孟祥菊,田淑環(huán),許會峰
(保定學(xué)院 數(shù)學(xué)與計算機(jī)系,河北 保定 071000)
冪平均的凸組合界
孟祥菊,田淑環(huán),許會峰
(保定學(xué)院 數(shù)學(xué)與計算機(jī)系,河北 保定 071000)
得到了關(guān)于幾何平均G(a,b)、反調(diào)和平均C(a,b)、冪平均Mr(a,b)和算術(shù)平均A(a,b)的不等式,對所有的a、b>0成立的γ的最佳值.
冪平均;幾何平均;反調(diào)和平均;算術(shù)平均
1995年,Seiffert[1]證明了不等式M1(a,b)
StoLarsky[2]證明了不等式I(a,b)=L0(a,b)≥M2/3(a,b),當(dāng)且僅當(dāng)a=b時等號成立.
褚玉明等[3]證明了不等式αT(a,b)+(1-α)G(a,b)0且a≠b成立的充分必要條件是α<3/5且β>π/4.
經(jīng)典平均在物理學(xué)、天文學(xué)、氣象學(xué)中有廣泛的應(yīng)用,它們之間的估計式是近年來研究的熱門課題.國內(nèi)外學(xué)者們[4-9]建立了一系列精確的不等式,這些結(jié)果是經(jīng)典結(jié)論的推廣和發(fā)展.
(1)
(2)
定理2不等式A(a+b)+C(a+b)≥2M2(a,b)當(dāng)且僅當(dāng)a=b時等號成立.
證明若a=b,則A(a,b)+C(a,b)=2M2(a,b)=2a.
故A(a,b)+C(a,b)≥2M2(a,b)
下面證明2M2(a,b)是冪平均關(guān)于算術(shù)平均和反調(diào)和平均的最佳凸組合下界.
對于?ε>0,0 (3) (4) [1] SEIFFERT H J.Aufgabe 16[J].Die Wurzel,1995,29(87):221-222. [2] STOLARSKY K B.The power and generalized logarithmic means[J].The American Mathematical Monthly,1980,87(7):545-548. [3] CHU Y M,ZONG C,WANG G D.Optimal convex combination bounds of Seiffert and geometric means for the arithmetic mean[J].J Math Inequal,2011,5(3):429-434. [4] RICHARDS K C.Sharp power mean bounds for the Gaussian hypergeometric function[J].Journal of Mathematical Analysis and Applications,2005,3089(1):303-313. [5] CHU Y M,WANG M K,WANG G D.The optimal generalized logarithmic Mean boundcs for seiffert’s mean[J].Acta Mathematica Scientia,2012,32B(4):1619-1626. [6] 孟祥菊,潘學(xué)功,高夢涵.對數(shù)平均的最優(yōu)凸組合界[J].河北大學(xué)學(xué)報(自然科學(xué)版),2014,34(5):471-474.DOI:10.3969/j.issn.1000-1565.2014.05.005 MENG X J,PAN X G,GAO M H.Optimal convex combination bounds for logarithmic mean[J].Journal of Hebei University(Natural Science Edition),2014,34(5):471-474.DOI:10.3969/j.issn.1000-1565.2014.05.005 [7] 趙鐵洪,褚玉明.對數(shù)平均和雙參數(shù)廣義Muirhead平均之間的比較[J].中國科學(xué):數(shù)學(xué),2015,45(3):233-244. ZHAO T H,CHU Y M.Comparison between the logarithmic and two-parameter generalized Muirhead means[J].Science China(mathematics),2015,45(3):233-244. [8] 史明宇,褚玉明,蔣月評.關(guān)于冪平均、調(diào)和平均和指數(shù)平均的最佳不等式[J].?dāng)?shù)學(xué)物理學(xué)報,2011,31A(5):1377-1384. SHI M Y,CHU Y M,JIANG Y P.Optimal inequalities related to the power,harmonic and identric means[J].Acta Mathematica Scientia,2011,31A(5):1377-1384. [9] 孫惠,褚玉明.Toader平均的二次與調(diào)和平均界[J].?dāng)?shù)學(xué)物理學(xué)報,2015,35A(1):36-42. SUN H,CHU Y M.Bounds for toader mean by quadratic and harmonic means[J].Acta Mathematica Scientia,2015,35A(1):36-42. (責(zé)任編輯:王蘭英) Optimalconvexcombinationboundsforthepowermean MENGXiangju,TIANShuhuan,XUHuifeng (Department of Mathematics and Computer Science,Baoding College,Baoding 071000,China) The optimal value of parameters are obtained to make the following double inequality holds for alla,b>0,2Mr(a,b)≥G(a,b)+C(a,b)andA(a,b)+C(a,b)≥2Mr(a,b)whereMr(a,b),G(a,b),C(a,b),A(a,b)denote the power mean,the geometric mean,the contraharmonic mean,the arithmetic mean of two different positive numbers a and b respectively. the power mean;the geometric mean;the contraharmonic mean;the arithmetic mean O178 A 1000-1565(2017)05-0454-03 10.3969/j.issn.1000-1565.2017.05.002 2016-11-25 河北省軟科學(xué)基金資助項(xiàng)目(154576249);河北省自然科學(xué)基金資助項(xiàng)目(A2015201149) 孟祥菊(1971—),女,河北盧龍人,保定學(xué)院副教授,主要從事幾何函數(shù)論的研究.E-mail:mengxiangju328@163.com