于長歲 張曉峰 徐西林
[摘要] microRNAs(miRNAs)屬于一個(gè)非蛋白編碼家族的小RNA,參與多種疾病的生理和病理過程,長度約為22個(gè)核苷酸,在人的組織或細(xì)胞中有特定表達(dá),其中一組miRNAs已被證實(shí)在各種骨科疾病的基因調(diào)控中發(fā)揮著基礎(chǔ)性作用,如骨腫瘤、骨關(guān)節(jié)炎、風(fēng)濕性關(guān)節(jié)炎等。對miRNA在股骨頭壞死中的研究,有助于更加清楚認(rèn)識該病的發(fā)病機(jī)制。股骨頭壞死是一種以股骨頭血液供應(yīng)破壞為主要病因,以骨骼和肌肉功能障礙為主要癥狀的骨科疾病。近年來研究顯示,microRNA對股骨頭壞死的微循環(huán)、血管的損傷與修復(fù)、其他疾病導(dǎo)致的局部微循環(huán)功能障礙以及骨細(xì)胞的調(diào)亡都有著重要的調(diào)控作用。本文對近年來microRNA與股骨頭壞死的相關(guān)研究成果進(jìn)行分析和總結(jié),并展望microRNA防治股骨頭壞死的研究前景。
[關(guān)鍵詞] 微小RNA;股骨頭壞死;綜述;研究進(jìn)展
[中圖分類號] R274 [文獻(xiàn)標(biāo)識碼] A [文章編號] 1673-7210(2017)09(c)-0048-04
[Abstract] microRNAs (miRNAs) belongs to a small RNA of non-protein coding families, and is involved in many physiological and pathological processes. They are about 22 nucleotides long and have specific expression in human tissues or cells. One group of miRNAs has been shown to play a fundamental role in gene regulation in various kinds of orthopedics diseases, such as bone tumors, osteoarthritis, and rheumatoid arthritis. The study of miRNA in osteonecrosis of the femoral head can help to understand the pathogenesis of the disease more clearly. The main cause of osteonecrosis of the femoral head is the destruction of femoral head blood supply, and the main symptoms are bone and muscle dysfunction. The recent studies show that microRNA plays an important role in the regulation of microcirculation of osteonecrosis of the femeral head, local microcirculation dysfunction caused by other diseases and bone cells apoptosis. In this paper, the related research results of microRNA and osteonecrosis of the femoral head in recent years are analyzed and summarized, and the prospect of microRNA in the prevention and treatment of osteonecrosis of the femoral head is also looked forward.
[Key words] microRNA; Femoral head necrosis; Review; Research progress
細(xì)胞中含有多種非編碼RNAs,其中microRNA(miRNA)被認(rèn)為最廣泛存在于人類的組織或細(xì)胞中,是多種細(xì)胞生物體基因調(diào)控分子中較為豐富的一類,并且能影響許多蛋白編碼基因的輸出。miRNA基因產(chǎn)生約22個(gè)核苷酸的微小轉(zhuǎn)錄本,并作為其他RNA的反義調(diào)節(jié)因子[1-2]。
股骨頭壞死是一種常見的骨科疾病,如果不及時(shí)治療近80%的患者股骨頭會完全塌陷,是骨科醫(yī)生所面臨的巨大挑戰(zhàn)[3]。股骨頭壞死的發(fā)病機(jī)制包括骨內(nèi)壓增高、脂肪代謝紊亂、微血管內(nèi)皮細(xì)胞的損害、成骨細(xì)胞和骨細(xì)胞的凋亡等[4]。研究表明,miRNAs通過靶基因可以調(diào)節(jié)機(jī)體的生物學(xué)及病理學(xué)變化,包括細(xì)胞增殖、分化與凋亡以及組織的發(fā)育等[5-6]。
1 miRNA在股骨頭的表達(dá)及功能
20世紀(jì)80年代Lee等[7]在線蟲的發(fā)育過程中第一次發(fā)現(xiàn)miRNA并命名為lin-4,隨著微生物科學(xué)的發(fā)展和基因測序技術(shù)的不斷提高,miRNA逐漸成為臨床醫(yī)學(xué)各學(xué)科基礎(chǔ)研究領(lǐng)域的重點(diǎn)。Lawrie等[8]首次發(fā)現(xiàn)miRNA是診斷股骨頭壞死的潛在非侵入性標(biāo)志物,奠定了miRNA在骨科疾病診斷中的臨床應(yīng)用。Wang等[9]測定激素性股骨頭壞死患者血清中miRNA,發(fā)現(xiàn)有27種miRNAs存在,并且這些miRNA直接參與細(xì)胞的分化、凋亡及增殖。miRNA的不同表達(dá)不僅可以作為其功能的基礎(chǔ),也可作為診斷各種疾病的標(biāo)志物[10]。
1.1 miRNA在股骨頭血清中的表達(dá)及功能
Wang等[9]將miRNA純化后進(jìn)行高通量測序,并與股骨頭壞死患者血清中miRNA差異表達(dá)對照發(fā)現(xiàn),股骨頭壞死患者血清中miR-3960明顯增加。從股骨頭壞死血清中篩選出207個(gè)miRNA,15個(gè)miRNA包括miR-423-5p、miR-3960、miR-195-5p、miR-15b-3p和miR-1304-3p表達(dá)明顯,12個(gè)miRNA包括miR-99a-5p、miR-532-5p、miR-140-5P、miR-10a-5p、miR-10b-5p、miR-181c-5p和miR-433表達(dá)也明顯,提示這些miRNA直接參與細(xì)胞凋亡、增殖與分化。而miR-195-5p和miR-15b-3p是miR-15/16家族,miR-15/16在細(xì)胞凋亡中具有重要的調(diào)節(jié)作用。Xia等[11]研究發(fā)現(xiàn),miR-15b和miR-16參與了Bcl-2靶向調(diào)控和細(xì)胞凋亡的過程。另有研究表明,miR-15b-3P和miR-195-3p在激素性股骨頭壞死患者血清中有上調(diào)趨勢,證明了miR-15和miR-195也可以促進(jìn)細(xì)胞凋亡[12]。endprint
1.2 miRNA在股骨頭軟骨的表達(dá)及功能
成熟的miRNA在股骨頭軟骨發(fā)育中起著重要作用。Zhou等[12]利用原位雜交法分析顯示miRNAs在軟骨組織中存在著特異性表達(dá)模式。為了識別miRNA在軟骨細(xì)胞中的特異性表達(dá),Ha等[13]利用miRNA芯片比較原代軟骨細(xì)胞與人類股骨頭軟骨的骨髓間充質(zhì)干細(xì)胞基因譜,發(fā)現(xiàn)在人類股骨頭軟骨細(xì)胞中miR-140具有促進(jìn)軟骨細(xì)胞分化作用,而miR-675是軟骨細(xì)胞的特異表達(dá)模式,miR-675表達(dá)多少取決于miR-140分化程度。由于股骨頭關(guān)節(jié)軟骨中的miR-140被白細(xì)胞介素-1和細(xì)胞因子所抑制,因此股骨頭軟骨中miR-140表達(dá)較少。研究表明,miR-140的減少與股骨頭壞死的發(fā)病機(jī)制有關(guān)[11]。miR-140的關(guān)鍵作用在股骨頭軟骨,而mRNAs可以調(diào)控Adamts-5和miRNAs等多個(gè)靶基因。最新研究表明,HDAC4和IGFBP5可以下調(diào)miR-140,而miR-140可以抑制Adamts-5表達(dá)通路,從而調(diào)節(jié)軟骨基質(zhì)合成與降解的整體平衡[12]。實(shí)際上從基因表達(dá)分析中可以發(fā)現(xiàn),miR-140通過調(diào)節(jié)Adamts-5表達(dá),在維持股骨頭軟骨的穩(wěn)定性和完整性方面起著關(guān)鍵作用。
2 miRNA與股骨頭壞死的防治
股骨頭無菌性壞死的病理過程是指股骨頭細(xì)胞成分包括骨、脂肪和造血細(xì)胞的缺血性變化,而致細(xì)胞壞死和凋亡[14],該病具有漸進(jìn)性和破壞性等特點(diǎn),如果得不到及時(shí)的治療,最終引起股骨頭塌陷,大約70%的患者需要髖關(guān)節(jié)置換術(shù)[15]。研究證實(shí),有一組miRNAs在股骨頭壞死各種基因調(diào)控中發(fā)揮基礎(chǔ)性作用。據(jù)估計(jì),miRNAs能調(diào)節(jié)5300多個(gè)人類基因,約占人類基因集的30%[16]。
2.1 miRNA與成骨細(xì)胞
Cx43是骨細(xì)胞的主要連接蛋白,也是miR-206一個(gè)分子靶點(diǎn),miR-206和Cx43被證實(shí)是成骨細(xì)胞分化、成熟以及骨細(xì)胞代謝的關(guān)鍵因素。Hudson等[17]認(rèn)為,miR-206是一個(gè)特定的肌肉miRNA,在C2C12細(xì)胞成骨分化過程中有降低趨勢,而Cx43在成骨細(xì)胞培養(yǎng)中,可以修復(fù)成骨細(xì)胞功能和基因表達(dá)。Liu等[18]在股骨頭壞死的動(dòng)物模型中發(fā)現(xiàn),當(dāng)miR-206表達(dá)增加時(shí),Cx4的蛋白表達(dá)在動(dòng)物模型中減少。這些結(jié)果表明,Cx43/miR-206與激素性股骨頭壞死的發(fā)病機(jī)制有關(guān)。在成骨細(xì)胞培養(yǎng)物中,一定濃度的堿性磷酸酶、骨橋蛋白和骨鈣素可抑制成骨細(xì)胞的分化和標(biāo)記。Runx2在成骨細(xì)胞形成和分化的早期起著重要作用,當(dāng)上調(diào)Runx2表達(dá)時(shí),ALP的活性也隨之增強(qiáng),并促進(jìn)mRNA對BSP和OC的表達(dá)。成骨細(xì)胞分化的結(jié)果是形成骨骼并獲得骨量的關(guān)鍵因素,對成骨細(xì)胞分化標(biāo)志物的表達(dá)檢測可以發(fā)現(xiàn),Runx2的增多可以有效激活成骨細(xì)胞的數(shù)量。早期研究表明,Wnt/β-catenin信號通路參與調(diào)控成骨細(xì)胞的增殖、存活、分化與凋亡,該信號通路的激活可促進(jìn)成骨細(xì)胞生成并抑制破骨細(xì)胞的分化。此外,Cx43是Wnt信號通路的功能靶點(diǎn),而Wnt信號通路的激活可以增強(qiáng)Cx43蛋白的表達(dá)[19]。
2.2 miRNA與骨髓間充質(zhì)干細(xì)胞
骨髓間充質(zhì)干細(xì)胞在局部微環(huán)境下可定向分化為成骨細(xì)胞、脂肪細(xì)胞、軟骨細(xì)胞和肌細(xì)胞等,并分泌多種成骨活性因子,進(jìn)而促進(jìn)壞死區(qū)新生血管生成和新骨形成,促進(jìn)壞死股骨頭的修復(fù)過程[20]。一項(xiàng)研究顯示,pre-miR-2861突變可導(dǎo)致原發(fā)性股骨頭壞死,由于miR-2861通過抑制HDAC5,增強(qiáng)成骨轉(zhuǎn)錄因子的降解,從而促進(jìn)Runx2對成骨細(xì)胞的分化[21]。最近研究發(fā)現(xiàn),miR-21、miR-23a、miR-24和miR-25在股骨頭壞死患者的血清和骨組織中表達(dá)呈上升趨勢,提示其可以促進(jìn)壞死區(qū)新生骨的形成[22]。miR-140存在于骨髓間充質(zhì)干細(xì)胞的關(guān)節(jié)軟骨組織中,一直被認(rèn)為是一個(gè)軟骨特異性miRNA,并參與早期骨骼的發(fā)育,其作用靶點(diǎn)是JAG1和Tmem119[23-24]。JAG1是Notch受體中的一個(gè)配體,該配體可以通過激活Runx2和ALP從而誘導(dǎo)骨髓間充質(zhì)干細(xì)胞分化為成骨細(xì)胞;Tmem119能誘導(dǎo)SMAD1/5和Runx2的轉(zhuǎn)錄活性,進(jìn)一步促進(jìn)成骨分化[25-26]。
2.3 miRNA與內(nèi)皮祖細(xì)胞
內(nèi)皮祖細(xì)胞是一類可分化為成熟血管內(nèi)皮細(xì)胞的梭形干細(xì)胞。內(nèi)皮祖細(xì)胞可在局部定向分化為血管內(nèi)皮細(xì)胞,并促進(jìn)新生血管的形成;另外,該細(xì)胞可通過血管生成1-Tie2信號通路促進(jìn)骨髓間充質(zhì)干細(xì)胞的生長,進(jìn)一步促進(jìn)股骨頭的修復(fù)[27]。Huber等[28]發(fā)現(xiàn)內(nèi)皮祖細(xì)胞亞型具有明顯的增殖潛能和自我更新能力,并能在體內(nèi)形成新的血管。miRNAs被認(rèn)為是新生血管形成的關(guān)鍵調(diào)節(jié)因子,可以對內(nèi)皮細(xì)胞的分化功能有正向或負(fù)向調(diào)節(jié)作用。Morrison等[29]發(fā)現(xiàn)miR-150在股骨頭壞死患者中上調(diào)內(nèi)皮祖細(xì)胞,其作用靶點(diǎn)為Spred-1。miR-150是一種單核細(xì)胞富集miRNA,在細(xì)胞增殖、遷移、分化和胚胎發(fā)育中的起著重要作用。研究發(fā)現(xiàn),miR-150適用于表達(dá)內(nèi)皮祖細(xì)胞、人類臍靜脈內(nèi)皮細(xì)胞和冠狀動(dòng)脈內(nèi)皮細(xì)胞的miRNA表達(dá)分析譜[30]。
3 前景展望
近年來,miRNA逐漸成為骨科學(xué)的研究重點(diǎn)。隨著對miRNA研究的深入,學(xué)者們認(rèn)為,由于股骨頭組織結(jié)構(gòu)的特殊性,miRNA在骨科的研究有著光明的前景。由于不同病理因素能夠?qū)е虏煌琺iRNA的差異性表達(dá),miRNA檢測有助于確定不同股骨頭壞死的發(fā)病原因,使治療更具有針對性,提高股骨頭壞死患者的治愈率。筆者認(rèn)為未來基于的防治股骨頭壞死策略主要可分為兩個(gè)方向:①通過miRNA或其類似藥物沉默高表達(dá)的疾病相關(guān)基因;②利用抗miRNA分子沉默引起疾病的高表達(dá)miRNA??傊琺iRNA不但能夠指導(dǎo)醫(yī)生的臨床治療,也能夠幫助設(shè)計(jì)高效的miRNA靶向藥物[31]。endprint
[參考文獻(xiàn)]
[1] Boucherat O,Potus F,Bonnet S. microRNA and pulmonary hypertension [J]. Adv Exp Med Biol,2015,888:237-252.
[2] Drusco A,Nuovo GJ ,Zanesi N,et al. MicroRNA profiles discriminate among colon cancer metastasis [J]. PLoS One,2014,9(6):e96670.
[3] Mont MA,Jones LC,Hungerford DS. Nontraumatic osteon?鄄ecrosis of the femoral head:ten years later [J]. Bone Joint Surg,2006,88(5):1117-1132.
[4] Kerachian MA,Séguin C,Harvey EJ. Glucocorticoids in osteonecrosis of the femoral head:a new understanding of the mechanisms of action [J]. Steroid Biochem Mol Biol,2009,114(4):121-128.
[5] Roy S,Benz F,Luedde T,et al. The role of miRNAs in the regulation of infammatory processes during hepatofbrogenesis [J]. Hepatobiliary Surg Nutr,2015,4(1):24-33.
[6] Chung AC,Lan HY. microRNAs in renal fbrosis [J]. Front Physiol,2015,6(2):50.
[7] Lee RC,F(xiàn)einbaum RL,Ambros V. The C. elegans Heterochronic Gene lin-4 Encodes Small RNAs with Antisense Complementarity to & II-14 [J].Cell,1993,75(5):843-854.
[8] Lawrie CH,Gal S,Dunlop HM,et al. Pushkaran B. Detection of elevated levels of tumor-associated microRNAs in serum of patients with diffuse large B cell lymphoma [J]. Br J Haematol,2008,141(5):672-675.
[9] Wang X,Qian W,Wu Z,et al. Preliminary screening of differentially expressed circulating microRNAs in patients with steroid-induced osteonecrosis of the femoral head [J]. Mol Med Rep,2014,10(6):3118-3124.
[10] Sethi S,Ali S,Sethi S,et al. MicroRNAs in personalized cancer therapy [J]. Clin Genet,2014,86(1):68-73.
[11] Xia L,Zhang D,Du R,et al. miR-15b and miR?16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells [J]. Int J Cancer,2008,123(2):372-379.
[12] Zhou Q,Chen F,F(xiàn)ei Z,et al. Genetic variants of lncRNA HOTAIR contribute to the risk of osteosarcoma [J]. Oncotarget,2016,7(15):19928-19934.
[13] Ha M,Kim VN. Regulation of microRNA biogenesis [J]. Nat Rev Mol Cell Biol,2014,15(8):509-524.
[14] Van der Jagt D,Mokete L,Pietrzak J,et al. Osteonecrosis of the femoral head:evaluation and treatment [J]. J Am Acad Orthop Surg,2015,23(2):69-70.
[15] Johnson AJ,Mont MA,Tsao AK,et al. Treatment of femoral head osteonecrosis in the United States:16-year analysis of the Nationwide Inpatient Sample [J]. Clin Orthop Relat Res,2014,472(2):617-623.
[16] Kafchinski LA,Jones KB. MicroRNAs in osteosarcomagenesis [J]. Adv Exp Med Biol,2014,804:119-127.endprint
[17] Hudson MB,Woodworth-Hobbs ME,Zheng B,et al. miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export [J]. Am J Physiol Cell Physiol,2014,306(6):C551-558.
[18] Liu G,Luo G,Bo Z,et al. Impaired osteogenic differentiation associated with connexin43/microRNA-206 in steroid-induced avascular necrosis of the femoral head [J]. Exp Mol Pathol,2016,101(1):89-99.
[19] Arioka M,Takahashi-Yanaga F,Sasaki M,et al. Acceleration of bone regeneration by local application of lithium:Wnt signal-mediated osteoblastogenesis and Wnt signal-independent suppression of osteoclastogenesis [J]. Biochem Pharmacol,2014,90(4):397–405.
[20] Gulyaeva LF,Kushlinskiy NE. Regulatory mechanisms of microRNA expression [J]. J Translat Med,2016,14(1):143.
[21] Papadimitriou N,Thorfve A,Brantsing C,et al. Cell viability and chondrogenic differentiation capability of human mesenchymal stem cells after iron labeling with iron sucrose [J]. Stem Cells Dev,2014,23(21):2568-2580.
[22] Seeliger C,Karpinski K,Haug AT,et al. Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures [J]. J Bone Miner Res,2014, 29(8):1718-1728.
[23] Hwang S,Park SK,Lee HY,et al. miR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells [J]. FEBS Lett,2014,588(17):2957-2963.
[24] Karlsen TA,Jakobsen RB,Mikkelsen TS,et al. microRNA-140 targets RALA and regulates chondrogenic differentiation of human mesenchymal stem cells by translational enhancement of SOX9 and ACAN [J]. Stem Cells Dev,2014,23(3):290-304.
[25] Hill CR,Yuasa M,Schoenecker J,et al. Jagged1 is essential for osteoblast development during maxillary ossification [J]. Bone,2014,62(5):10-21.
[26] Siculella L,Tocci R,Rochira A,et al. Lipid accumulation stimulates the cap-independent translation of SREBP-1a mRNA by promoting hnRNP A1 binding to its 5-UTR in a cellular model of hepatic steatosis [J]. Biochim Biophys Acta,2016,1861(5):471-481.
[27] Lin Y,Weisdorf DJ,Solovey A,et al. Origins of circulating endothelial cells and endothelial outgrowth from blood [J]. J Clin Invest,2000,105(1):71-77.
[28] Huber BC,Grabmaier U,Brunner S. Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration [J]. World J Stem Cells,2014,6(5):637-643.
[29] Morrison SJ,Scadden DT. The bone marrow niche for haematopoietic stem cells [J]. Nature,2014,505(7483):327-334.
[30] Rose JA,Erzurum S,Asosingh K. Biology and flow cytometry of proangiogenic hematopoietic progenitors cells [J]. Cytometry A,2015,87(1):5-19.
[31] Martin EC,Qureshi AT,Dasa V,et al. MicroRNA regulation of stem cell differentiation and diseases of the bone and adipose tissue:Perspectives on miRNA biogenesis and cellular transcriptome [J]. Biochimie,2016,124:98-111.
(收稿日期:2017-06-20 本文編輯:程 銘)endprint