夏毅敏,周明,毛晴松,朱宗銘,3,張旭輝
(1.中南大學 機電工程學院,湖南 長沙 410083; 2.中鐵工程裝備集團有限公司,河南 鄭州 450016; 3.長沙學院 機電工程系,湖南 長沙 410003)
不同巖石特性下TBM滾刀刀圈磨損性能
夏毅敏1,周明1,毛晴松2,朱宗銘1,3,張旭輝1
(1.中南大學 機電工程學院,湖南 長沙 410083; 2.中鐵工程裝備集團有限公司,河南 鄭州 450016; 3.長沙學院 機電工程系,湖南 長沙 410003)
為了研究巖石特性對TBM滾刀刀圈磨損的影響,本文基于TBM滾刀性能測試試驗臺,利用與實際TBM滾刀刀圈性能相同的滾刀刀圈試樣,開展了滾刀刀圈試樣與5種TBM工程典型巖石的對摩實驗。結(jié)果表明:隨著對摩巖石抗壓強度的升高,刀圈試樣的磨損量呈遞增趨勢,與紅砂巖對摩時刀圈試樣的磨損量最小,為0.2 g;與片麻巖對摩時刀圈試樣的磨損量最大,為35.18 g;與紅砂巖、銹石、花崗巖、汨羅麻巖四種巖石對摩時,刀圈試樣的磨損去除機制均以微觀切削去除為主,只是微觀切削去除的程度不同;與片麻巖對摩時,刀圈試樣所受載荷和振動較大,刀磨損機制轉(zhuǎn)變?yōu)橐晕⒂^切削和脆性斷裂去除機制為主,導(dǎo)致刀圈試樣磨損量劇增。本研究成果可為不同巖石特性下TBM滾刀刀圈性能選型提供借鑒和參考。
巖石特性; 滾刀刀圈; 磨損量; 磨損去除機制; 對摩實驗; 磨損性能; 微觀切削; 脆性斷裂
Abstract:To investigate the effect of rock property on the wear behavior of TBM cutter rings, friction experiments were performed on a TBM hob performance test bench with five types of rock common in TBM works. The hob- cutter ring specimen used in the experiment is the same as the actual TBM hob cutter. Results show that the wear volume of the cutter ring specimen tends to increase with increasing rock compressive strength. The specimen exhibited the lowest wear volume of 0.2 g when facing red sandstone and the highest wear volume of 35.18g when facing gneiss. Microcosmic cutting removal is the dominant removal wear mechanism in facing red sandstone, rusted stone, granite, and Miluo gneiss. However, the degree of microcosmic cutting removal is different among stones. The load and vibration of the cutter ring specimen are large when wearing gneiss, and the main wear mechanism of the cutter ring specimen changes into microcosmic cutting and brittle fracture removal. These mechanisms drastically increase the wear of the cutter ring specimen. The results of this study can provide reference for the selection of TBM disc cutter ring in different rock characteristics.
Keywords:rock property; ring of hobbing cutter; wear volume; wear removal mechanism; friction experiment; wear characteristics; microcosmic cutting; brittle fracture
目前硬巖掘進機(tunnel boring machine, TBM)廣泛應(yīng)用于巖石地質(zhì)隧道的開挖[1-2]。安裝在刀盤上的盤形滾刀是TBM滾壓破碎巖石的關(guān)鍵部件,由于其作用對象往往是抗壓強度高、磨蝕性強的巖石,工作環(huán)境極其惡劣,滾刀刀圈的磨耗嚴重,如何提高滾刀刀圈的耐磨性能、延長刀具使用壽命是業(yè)內(nèi)的難題。國內(nèi)外學者關(guān)于TBM盤形滾刀刀圈在不同載荷[3]、貫入度[4-6]、刀間距[7]、破巖弧長[8-9]和布置方式[10-12]等條件下的磨損性能探討已進行了大量的研究工作,而關(guān)于巖石特性對TBM滾刀刀圈的磨損量及磨損機理影響方面的實驗研究甚少。本文基于TBM滾刀性能測試試驗臺,利用與實際TBM滾刀刀圈性能相同的滾刀刀圈試樣開展了滾刀刀圈試樣與5種TBM工程典型巖石的對摩實驗,研究了滾刀刀圈試樣的磨損量及磨損去除機制隨巖石特性的變化趨勢,這對于根據(jù)滾刀刀圈性能合理用刀及刀圈性能的地質(zhì)匹配設(shè)計都有一定的指導(dǎo)作用。
TBM滾刀性能測試試驗臺如圖1所示。試驗臺由液壓系統(tǒng)驅(qū)動,垂直油缸實現(xiàn)垂直方向的運動、加載及施加沖擊振動,縱向油缸實現(xiàn)巖石試樣的縱向進給;橫向油缸實現(xiàn)巖石的橫向運動以改變刀圈試樣的切削位置;刀圈試樣通過雙鍵安裝在驅(qū)動軸上,驅(qū)動軸由液壓馬達驅(qū)動。刀圈試樣壓入巖石的深度采用位移傳感器采集,傳感器精度為0.1 mm。實驗時,刀圈試樣的受力及振動信號分別采用三向力傳感器和加速度傳感器采集。
圖1 試驗臺Fig.1 Test bench
為了獲得與實際TBM滾刀刀圈性能相同的刀圈試樣,刀圈試樣材料和熱處理工藝均與實際TBM滾刀刀圈相同。材料采用H13鋼,材料化學成分的實測值如表1所示。刀圈試樣設(shè)計成常截面圓環(huán)狀,外徑為140 mm,厚度為5 mm;熱處理后的刀圈試樣的硬度為57.0 HRC、沖擊韌性為3.7 J/cm2。5種對摩巖石的類型及參數(shù)如表2所示,將巖石加工成規(guī)則的長方體試樣,尺寸為:900 mm×380 mm×260 mm。
表1 H13鋼的化學成分百分比Table 1 Percentage of chemical composition of H13 steel %
表2 巖石特性參數(shù)
實驗在赫茲模擬準則[13-14]下進行,即保證實驗室條件下刀圈試樣和巖石之間的平均接觸應(yīng)力和運動方式與實際工況條件下TBM滾刀刀圈與巖石的平均接觸應(yīng)力和運動方式相同,實驗時刀圈試樣的刀間距為15 mm,經(jīng)計算刀圈試樣的貫入度約為1 mm。根據(jù)滾刀與巖石的相對運動分析,滾刀刀圈與巖石的相對運動方式為滾滑組合運動方式[15],因此實驗時采取刀圈試樣主動轉(zhuǎn),巖石試樣間歇性進給的方式進行。刀圈試樣轉(zhuǎn)速20 r/min,巖石試樣平均進給速度為6.7 mm/min。采用增長滾刀刀圈試樣與巖石對摩距離和對摩時間的方式來減少偶然因素和人為因素對刀圈試樣磨損量的影響。實驗時,滾刀刀圈試樣與巖石完成一次對摩距離800 mm,對摩時間約2 h。
實驗在常溫狀態(tài)下進行,實驗前后采用電子天平測量刀圈試樣的質(zhì)量差以計算其磨損量;實驗后采用形狀測量激光顯微鏡對刀圈試樣的磨損表面形貌進行觀察與分析,以研究刀圈試樣與不同類型的巖石對摩時的磨損機理。
圖2為刀圈試樣的磨損量隨巖石類型與抗壓強度的變化曲線。結(jié)果表明:隨著巖石抗壓強度的升高,刀圈試樣的磨損量大體上呈遞增趨勢;與紅砂巖對摩的刀圈試樣的磨損量最小,僅為0.2 g;與片麻巖對摩的刀圈試樣的磨損量最大,達到35.18 g。但刀圈試樣的磨損量也不是嚴格地隨對摩巖石抗壓強度的升高單調(diào)遞增的,實驗中花崗巖的抗壓強度比銹石高,但刀圈試樣與其對摩時的磨損量比與銹石對摩時還小。為了研究刀圈試樣的磨損量隨對摩巖石抗壓強度變化規(guī)律的機械原因,需要對不同對摩巖石下刀圈試樣的載荷和振動進行研究。
圖2 刀圈試樣磨損量Fig.2 Wear volume of cutter ring specimens
5種對摩巖石下刀圈試樣的載荷和振動分別如圖3(a)、(b)所示。圖3(a)表明,刀圈試樣所受載荷隨對摩巖石抗壓強度的升高單調(diào)遞增。這是因為隨著巖石抗壓強度的升高,刀圈試樣需要更大的力才能壓入巖石至實驗設(shè)計的貫入度。圖3(b)表明:隨著對摩巖石抗壓強度的升高,刀圈試樣所受振動大體上也呈遞增趨勢,但這種變化趨勢也不是嚴格單調(diào)遞增的??梢?,對摩時刀圈試樣的振動不僅僅取決于巖石的抗壓強度,還受彈性模量等其他巖石特性參數(shù)的影響。對比圖2和圖3可以發(fā)現(xiàn),巖石的抗壓強度對刀圈試樣的磨損量影響很大,因為其決定了對摩時刀圈試樣的受力,同時,不同對摩巖石下刀圈試樣的振動對刀圈試樣的磨損量也有較大影響。
圖3 刀圈試樣所受載荷與振動Fig.3 Load and vibration of cutter ring specimens
為了進一步揭示刀圈試樣的磨損量隨巖石類型與抗壓強度變化趨勢的原因,對刀圈試樣的磨損面形貌進行了測試分析,研究了不同對摩巖石下刀圈試樣的磨損去除機制,如圖4(a)~(e)所示。從圖4可以看出:紅砂巖、銹石和汨羅麻下刀圈試樣的磨損去除機制均以微觀切削為主,不過隨著巖石抗壓強度的升高,由于刀圈試樣所受載荷和振動增加,刀圈試樣發(fā)生微觀切削的切削槽深度、寬度增大,故刀圈試樣的磨損量逐漸增大;雖然花崗巖下刀圈試樣所受載荷較大,但由于所受振動較小,刀圈試樣僅發(fā)生了輕微的微觀切削去除磨損,故刀圈試樣的磨損量較?。黄閹r下刀圈試樣所受載荷和振動最大,刀圈試樣的磨損去除機制轉(zhuǎn)變?yōu)橐晕⒂^切削和脆性斷裂去除為主,導(dǎo)致刀圈試樣的磨損量急劇增加。
圖4 刀圈試樣磨損表面形貌Fig.4 Wear surface morphology of cutter ring specimens
圖5(a)~(e)為刀圈試樣與五種巖石對摩后磨損面的輪廓。從圖5可以發(fā)現(xiàn),刀圈試樣與巖石對摩后磨損面呈現(xiàn)出鋸齒狀的磨損輪廓,且不同對摩巖石下鋸齒的形狀和大小存在一定的區(qū)別。圖6(a)、(b)分別為5種對摩巖石下刀圈試樣磨損面磨痕深度、寬度的變化。圖6表明,隨著對摩巖石抗壓強度的升高,磨痕尺寸的變化趨勢與刀圈試樣磨損量的變化趨勢相同,紅砂巖下刀圈試樣的磨痕尺寸最小,深度為24.35 μm,寬度為42.77 μm;片麻巖下刀圈試樣的磨痕尺寸最大,磨痕深度達到73.62 μm,寬度達到263.14 μm。
圖5 刀圈試樣磨損面輪廓Fig.5 Wear surface profile of cutter ring specimens
圖6 刀圈試樣磨損面磨痕尺寸Fig.6 Wear surface tracks size of cutter ring specimens
1)巖石特性對刀圈試樣的磨損量影響顯著,隨對摩巖石抗壓強度的升高,刀圈試樣的磨損量大體上呈遞增趨勢,與紅砂巖對摩時刀圈試樣的磨損量最小,僅為0.2 g,與片麻巖對摩時刀圈試樣的磨損量最大,為35.18 g。
2)不同巖石特性下刀圈試樣的的載荷和振動差異較大,刀圈試樣的載荷隨對摩巖石抗壓強度的升高單調(diào)遞增,紅砂巖下刀圈試樣所受載荷最小,為4.5 kN;片麻巖下刀圈試樣所受載荷最大,為10.48 kN;刀圈試樣的振動大體上也隨巖石抗壓強度的升高而增大,但還受巖石其他特性參數(shù)的影響。紅砂巖下刀圈試樣受到的振動的幅值最小,振動幅值為9.827 m/s2;片麻巖下刀圈試樣受到的振動的幅值最大,振動幅值為23.32 m/s2;
3)對摩時刀圈試樣所受載荷和振動會在一定程度上影響刀圈試樣的磨損去除機制,進而影響刀圈試樣的磨損量。
[1] BALEI C,TUMAC D.Investigation into the effects of different rocks on rock cut tability by a V- type disc cutter[J]. Tunneling underground & space technology, 2012, 30: 183-193.
[2] HUO J Z,SUN W.Disc cutters plane layout design of the full- face rock tunnel boring machine (TBM) based on different layout patterns[J]. Computer and industrial engineering, 2011, 61: 1209-1225.
[3] 王旭,趙羽,張寶鋼,等. TBM滾刀刀圈磨損機理研究[J].現(xiàn)代隧道技術(shù), 2010, 47(5): 15-19. WANG Xu,ZHAO Yu,ZHANG Baogang,et al. TBM hob cutter ring wear mechanism research[J].Modern tunnel technology, 2010, 47(5): 15-19.
[4] 楊延棟,陳饋,李鳳遠,等.盤型滾刀磨損預(yù)測模型[J].煤炭學報, 2015, 40(6): 1290-1296. YANG Yandong,CHEN Kui,LI Fengyuan,et al.Wear prediction model of disc cutter[J]. Journal of China coal society, 2015, 40(6): 1290-1296.
[5] 朝維剛,劉明月,杜彥良,等. 全斷面隧道掘進機刀具異常磨損的識別分析[J].中國機械工程, 2007, 18(2): 150-153. ZHAO Weigang,LIU Mingyue,DU Yanliang,et al. Abnormal cutter wear recognition of full face tunnel boring machine [J]. China mechanical engineering, 2007, 18(2): 150-153.
[6] 譚青,謝呂堅,夏毅敏,等. TBM盤形滾刀圈磨損速率研究[J].中南大學學報, 2015, 46(3): 843-848. TAN Qing,XIE Lvjian,XIA Yimin,et al. Analysis of wear rate of TBM disc cutter[J]. Journal of Central South University: science and technology, 2015, 46(3): 843-848.
[7] 霍軍周, 孫偉, 郭莉,等. 多滾刀順次作用下巖石破碎模擬及刀間距分析[J]. 哈爾濱工程大學學報, 2012, 33(1): 96-99. HUO Junzhou,SUN Wei,GUO Li,et al. Numerical simulation of the rock fracture process induced by multi- disc- cutters and cutter spacing design [J]. Journal of Harbin Engineering University, 2012, 33(1): 96-99.
[8] 張照煌,紀昌明.全斷面巖石掘進機盤形滾刀刃破巖點弧長的解析解及應(yīng)用研究[J]. 應(yīng)用基礎(chǔ)與工程科學學報, 2009, 17(2): 265-273. ZHANG Zhaohuang,JI Changming. Whole section rock tunneler disk hob broken arc long analytic solution and application research on[J]. Journal of basic science and engineering, 2009, 17(2): 265-273.
[9] 鞏亞東,趙曉旭,程軍. TBM 盤形滾刀破巖刃弧長研究分析[J].東北大學學報:自然科學版, 2015, 36(6): 838-842. GONG Yadong,ZHAO Xiaoxu,CHENG Jun. Research and analysis on the arc length of the rock breaking point on TBM’s disc cutter [J]. Journal of Northeastern University: natural science, 2015, 36(6): 838-842.
[10] 劉春.TBM掘進機關(guān)鍵部件-盤形滾刀的研制[J].中國鐵道科學, 2003, 24(2): 101-106. LIU Chun. TBM for keycomponents- the development of the disc type gear hob[J]. China railway science, 2003, 24(2): 101-106.
[11] 蘇鵬程,王宛山,霍軍周. TBM 的滾刀布置優(yōu)化設(shè)計研究[J].東北大學學報:自然科學版, 2010, 31(6): 877-881. SU Pengcheng,WANG Wanshan,HUO Junzhou. Optimal layout design of cutters on tunnel boring machine[J]. Journal of Northeastern University: natural science, 2010, 31(6): 877-881.
[12] 蒲毅,劉建琴,郭偉, 等.土壓平衡盾構(gòu)機刀盤刀具布置方法研究[J].機械工程學報, 2011, 47(15): 161-168. PU Yi, LIU Jianqin,GUO Wei, et al. Research on cutting tool layout method of earth pressure balance shield[J].Journal of mechanical engineering, 2011, 47(15): 161-168.
[13] 王文健,郭俊,劉啟躍.接觸應(yīng)力對輪軌材料滾動摩擦磨損性能影響[J].摩擦學學報, 2011, 31(4): 352-356 WANG Wenjian,GUO Jun,LIU Qiyue. Effect of contact stress on rolling friction and wear behavior of wheel- rail materials[J]. Tribology, 2011, 31(4): 352-356
[14] 吳帥,付航濤,連勇,等.一種新形熱作模具鋼的高溫磨損性能研究[J]. 摩擦學學報, 2016, 36(1): 104-109 WU Shuai,F(xiàn)U Hangtao,LIAN Yong,et al. Investigation on high temperature wear behavior of a newly developed hot- work tool steel[J]. Tribology, 2016, 36(1): 104-109
[15] KOLVMBAS D. Tunnelling and tunnel mechanics[M]. Berlin: Springer, 2008.
WearcharacteristicsofTBMdisc-cutterringunderdifferentrockcharacteristics
XIA Yimin1, ZHOU Ming1, MAO Qingsong2, ZHU Zongming1, 3, ZHANG Xuhui1
(1.School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; 2.China Railway Engineering Equipment Group Co. Ltd., Zhengzhou 450016, China; 3.Mechanical and Electrical Engineering Dept., Changsha University, Changsha 410003, China)
10.11990/jheu.201607083
http://www.cnki.net/kcms/detail/23.1390.U.20170817.1737.004.html
U455.3
A
1006- 7043(2017)09- 1456- 05
2016-07-30. < class="emphasis_bold">網(wǎng)絡(luò)出版日期
日期:2017-08-17.
國家重點基礎(chǔ)研究發(fā)展計劃項目(2013CB035401);國家高技術(shù)研究發(fā)展計劃項目(2012AA041803);國家自然科學基金項目(51475478);中南大學中央高校基本科研業(yè)務(wù)費專項資金項目(2017zzts646).
夏毅敏(1967-), 男, 教授,博士生導(dǎo)師.
夏毅敏,E- mail:xiaymj@csu.edu.cn.
本文引用格式:夏毅敏,周明,毛晴松,等. 不同巖石特性下TBM滾刀刀圈磨損性能[J]. 哈爾濱工程大學學報, 2017, 38(9): 1456-1460.
XIA Yimin, ZHOU Ming, MAO Qingsong, et al. Wear characteristics of TBM disc- cutter ring under different rock characteristics[J]. Journal of Harbin Engineering University, 2017, 38(9): 1456-1460.