形變化,地表糙度減小,粗糙坡面洼地蓄水量減小,地表填洼量變化可以通過地表糙度變化進行計算。

      [1] Planchon O, Esteves M, Silvera N, et al. Microrelief induced by tillage: Measurement and modelling of surface storage capacity[J]. Catena, 2001, 46(2/3): 141-157.

      [2] 芮孝芳. 產(chǎn)匯流理論[M]. 北京:水利電力出版社,1995.

      [3] 白清俊,劉亞相. 流域坡面綜合產(chǎn)流數(shù)學模型的研究[J]. 土壤侵蝕與水土保持學報,1999,5(3):54-58. Bai Qingjun, Liu Yaxiang. Integrated model of runoff generation over valley slope surface[J]. Journal of Soil Erosion and Soil and Water Conservation, 1999, 5(3): 54-58. (in Chinese with English abstract)

      [4] Chu Xuefeng, Yang Jun, Chi Yaping. Quantification of soil random roughness and surface depression storage: Methods, Applicability, and Limitations[J]. Transactions of the American Society of Agricultural and Biological Engineers, 2012, 55(5): 1699-1710.

      [5] Martin Y, Valeo C, Tait M. Centimetre-scale digital representations of terrain and impacts on depression storage and runoff[J]. Catena, 2008, 75(2): 223-233.

      [6] 趙龍山,張青峰,宋向陽,等. 基于微尺度下DEM的黃土坡耕地地表坑洼特征研究[J]. 土壤學報,2012,49(1):179-183. Zhao Longshan, Zhang Qingfeng, Song Xiangyang, et al. Study of characteristics of surface depressions in farmland on loess slope based on micro-DEM[J]. Acta Pedoloca Sinca, 2012, 49(1): 179-183. (in Chinese with English abstract)

      [7] Darboux F, Huang C H. Does soil surface roughness increase or decrease water and particle transfers?[J]. Soil Science Society of America Journal, 2005, 69(3): 748-756.

      [8] Zhao Longshan, Huang Chihua, Wu Faqi. Effect of microrelief on water erosion and their changes during rainfall[J]. Earth Surface Processes and Landforms, 2016, 41(5): 579-586.

      [9] Huang J K, Lee K T. Influences of spatially heterogeneous roughness on flow hydrographs[J]. Advances in Water Resources, 2009, 32(11): 1580-1587.

      [10] Antoine M, Chalon C, Darboux F, et al. Estimating changes in effective values of surface detention, depression storage and friction factor at the interrill scale, using a cheap and fast method to mold the soil surface micro-topography[J]. Catena, 2012, 91(12): 10-20.

      [11] Zhao Longshan, Wang Linhua, Liang Xinlan, et al. Soil surface roughness effects on infiltration process of a cultivated slopes on the Loess Plateau of China[J]. Water Resources Management, 2013, 27(14): 4759-4771.

      [12] Guzha A C. Effects of tillage on soil microrelief, surface depression storage and soil water storage[J]. Soil & Tillage Research, 2004, 76(2): 105-114.

      [13] Chu Xuefeng, Yang Jun, Chi Yaping, et al. Dynamic puddle delineation and modeling of puddle-to-puddle filling-spilling-mergingsplitting overland flow processes[J]. Water Resources Research, 2013, 49(6): 3825-3829.

      [14] Darboux F, Gascuel-Odoux C, Davy P. Effects of surface water storage by soil roughness on overland-flow generation[J]. Earth Surface Processes and Landforms, 2002, 27(1): 223-233.

      [15] Darboux F, Davy P, Gascuel-Odoux C. Evolution of soil surface roughness and flowpath connectivity in overland flow experiments[J]. Catena, 2001, 46(2/3): 125-139.

      [16] Gómez J A, Darboux F, Nearing M A. Development and evolution of rill networks under simulated rainfall[J]. Water Resources Research, 2003, 39(6): 1148-1162.

      [17] 趙龍山,張青峰,梁心藍,等. 基于GIS的坡耕地數(shù)字高程模型的建立與應(yīng)用[J]. 農(nóng)業(yè)工程學報,2010,26(11):317-322. Zhao Longshan, Zhang Qingfeng, Liang Xinlan, et al. Establishment and application of DEM for loess slope land based on GIS[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(11): 317-322. (in Chinese with English abstract)

      [18] Saleh A. Soil roughness measurement: Chain method[J]. Journal of Soil and Water Conservation, 1993, 48(6): 527-529.

      [19] 宋冰,趙龍山. 微地形條件下地表填洼量計算方法研究[J]. 楊凌職業(yè)技術(shù)學院學報,2011,10(3):5-7. Song Bing, Zhao Longshan. Calculation of surface depression storage under micro-topography condition[J]. Journal of Yangling Vocational & Technical College, 2011, 10(3): 5-7. (in Chinese with English abstract)

      [20] 鄭子成,何淑勤,吳發(fā)啟. 降雨條件下耕作方式對地表糙度的濺蝕效應(yīng)[J]. 農(nóng)業(yè)工程學報,2009,25(11):103-108. Zheng Zicheng, He Shuqin, Wu Faqi. Splash erosion effects of tillage practices on soil surface roughness under different rainfall conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(11): 103-108. (in Chinese with English abstract)

      [21] Zhao Longshan, Liang Xinlan, Wu Faqi. Soil surface roughness change and its effect on runoff and erosion on the Loess Plateau of China[J]. Journal of Arid Land, 2014, 6(4): 400-409.

      [22] Kamphorst E C, Jettten V, Guerif J, et al. Predicting depressional storage from soil surface roughness[J]. Soil Science Society of America Journal, 2000, 64(5): 1749-1758.

      [23] Helming K, R?mkens M J M, Prasad S N. Surface roughness related of runoff and soil loss: A flume study[J]. Soil Science Society of America Journal, 1998, 62(1/2): 243-250.

      [24] Gómez J A, Nearing M A. 2005. Runoff and sediment losses from rough and smooth soil surfaces in a laboratory experiment[J]. Catena, 59(3): 253-266.

      [25] 鄭子成,吳發(fā)啟,何淑勤,等. 片蝕與細溝間侵蝕過程中地表微地形的變化[J]. 土壤學報,2011,48(5):931-937. Zheng Zicheng, Wu Faqi, He Shuqin, et al. Chang in surface micro-relief during the course of sheet erosion and inter-rill erosion[J]. Acta Pedologica Sinca, 2011, 48(5): 931-937. (in Chinese with English abstract)

      [26] 鄭子成,吳發(fā)啟,何淑勤,等. 地表糙度對徑流和產(chǎn)沙影響的室內(nèi)試驗研究[J]. 農(nóng)業(yè)工程學報,2007,23(10):19-24. Zheng Zicheng, Wu Faqi, He Shuqin, et al. Effects of soil surface roughness on runoff and sediment discharges with laboratory experiments[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(10): 19-24. (in Chinese with English abstract)

      [27] Borselli L, Torri D. Soil roughness, slope and surface storage relationship for impervious areas[J]. Journal of Hydrology, 2010, 393(3/4): 389-400.

      [28] Moreno R G, Requejo A S, Altisent J M D, et al. Significance of soil erosion on soil surface roughness decay after tillage operations[J]. Soil & Tillage Research, 2011, 117(1): 49-54.

      [29] 趙龍山,宋向陽,梁心藍,等. 黃土坡耕地耕作方式不同時微地形分布特征及水土保持效應(yīng)[J]. 中國水土保持科學,2011,9(2):64-70. Zhao Longshan, Song Xiangyang, Liang Xinlan, et al. Micro-relief characteristics of loess sloping farmland under different tillage practices and its effects of soil and water conservation[J]. Science of Soil and Water Conservation, 2011, 9(2): 64-70. (in Chinese with English abstract)

      [30] 梁心藍,趙龍山,吳佳,等. 地表糙度與徑流水力學參數(shù)響應(yīng)規(guī)律模擬[J]. 農(nóng)業(yè)工程學報,2014,30(19):123-131. Liang Xinlan, Zhao Longshan, Wu Jia, et al. Simulation of response law for soil surface roughness and hydraulics parameters of runoff [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(19): 123-131. (in Chinese with English abstract)

      [31] 梁心藍,趙龍山,吳佳,等. 模擬條件下不同耕作措施和雨強對地表糙度的影響[J]. 中國農(nóng)業(yè)科學,2014,47(24):4840-4849. Liang Xinlan, Zhao Longshan, Wu Jia, et al. Effects of different tillage treatments and rainfall intensities on soil surface roughness under simulated condition[J]. Scientia Agricultura Sinica, 2014, 47(24): 4840-4849. (in Chinese with English abstract)

      Characteristics and change of surface depression storage on sloping land with different tillage practices

      Zhao Longshan1,2, Hou Rui1, Wu Faqi2, Dai Quanhou1

      (1.550025,; 2.712100,)

      Surface depression storage, which is enhanced by various tillage practices, is an important hydrological element in the sloping land. Because surface depression storage is related to overland flow production and soil infiltration capacity, therefore, it is also one of the important factors to influence soil and water losses in the sloping land. The objective of this study was to measure the changes in surface depression storages and to analyze the characteristics of surface depression storage in the sloping land with 3 tillage practices, i.e. shallow hoeing, deep hoeing and contour ploughing. These are tillage practices commonly occurring on the Loess Plateau of China. A smooth surface served as the control measure. The tillage practices were simulated in soil box with a length of 2 m, a width of 1 m and a depth of 0.5 m. A total of 5 slope gradients were used for rainfall application in this study. Soil surface roughness of sloping land was measured and calculated using a chain method. The rainfall application was conducted using a simulator with 4 spray nozzles. The nozzles were mounted on the position of 15 m above the ground. The rainfall intensity was 90 mm/h, and the rainfall duration was 60 min. In general, surface depression storage is quantified by the maximum depressional storage, which can be calculated using various empirical equations containing roughness indices or be estimated using digital techniques. In this study, surface depression storage was measured using a field measurement method. The results showed that surface depression storages in the sloping land with tillage practices were more than 4 times that on the smooth surfaces. For the different tillage practices, the surface depression storage differed and the order of surface depression storages was contour ploughing > deep hoeing > shallow hoeing > smooth surface. The surface depression storage decreased with the increasing cumulative rainfall. For examples, the surface depression storage decreased by 41%, 28% and 15% for contour ploughing, deep hoeing and shallow hoeing treatments respectively after a successional rainfall event of 90 mm compared to the initial values before the rain. Moreover, the slope steepness of the sloping land also affected the amount of depressional storage. Regression analysis showed that the changes in surface depression storage with the slope steepness of the sloping land could be described by a power function (2> 0.70) for the shallow hoeing, deep hoeing, contour ploughing and smooth surface treatments. Once the slope steepness was more than 15°, the change rate of depression storage markedly decreased and then remained in a stable state, implying that slope had a critical role on the tilled surface. Beyond the critical slope steepness, the differences in change characteristics of depression storage between smooth surface and tilled surfaces declined fast. The changes in surface depression storage could be predicted by the ratio of soil surface roughness before and after rainfall. Overall, the surface depression is important characteristic in the sloping land. Tillage practices can increase the amount of water stored in surface depressions. However, both accumulated rainfall and slope gradient lead to the decrease of actual surface depression storage under some conditions. The results provide a mechanistic understanding on how tillage affects surface depression storage.

      soil moisture; erosion; precipitation; surface roughness; simulated rainfall

      10.11975/j.issn.1002-6819.2017.12.032

      S157.1

      A

      1002-6819(2017)-12-0249-06

      2016-08-17

      2017-05-25

      國家自然科學基金項目(41601293);貴州省科技計劃項目(黔科合基礎(chǔ)[2016]1027;黔科合[2016]支撐2835號);貴州省教育廳青年科技人才成長項目(黔教合KY字[2016]114)

      趙龍山,男(漢族),甘肅古浪人,副教授,博士,主要從事水土保持與生態(tài)環(huán)境建設(shè)方面研究。貴陽 貴州大學林學院,550025。Email:longshanzh@163.com

      趙龍山,侯 瑞,吳發(fā)啟,戴全厚. 不同農(nóng)業(yè)耕作措施下坡耕地填洼量特征與變化[J]. 農(nóng)業(yè)工程學報,2017,33(12):249-254. doi:10.11975/j.issn.1002-6819.2017.12.032 http://www.tcsae.org

      Zhao Longshan, Hou Rui, Wu Faqi, Dai Quanhou. Characteristics and change of surface depression storage on sloping land with different tillage practices[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 249-254. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.12.032 http://www.tcsae.org

      猜你喜歡
      洼地耕作坡面
      洼地排澇體系存在的問題及解決對策探討
      沖積扇油氣管道坡面侵蝕災害因子分析
      非洲 直銷的投資洼地
      超音速流越過彎曲坡面的反問題
      認證,拯救“品質(zhì)洼地”
      耕作深度對紫色土坡地旋耕機耕作侵蝕的影響
      玉米保護性耕作的技術(shù)要領(lǐng)
      面板堆石壩墊層施工及坡面防護
      峰叢洼地農(nóng)作物面向?qū)ο笮畔⑻崛∫?guī)則集
      遙感信息(2015年3期)2015-12-13 07:26:54
      草地耕作技術(shù)在澳大利亞的應(yīng)用
      土壤與作物(2015年3期)2015-12-08 00:46:58
      冀州市| 天台县| 镇安县| 明星| 汶上县| 涿州市| 湘阴县| 济源市| 绥宁县| 兴宁市| 岐山县| 集安市| 武胜县| 板桥市| 汝城县| 米易县| 雅江县| 攀枝花市| 财经| 新绛县| 讷河市| 永新县| 福建省| 莱阳市| 泌阳县| 玉树县| 孟连| 米泉市| 盐源县| 古蔺县| 黔江区| 凤凰县| 兴安盟| 靖州| 华亭县| 马龙县| 新密市| 五峰| 遂溪县| 新晃| 昌黎县|