• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      胰高血糖素樣肽介導運動抗抑郁作用的潛在機制

      2017-10-25 13:24劉佳彤劉微娜漆正堂季瀏
      首都體育學院學報 2017年5期
      關(guān)鍵詞:抑郁癥炎癥運動

      劉佳彤 劉微娜 漆正堂 季瀏

      摘 要:胰高血糖素樣肽-1(GLP-1)是機體在響應(yīng)營養(yǎng)攝入時而釋放的一類腸促胰島素,主要由腸道末端L細胞分泌,是目前治療糖尿病的重要靶點。近年來,研究發(fā)現(xiàn):GLP-1受體不僅在腸、胰腺等外周組織中表達,而且在海馬、下丘腦等腦組織中也大量表達,這暗示其可能在糖尿病的并發(fā)疾病——抑郁癥中發(fā)揮作用;但GLP-1易被二肽基肽酶Ⅳ降解失活,難以發(fā)揮作用,而長期運動可增加GLP-1的表達和分泌?;诖?,旨在探究運動介導GLP-1調(diào)控抑郁行為的可能機制,進而為運動的抗抑郁機制研究提供新的視角。通過對相關(guān)領(lǐng)域文獻資料的梳理分析發(fā)現(xiàn),GLP-1介導運動的抗抑郁作用涉及HPA軸激活、中樞單胺類神經(jīng)遞質(zhì)、中樞營養(yǎng)因子及中樞炎癥因子的水平4個維度。由此推論,GLP-1可能是運動發(fā)揮抗抑郁作用的重要介質(zhì),從而為抑郁癥的能量代謝機制和治療策略提供了新的靶點和闡釋路徑。

      關(guān)鍵詞:抑郁癥;胰高血糖素樣肽;運動;HPA軸;單胺類神經(jīng)遞質(zhì);神經(jīng)營養(yǎng)因子;炎癥

      中圖分類號:G 804.2 文章編號:1009-783X(2017)05-0474-07 文獻標識碼:A

      Abstract: Glucagon-like peptide -1 (GLP-1), mainly secreted by L cells, is a kind of incretin hormone released by the body in response to nutritional intake and an important target for the treatment of diabetes. Recent studies have found that GLP-1 receptor is not only expressed in intestinal and pancreatic, but also in the hippocampus and hypothalamus, suggesting its role in depression accompany with diabetes. However, GLP-1 can be degradated by dipeptidyl peptidase Ⅳ, thus being difficult to work, while long term exercise can increase the expression and secretion of GLP-1. Therefore, the current study aimed to explore potential mechanisms of GLP-mediated antidepressant effects of exercise, and to provide a new perspective for exercise effects on depression. The available documents demonstrate that the activation of HPA axis, the expression of central monoamine neurotransmitters, neurotrophic factor and central inflammatory cytokines are involved in the antidepressant effects. To sum up, GLP-1 may be a mediator of exercise effects on depression, which suggests a novel target and pathway of energy metabolism and treatment strategy for depression.

      Keywords: depression; glucagon-like peptide; exercises; HPA axis; monoamine neurotransmitters; neurotrophic factors; inflammation

      研究已經(jīng)充分證實,抑郁癥患者存在HPA軸功能失調(diào)、單胺類功能異常、腦源性神經(jīng)營養(yǎng)因子減少及中樞炎癥反應(yīng)增加。臨床上,糖尿病患者罹患抑郁癥現(xiàn)象正受到越來越多研究者的關(guān)注,反之亦然[1]。胰高血糖素樣肽(glucagon-like peptide),包括胰高血糖素樣肽-1(GLP-1)和2(GLP-2),是目前治療糖尿病的重要靶點。最新研究表明,GLP-1、GLP-2或其受體激動劑、水解酶抑制劑具有抗抑郁、抗焦慮作用[2-3],但這種功能分子的作用機制目前尚未完全闡明。GLP-1是腸L細胞分泌的腸促胰島素,其功能由GLP-1受體介導,可調(diào)節(jié)胰島素信號通路,從而保護胰島β細胞,促進胰島素的分泌;GLP-1及其受體激動劑對2型糖尿病[4]、肥胖[5]、心血管疾病[6]、脂肪肝[7]有較好的療效。而在中樞神經(jīng)系統(tǒng)中,GLP-1也可通過血腦屏障與其腦內(nèi)受體結(jié)合,參與神經(jīng)系統(tǒng)的調(diào)節(jié),從而發(fā)揮神經(jīng)保護作用,對帕金森和阿爾茲海默癥等疾病[8-9]有顯著療效。GLP及其受體激動劑的抗精神病作用逐步顯現(xiàn),其分子機制存在多種途徑?;诖?,本文旨在探究運動介導GLP-1調(diào)控抑郁行為的可能機制,進而為運動的抗抑郁機制提供新的視角。通過對相關(guān)領(lǐng)域文獻資料的梳理分析發(fā)現(xiàn),GLP-1介導運動的抗抑郁作用涉及HPA軸激活、中樞單胺類神經(jīng)遞質(zhì)、中樞營養(yǎng)因子及中樞炎癥因子的水平4個維度。本文將對此類研究進行綜述,并基于HPA軸功能、單胺類神經(jīng)遞質(zhì)、中樞神經(jīng)營養(yǎng)因子、中樞炎癥等4個方面闡釋GLP在抑郁癥中的作用機制,及其介導運動抗抑郁作用的潛在途徑,如圖1所示。

      1 胰高血糖素樣肽及其受體endprint

      GLP-1是腸L細胞以營養(yǎng)依賴性方式分泌的一種具有葡萄糖依賴性促胰島素分泌功能的腸促胰島素,是胰高血糖素原基因的編碼產(chǎn)物之一;該基因在胰腺α細胞、腸L細胞及下丘腦、腦干等處的神經(jīng)元中都有表達,具有促進胰島素分泌、保護胰島β細胞、抑制胰高血糖素分泌、抑制胃排空、降低食欲等藥理作用,臨床可用于2型糖尿病和肥胖癥的治療。GLP-2是一個有33個氨基酸的肽,在腸道和中樞神經(jīng)中均有表達,在腸內(nèi)主要起保護腸道的作用。GLP-1受體(glucagon-like peptide-1 receptor,GLP-1R)是由463個氨基酸組成的7次跨膜螺旋G蛋白偶聯(lián)受體,在胰島、心臟、腸、迷走神經(jīng)、下丘腦、垂體、海馬及大腦皮層表達[10],主要功能是促進胰島素的分泌,刺激β細胞的增生。GLP-2受體不僅在不同胃腸細胞[11-12],而且在中樞神經(jīng)系統(tǒng),包括下丘腦背內(nèi)側(cè)核的特定區(qū)域、杏仁核、丘腦、小腦、海馬和大腦皮層中也有表達[13-14]。人體內(nèi)具有生物活性的GLP主要是GLP-1(7-36)酰胺、GLP-1(7-37)和GLP-2(1-33),天然GLP-1和GLP-2均被二肽基肽酶Ⅳ迅速水解失活(半衰期小于5 min),不具有臨床使用價值。GLP-1受體激動劑(GLP-1RA)是GLP-1類似物,不易被二肽基肽酶Ⅳ降解,可以額外增加外源性GLP-1濃度,具有與GLP-1 相似的生物學活性。研究表明GLP-1RA可通過降低體脂、控制血糖治療糖尿病[15],也用于治療兒童性肥胖[5],通過延緩胃排空與抑制食欲等作用對肥胖癥患者達到減重的效果[16]。GLP-1RA對于心血管疾病、神經(jīng)退行性疾病也有一定的作用[17-19]。但是,近年來一系列研究顯示,GLP-1、GLP-2或GLP-1RA在不同的抑郁動物模型中表現(xiàn)出顯著的抗抑郁作用[3,20-23]。

      2 GLP及其受體激動劑對焦慮、抑郁行為的影響

      抑郁癥常伴有焦慮癥狀,焦慮是抑郁癥患者表現(xiàn)的一種情緒反應(yīng)。研究表明,GLP-1可作為一種神經(jīng)遞質(zhì)在神經(jīng)元中表達。GLP-1與情緒有關(guān),可能是通過多巴胺、5-羥色胺等產(chǎn)生作用。GLP-1R在杏仁核、中縫背核和海馬等區(qū)域中被發(fā)現(xiàn),主要是調(diào)節(jié)情緒和情感,與能量調(diào)節(jié)聯(lián)系不大[22]。動物研究表明,GLP-1對焦慮行為的作用相互矛盾。一些臨床前的研究發(fā)現(xiàn),中樞直接注射GLP-1能增加嚙齒類動物的焦慮行為[24-25];另一些研究則表明,長期外周注射GLP-1類似物沒有改變其在FST(強迫游泳實驗)中的焦慮行為[23,26]。但Sharma等的大量研究表明,急性外周注射GLP-1類似物降低了大鼠在EPM(高架十字迷宮實驗)中的焦慮行為[2-3,27]。Anderberg等的研究也發(fā)現(xiàn),急性注射GLP-1類似物增加了大鼠在EPM、黑白箱實驗中的焦慮行為[22]。Komsuoglu等的研究也表明,長期注射GLP-1對糖尿病大鼠產(chǎn)生抗焦慮作用[28]。GLP-1對焦慮行為產(chǎn)生的影響不同可能是由于注射途徑(中樞和外周)、給藥方式(慢性、急性),及鼠種和動物所處生理狀態(tài)不同所產(chǎn)生的結(jié)果。對于抑郁行為,目前的研究趨于一致,即GLP-1類似物能夠產(chǎn)生明顯的抗抑郁效果。Sharma等的研究表明,長期使用利拉魯肽治療能夠逆轉(zhuǎn)雌性精神病大鼠的抑郁行為,大鼠在FST中的不動時間明顯縮短,游動時間增長[3]。Komsuoglu等的研究表明,艾塞那肽(EX4)對T2DM小鼠有抗抑郁作用,同樣能夠降低T2DM大鼠在FST中的不動時間[28]。Anderberg等[22]和Isacson等[29]的研究都表明,長期注射EX4能夠降低大鼠在FST中的不動時間,緩解了抑郁樣行為。一些研究表明,熱量限制可以降低焦慮和抑郁,EX4導致厭食可能是其發(fā)揮抗抑郁作用的途徑之一[30]。近幾年對GLP-2的研究表明,GLP-2同樣產(chǎn)生了抗焦慮和抗抑郁的效果。Takashi 等發(fā)現(xiàn),GLP-2明顯增加了促腎上腺皮質(zhì)激素(ATCH)處理的小鼠在開場實驗中處于中心區(qū)域的時間和在EPM實驗中進臂的次數(shù)[31],從而降低小鼠的焦慮行為。短期注射GLP-2能夠降低小鼠在FST和懸尾實驗中的不動時間[20],進一步研究表明,GLP-2能夠降低由FST誘導的血漿皮質(zhì)酮的增加[21]。以上研究表明,GLP-1及其受體激動劑及GLP-2在改善抑郁行為中發(fā)揮積極作用。

      3 GLP-1及其受體激動劑對HPA軸功能的調(diào)節(jié)機制

      促腎上腺皮質(zhì)激素釋放因子(CRF)和血管加壓素(AVP)是下丘腦-垂體-腎上腺軸(HPA軸)的調(diào)節(jié)肽,促腎上腺皮質(zhì)激素釋放激素(CRH)、ATCH和糖皮質(zhì)激素(GC,主要指皮質(zhì)醇)是HPA軸的重要的基礎(chǔ)調(diào)節(jié)激素。GLP-1參與應(yīng)激反應(yīng)的HPA軸的調(diào)節(jié),可直接作用于CRF和AVP,進而通過調(diào)節(jié)基礎(chǔ)激素發(fā)揮作用[32]。研究表明,中樞注射GLP-1能激活HPA軸,進而增加ACTH[25,33]、AVP[34]和血漿皮質(zhì)酮[35]的水平。CRF是GLP-1影響HPA軸的重要介質(zhì),外周注射非特異性CRF受體拮抗劑Astressin能減弱GLP-1誘導ACTH和血漿皮質(zhì)酮升高[25]。此外,EX4能有效激活皮質(zhì)酮和ACTH,并且此前注射過Astressin,這種效果就會被減弱,EX4也可以增加GC的水平[36],表明GLP-1通過增加CRH活性來激活HPA軸反應(yīng)。有證據(jù)表明,GLP-1通過交互作用激活HPA軸。在短期內(nèi),GLP-1R激動劑相當有效地激活HPA軸,引起下丘腦CRF升高,促進垂體ACTH的分泌。GLP-1R激動劑有助于恢復糖尿病患者的代謝水平,不只是因為減少食物的攝取,也源于脂肪組織保持相對高的脂解活性,這些作用一部分可能是通過中樞CRF介導的[37]。比較直接的證據(jù)是,GLP-1R基因沉默能降低HPA軸對急慢性應(yīng)激的反應(yīng),并阻止慢性應(yīng)激導致的體重流失。這表明,慢性應(yīng)激誘導抑郁行為很可能是GLP-1介導的[38],但是神經(jīng)內(nèi)分泌研究已證實,HPA軸過度激活與抑郁行為有關(guān)。換言之,HPA軸過度激活是抑郁癥的重要表現(xiàn)之一[39]。難以解釋的是,GLP-1對HPA軸的激活應(yīng)該是不利于抗抑郁作用的。另有研究表明,中樞GLP-1通過CRH這一關(guān)鍵介質(zhì)誘導HPA軸反應(yīng),而在這一過程中可能存在GLP-1誘導的HPA軸的下調(diào)機制[40]。HPA軸的正常活動還有賴于負反饋調(diào)節(jié)抑制,內(nèi)源性GC與GC受體(GR)結(jié)合,對下丘腦的CRH和垂體的ACTH的分泌產(chǎn)生負反饋抑制作用;因此,GLP-1可能通過增加GC水平促進GC的負反饋抑制作用,從而降低抑郁行為。另外,GLP-1可能通過作用于CRF來調(diào)節(jié)和糾正HPA軸功能紊亂,進而發(fā)揮抗抑郁作用。endprint

      4 GLP-1及其受體激動劑對中樞單胺類神經(jīng)遞質(zhì)的調(diào)節(jié)機制

      單胺類神經(jīng)遞質(zhì)系統(tǒng)功能紊亂是抑郁癥發(fā)病最重要的假說,5-羥色胺(5-HT)、多巴胺(DA)等神經(jīng)遞質(zhì)釋放異常與抑郁癥的發(fā)病率密切相關(guān)。5-HTR(5-HT受體)在抑郁癥的發(fā)病機制和抗抑郁劑的藥理機制中發(fā)揮著極為重要的作用,急性中樞注射GLP-1RA能增加杏仁核5-HT的轉(zhuǎn)運和5-HT受體基因的表達[22]。而在5-HT系統(tǒng)中的5-HT1AR(受體亞型,在海馬中密度最高)在抑郁癥發(fā)病機制及抗抑郁治療中發(fā)揮著重要的作用。5-HT1AR被激活后,降低腺苷酸環(huán)化酶(AC)活性、cAMP(環(huán)磷酸腺苷)表達水平,進而影響PKA(蛋白激酶A)的活性,使核轉(zhuǎn)錄因子CREB發(fā)生磷酸化,而活化的CREB與靶基因調(diào)節(jié)區(qū)cAMP反應(yīng)元件結(jié)合,進而調(diào)節(jié)下游信號通路神經(jīng)營養(yǎng)因子基因的表達。5-HT1AR介導的信號通路異常是抑郁發(fā)生的重要機理,GLP-1可能通過調(diào)節(jié) 5-HT1AR介導的cAMP-PKA-CREB信號通路發(fā)揮抗抑郁作用。多巴胺也與抑郁密切相關(guān)[41]。中腦多巴胺神經(jīng)元的抑制或激活能立即誘導或減輕慢性應(yīng)激有關(guān)的多種抑郁行為和癥狀。采用光遺傳學技術(shù)募集多巴胺神經(jīng)元,顯著改變了與抑郁有關(guān)的神經(jīng)元基因表達[42],而GLP-1R激動劑-EX4,可以減弱可卡因誘導的小鼠紋狀體多巴胺釋放[43]。此外,EX4還有抗精神病樣的作用[44],能降低由安非他命導致中樞DA水平增加所誘導的神經(jīng)活動[45]。這表明EX4可能降低中樞多巴胺的水平,其抗抑郁作用可能與降低多巴胺轉(zhuǎn)運有關(guān)。

      5 GLP-1及其受體激動劑對中樞神經(jīng)營養(yǎng)因子的調(diào)節(jié)機制

      目前,抑郁癥的5-HT假說仍有爭議,因為抑郁癥患者有近1/3不能從SSRI治療中得到緩解[46],因此,有學者提出,神經(jīng)退行性變化也是抑郁癥的發(fā)病機制之一,抗抑郁治療應(yīng)從增加神經(jīng)發(fā)生著手[47-48]。GLP-1是一種具有神經(jīng)保護特性的生長因子,并且有證據(jù)表明GLP-1R激動劑EX4有神經(jīng)營養(yǎng)和神經(jīng)保護的作用[49-50];因此,治療抑郁可能從GLP-1R減少神經(jīng)退行性病變和增加神經(jīng)發(fā)生出發(fā)。GLP-1受體激動劑和葡萄糖依賴性促胰島素激素(GIP)受體激動劑可通過血腦屏障[51-52],減輕神經(jīng)元氧化應(yīng)激,抑制細胞凋亡,促進神經(jīng)細胞增殖和神經(jīng)細胞長出新的突起[53-55],BDNF(腦源性神經(jīng)營養(yǎng)因子)是目前抗抑郁研究中較為關(guān)鍵的一個神經(jīng)營養(yǎng)因子,GLP-1和GLP-1R雙重激動劑DA-JC能增加黑質(zhì)中的BDNF表達,表明了GLP-1對神經(jīng)元和突觸的保護作用[56]。而神經(jīng)生長因子的活化,能激活A(yù)KT并參與神經(jīng)保護作用。AKT是激活細胞修復通路的關(guān)鍵激酶,能促進細胞增殖和能量利用。GLP-1和BDNF等生長因子激活A(yù)KT[57-58],能通過ERK1/2通路來發(fā)揮DA-JC的神經(jīng)保護作用[55]。DA-JC還能增加生長因子信號傳導分子Bcl-2的表達,減少凋亡信號分子Bax蛋白表達[56]。這些研究表明,GLP-1受體的激活調(diào)節(jié)這些關(guān)鍵信號分子的表達,可能通過BDNF/AKT/Bcl-2/BAX機制減少細胞凋亡,促進細胞增殖,進而增加神經(jīng)發(fā)生產(chǎn)生抗抑郁作用。

      6 GLP-1及其受體激動劑對中樞炎癥的調(diào)節(jié)機制

      許多研究表明抑郁癥與中樞慢性炎癥相關(guān),抗炎是抑郁癥治療的一種重要策略;基于GLP-1的抗炎作用,GLP-1及其受體激動劑廣泛用于慢性炎癥有關(guān)的疾病,例如1/2型糖尿病、動脈粥樣硬化、神經(jīng)退行性疾病等[59-61]。神經(jīng)膠質(zhì)細胞對于中樞神經(jīng)系統(tǒng)的炎癥發(fā)揮關(guān)鍵作用,并且GLP-1R在星形膠質(zhì)細胞和小膠質(zhì)細胞中被觀察到。GLP-1對表達其受體的細胞具有普遍的抗凋亡特性和保護作用,其機制可能與GLP-1受體介導的凋亡信號通路的失活及保護信號通路的激活有關(guān)[62]。促炎細胞因子,如白細胞介素-1β(IL-1β)、γ-干擾素(IFN-γ)和腫瘤壞死因子-ɑ(TNF-ɑ)是星形膠質(zhì)細胞炎癥的主要激活物。GLP-1類似物利拉魯肽能抑制TNF-ɑ、IL-6、IL-1β的表達[63],并通過抑制小膠質(zhì)細胞的活性,明顯降低阿爾茲海默癥小鼠的炎癥反應(yīng)[64]。星形膠質(zhì)細胞中的NF-κB(核轉(zhuǎn)錄因子)是中樞神經(jīng)系統(tǒng)中重要的炎性調(diào)節(jié)因子,TNF-ɑ、IL等在內(nèi)的多種信號能夠活化NF-κB途徑,抑制此信號轉(zhuǎn)導通路對組織再生有很好的效果。GLP-1R激動劑EX4能抑制炎癥基因如NF-kB的表達[65]。在星形膠質(zhì)細胞中,GLP-1能預(yù)防脂多糖(LPS)誘導IL-1β的表達,從而減輕炎癥反應(yīng)[66]。二肽基肽酶Ⅳ抑制劑維格列汀能減少GLP-1、2的水解,顯著降低血漿TNF-ɑ濃度[67]。這些結(jié)果表明,GLP-1類似物、GLP-1R激動劑或者維持GLP-1水平均能抑制炎性細胞因子。上述研究發(fā)現(xiàn)提示,GLP-1的抗抑郁作用很可能與抗炎作用有關(guān),但更多的直接證據(jù)尚有待于實驗研究進一步證實。

      7 GLP-1與運動的抗抑郁作用

      大量研究表明,運動是治療抑郁癥的一種有效手段,規(guī)律的體育運動可以有效降低抑郁癥狀的發(fā)生[68];Conn等的薈萃分析發(fā)現(xiàn),無論是抑郁還是非抑郁成年人,運動對其抑郁行為都有一定的緩解作用[69]。在動物研究中,也發(fā)現(xiàn)運動能夠改善動物的抑郁行為。本課題組前期研究發(fā)現(xiàn),游泳運動能夠明顯改善抑郁癥模型大鼠的抑郁行為[70],另有研究表明,自主跑輪運動可以改善抑郁模型大鼠的抑郁樣行為[71]?;谇拔姆治?,運動的抗抑郁作用可能牽涉GLP-1對神經(jīng)系統(tǒng)的多種作用途徑。一方面,大量研究表明運動增加GLP-1表達和分泌。健康人運動后,血清GLP-1 的濃度明顯增加[72-74],進食30 min后進行運動使GLP-1濃度明顯增加[75];長期的廣場舞運動可增加機體空腹基線水平內(nèi)源性GLP-1的分泌量[76];長期的有氧運動、補充谷氨酰胺能夠抑制炎癥因子NF-κB的基因表達,升高GLP-1[77]。另一方面,運動對HPA軸活性、單胺類神經(jīng)遞質(zhì)釋放、神經(jīng)營養(yǎng)因子表達以及中樞炎癥等都有積極調(diào)節(jié)作用。Kim等研究發(fā)現(xiàn),跑臺運動可以降低大鼠海馬CRF mRNA表達和血清ACTH水平下降,改善HPA軸的異?;顒覽78];Zheng等研究發(fā)現(xiàn),運動能夠逆轉(zhuǎn)慢性應(yīng)激所導致的大鼠皮質(zhì)酮升高和GR的降低,從而使HPA軸對應(yīng)激產(chǎn)生適應(yīng)性反應(yīng)[79]。運動可通過反復激活HPA軸,產(chǎn)生HPA軸的適應(yīng)性,從而改善抑郁行為,而GLP-1是HPA軸應(yīng)激反應(yīng)的關(guān)鍵性介質(zhì),運動可能通過GLP-1R/CRH/GC這一正向通路和負反饋調(diào)節(jié)機制發(fā)揮作用。研究發(fā)現(xiàn),小鼠在懸尾實驗中的抑郁行為不是由于運動障礙和肌肉松弛,而是由于5-HT轉(zhuǎn)運活性變化和5-HT釋放減少[80]。抑郁行為伴隨著5-HT和DA釋放減少,運動能夠增加大腦海馬5-HT[81]、紋狀體DA[82]等神經(jīng)遞質(zhì)的釋放。運動還能上調(diào)海馬GLP-1的表達,通過5-HT1AR介導的cAMP/PKA/CREB信號通路發(fā)揮抗抑郁作用。同樣,運動能夠增加海馬BDNF水平[79,83],GLP-1同樣能夠增加BDNF的表達,這種增加機制可能是通過CREB來調(diào)節(jié),也可能通過GLP-1介導的BDNF/AKT/Bcl-2/BAX途徑實現(xiàn)細胞的存活、生長、分化。運動能夠調(diào)節(jié)IL-1、IL-6和TNF-ɑ等炎癥因子的水平[84],使GLP-1表達增加,促使GLP-1抑制NF-κB,降低這些炎癥因子的水平發(fā)揮抗抑郁作用[85]。endprint

      8 結(jié)束語

      綜合來看,GLP-1可能通過HPA軸激活、中樞單胺類神經(jīng)遞質(zhì)、中樞營養(yǎng)因子及中樞炎癥因子的水平等4個維度從多種途徑介導了運動的抗抑郁作用(如圖1所示)。抑郁癥一直被認為是一種精神衛(wèi)生問題,甚至被形象的稱之為“精神感冒”。隨著對抑郁癥研究的不斷深入發(fā)現(xiàn),96%左右的抑郁癥都是代謝性抑郁癥,因而有學者提出“抑郁癥實際上是一種代謝性疾病”。作為代謝性疾病的治療靶點,GLP-1在抑郁癥中的作用也就凸顯而出。運動調(diào)控GLP-1通過作用于下游信號分子減輕中樞的炎癥反應(yīng)、減少神經(jīng)毒害性代謝產(chǎn)物、增加腦源性神經(jīng)營養(yǎng)因子的表達,從而作用于腦組織發(fā)揮抗抑郁作用。由此推論,GLP-1可能是運動發(fā)揮抗抑郁作用的重要介質(zhì)。GLP及其受體激動劑的抗抑郁作用不僅為運動抗抑郁作用提出了一條新的闡釋路徑,也為抑郁癥的能量代謝機制和治療策略提供了新的靶點。目前臨床上常用抗抑郁藥,如三環(huán)類抗抑郁藥(TCAs)、單胺氧化酶抑制劑(MAOIs)、選擇性5-HT 再攝取抑制劑(SSRIs)等,均有毒副作用,都可能產(chǎn)生肝、腎毒性,并會增加患糖尿病的風險;因此,未來靶向GLP-1等代謝分子的藥物研發(fā)及運動干預(yù)手段將有望改變抑郁癥的治療方向。

      參考文獻:

      [1] KRISHNAN V, NESTLER E J. The molecular neurobiology of depression[J]. Nature, 2008, 455(7215): 894.

      [2] SHARMA A N, PISE A, SHARMA J N, et al. Dipeptidyl-peptidase IV (DPP-IV) inhibitor delays tolerance to anxiolytic effect of ethanol and withdrawal-induced anxiety in rats[J]. Metab Brain Dis, 2015,30(3):659.

      [3] SHARMA A N, LIGADE S S, SHARMA J N, et al. GLP-1 receptor agonist liraglutide reverses long-term atypical antipsychotic treatment associated behavioral depression and metabolic abnormalities in rats[J]. Metab Brain Dis, 2015,30(2):519.

      [4] TOULIS K A, HANIF W, SARAVANAN P, et al. All-cause mortality in patients with diabetes under glucagon-like peptide-1 agonists: A population-based, open cohort study[J]. Diabetes Metab, 2017, 43(3):211.

      [5] KELLY A S. Glucagon-Like Peptide-1 Receptor Agonist Treatment for Pediatric Obesity[J]. Endocr Dev, 2016(30):23.

      [6] ZHANG Z, CHEN X, LU P, et al. Incretin-based agents in type 2 diabetic patients at cardiovascular risk: compare the effect of GLP-1 agonists and DPP-4 inhibitors on cardiovascular and pancreatic outcomes[J]. Cardiovasc Diabetol, 2017,16(1):31.

      [7] ARMSTRONG M J, HULL D, GUO K, et al. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis[J]. Journal of Hepatology, 2016,64(2): 399

      [8] DUARTE A I, CANDEIAS E, CORREIA S C, et al. Crosstalk between diabetes and brain: glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration[J]. Biochim Biophys Acta, 2013,1832(4):527.

      [9] SHI L, ZHANG Z, LI L, et al. A novel dual GLP-1/GIP receptor agonist alleviates cognitive decline by re-sensitizing insulin signaling in the Alzheimer icv. STZ rat model[J]. Behav Brain Res, 2017(327):65.

      [10] HOLST J J. The physiology of glucagon-like peptide 1[J]. Physiol Rev, 2007,87(4):1409.

      [11] MUNROE D G, GUPTA A K, KOOSHESH F, et al. Prototypic G protein-coupled receptor for the intestinotrophic factor glucagon-like peptide 2[J]. Proc Natl Acad Sci U S A, 1999,96(4):1569.endprint

      [12] YUSTA B, HUANG L, MUNROE D, et al. Enteroendocrine localization of GLP-2 receptor expression in humans and rodents[J]. Gastroenterology, 2000,119(3):744.

      [13] TANG-CHRISTENSEN M, VRANG N, LARSEN P J. Glucagon-like peptide containing pathways in the regulation of feeding behaviour[J]. Int J Obes Relat Metab Disord, 2001,25(s5):42.

      [14] LOVSHIN J A, HUANG Q, SEABERG R, et al. Extrahypothalamic expression of the glucagon-like peptide-2 receptor is coupled to reduction of glutamate-induced cell death in cultured hippocampal cells[J]. Endocrinology, 2004,145(7):3495.

      [15] YABE D, KUWATA H, USUI R, et al. Glucagon-like peptide-1 receptor agonist therapeutics for total diabetes management: assessment of composite end-points[J]. Curr Med Res Opin, 2015,31(7):1267.

      [16] GALLWITZ B. Anorexigenic effects of GLP-1 and its analogues[J]. Handb Exp Pharmacol, 2012,209(209):185.

      [17] HAN L, HOLSCHER C, XUE G F, et al. A novel dual-glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide receptor agonist is neuroprotective in transient focal cerebral ischemia in the rat[J]. Neuroreport, 2016,27(1):23.

      [18] DINEEN S L, MCKENNEY M L, BELL L N, et al. Metabolic Syndrome Abolishes Glucagon-Like Peptide 1 Receptor Agonist Stimulation of SERCA in Coronary Smooth Muscle[J]. Diabetes, 2015,64(9):3321.

      [19] MUSCOGIURI G, CIGNARELLI A, GIORGINO F, et al. GLP-1: benefits beyond pancreas[J]. J Endocrinol Invest, 2014,37(12):1143.

      [20] IWAI T, HAYASHI Y, NARITA S, et al. Antidepressant-like effects of glucagon-like peptide-2 in mice occur via monoamine pathways[J]. Behav Brain Res, 2009,204(1):235.

      [21] IWAI T, OHNUKI T, SASAKI-HAMADA S, et al. Glucagon-like peptide-2 but not imipramine exhibits antidepressant-like effects in ACTH-treated mice[J]. Behav Brain Res, 2013(243):153.

      [22] ANDERBERG R H, RICHARD J E, HANSSON C, et al. GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality[J]. Psychoneuroendocrinology, 2016(65):54.

      [23] RASS M, VOLKE A, RUNKORG K, et al. GLP-1 receptor agonists have a sustained stimulatory effect on corticosterone release after chronic treatment[J]. Acta Neuropsychiatr, 2015,27(1):25.

      [24] GULEC G, ISBIL-BUYUKCOSKUN N, KAHVECI N. Effects of centrally-injected glucagon-like peptide-1 on pilocarpine-induced seizures, anxiety and locomotor and exploratory activity in rat[J]. Neuropeptides, 2010,44(4):285.endprint

      [25] KINZIG K P, D'ALESSIO D A, HERMAN J P, et al. CNS glucagon-like peptide-1 receptors mediate endocrine and anxiety responses to interoceptive and psychogenic stressors[J]. J Neurosci, 2003,23(15):6163.

      [26] KRASS M, RUNKORG K, VASAR E, et al. Acute administration of GLP-1 receptor agonists induces hypolocomotion but not anxiety in mice[J]. Acta Neuropsychiatr, 2012,24(5):296.

      [27] SHARMA A N, PISE A, SHARMA J N, et al. Glucagon-like peptide-1 (GLP-1) receptor agonist prevents development of tolerance to anti-anxiety effect of ethanol and withdrawal-induced anxiety in rats[J]. Metab Brain Dis, 2015,30(3):719.

      [28] KOMSUOGLU C I, MUTLU O, ULAK G, et al. Exenatide treatment exerts anxiolytic- and antidepressant-like effects and reverses neuropathy in a mouse model of type-2 diabetes[J]. Med Sci Monit Basic Res,2014,20(1):112.

      [29] ISACSON R, NIELSEN E, DANNAEUS K, et al. The glucagon-like peptide 1 receptor agonist exendin-4 improves reference memory performance and decreases immobility in the forced swim test[J]. Eur J Pharmacol, 2011,650(1):249.

      [30] LUTTER M, SAKATA I, OSBORNE-LAWRENCE S, et al. The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress[J]. Nat Neurosci, 2008,11(7):752.

      [31] IWAI T, JIN K, OHNUKI T, et al. Glucagon-like peptide-2-induced memory improvement and anxiolytic effects in mice[J]. Neuropeptides, 2015(49):7.

      [32] KAGEYAMA K, YAMAGATA S, AKIMOTO K, et al. Action of glucagon-like peptide 1 and glucose levels on corticotropin-releasing factor and vasopressin gene expression in rat hypothalamic 4B cells[J]. Mol Cell Endocrinol, 2012,362(1/2):221.

      [33] LANTZ K A, VATAMANIUK M Z, BRESTELLI J E, et al. Foxa2 regulates multiple pathways of insulin secretion[J]. J Clin Invest, 2004,114(4):512.

      [34] GIL-LOZANO M, PEREZ-TILVE D, ALVAREZ-CRESPO M, et al. GLP-1(7-36)-amide and Exendin-4 stimulate the HPA axis in rodents and humans[J]. Endocrinology, 2010,151(6):2629.

      [35] GIL-LOZANO M, ROMANI-PEREZ M, OUTEIRINO-IGLESIAS V, et al. Effects of prolonged exendin-4 administration on hypothalamic-pituitary-adrenal axis activity and water balance[J]. Am J Physiol Endocrinol Metab, 2013,304(10):1105.

      [36] GIL-LOZANO M,ROMANI-PEREZ M,OUTEIRINO-IGLESIAS V, et al. Corticotropin-releasing hormone and the sympathoadrenal system are major mediators in the effects of peripherally administered exendin-4 on the hypothalamic-pituitary-adrenal axis of male rats[J]. Endocrinology, 2014,155(7):2511.endprint

      [37] DIZ-CHAVES Y, GIL-LOZANO M, TOBA L, et al. Stressing diabetes The hidden links between insulinotropic peptides and the HPA axis[J]. J Endocrinol, 2016,230(2):R77.

      [38] GHOSAL S, MYERS B, HERMAN J P. Role of central glucagon-like peptide-1 in stress regulation[J]. Physiol Behav,2013,122(11):201.

      [39] KELLER J, GOMEZ R, WILLIAMS G, et al. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition[J]. Mol Psychiatry, 2017,22(4): 527.

      [40] VRANG N, HANSEN M, LARSEN P J, et al. Characterization of brainstem preproglucagon projections to the paraventricular and dorsomedial hypothalamic nuclei[J]. Brain Res, 2007:1149.

      [41] DUNLOP B W, NEMEROFF C B. The role of dopamine in the pathophysiology of depression[J]. Arch Gen Psychiatry, 2007,64(3):327.

      [42] TYE K M, MIRZABEKOV J J, Warden M R, et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour[J]. Nature, 2013,493(7433):537.

      [43] SORENSEN G, REDDY I A, WEIKOP P, et al. The glucagon-like peptide 1 (GLP-1) receptor agonist exendin-4 reduces cocaine self-administration in mice[J]. Physiol Behav, 2015(149):262.

      [44] DIXIT T S, SHARMA A N, LUCOT J B, et al. Antipsychotic-like effect of GLP-1 agonist liraglutide but not DPP-IV inhibitor sitagliptin in mouse model for psychosis[J]. Physiol Behav, 2013,115(2):38.

      [45] ERREGER K, DAVIS A R, POE A M, et al. Exendin-4 decreases amphetamine-induced locomotor activity[J]. Physiol Behav, 2012,106(4):574.

      [46] ROSSETTI C, HALFON O, BOUTREL B. Controversies about a common etiology for eating and mood disorders[J]. Front Psychol, 2014(5):1205.

      [47] ANACKER C, ZUNSZAIN P A, CATTANEO A, et al. Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor[J]. Mol Psychiatry, 2011,16(7):738.

      [48] MENDEZ-DAVID I, HEN R, GARDIER A M, et al. Adult hippocampal neurogenesis: an actor in the antidepressant-like action[J]. Ann Pharm Fr, 2013,71(3):143.

      [49] HOLSCHER C. Central effects of GLP-1: new opportunities for treatments of neurodegenerative diseases[J]. J Endocrinol, 2014,221(1):T31.

      [50] LI Y, PERRY T, KINDY M S, et al. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism[J]. Proc Natl Acad Sci U S A, 2009,106(4):1285.

      [51] FAIVRE E, HOLSCHER C. Neuroprotective effects of D-Ala(2)GIP on Alzheimer's disease biomarkers in an APP/PS1 mouse model[J]. Alzheimers Res Ther, 2013,5(2):20.endprint

      [52] MCCLEAN P L, HOLSCHER C. Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer's disease[J]. Neuropharmacology, 2014(86):241.

      [53] HOLSCHER C. Insulin, incretins and other growth factors as potential novel treatments for Alzheimer's and Parkinson's diseases[J]. Biochem Soc Trans, 2014,42(2):593.

      [54] JI C, XUE G F, LI G, et al. Neuroprotective effects of glucose-dependent insulinotropic polypeptide in Alzheimer's disease[J]. Rev Neurosci, 2016,27(1):61.

      [55] SHARMA M K, JALEWA J, HOLSCHER C. Neuroprotective and anti-apoptotic effects of liraglutide on SH-SY5Y cells exposed to methylglyoxal stress[J]. J Neurochem, 2014,128(3):459.

      [56] JI C, XUE G F, LIJUN C, et al. A novel dual GLP-1 and GIP receptor agonist is neuroprotective in the MPTP mouse model of Parkinson's disease by increasing expression of BNDF[J]. Brain Res, 2016(1634):1.

      [57] LI Y, TWEEDIE D, MATTSON M P, et al. Enhancing the GLP-1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells[J]. J Neurochem, 2010,113(6):1621.

      [58] RACANIELLO M, CARDINALE A, MOLLINARI C, et al. Phosphorylation changes of CaMKII, ERK1/2, PKB/Akt kinases and CREB activation during early long-term potentiation at Schaffer collateral-CA1 mouse hippocampal synapses[J]. Neurochem Res, 2010,35(2):239.

      [59] LEE Y S, JUN H S. Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control[J]. Mediators Inflamm, 2016,2016(12):3094642.

      [60] MRAK R E, GRIFFIN W S. Glia and their cytokines in progression of neurodegeneration[J]. Neurobiol Aging, 2005,26(3):349.

      [61] KOHLER O, KROGH J, MORS O, et al. Inflammation in Depression and the Potential for Anti-Inflammatory Treatment[J]. Curr Neuropharmacol, 2016,14(7):732.

      [62] GONG N, XIAO Q, ZHU B, et al. Activation of spinal glucagon-like peptide-1 receptors specifically suppresses pain hypersensitivity[J]. J Neurosci, 2014,34(15):5322.

      [63] HUANG C, YUAN L, CAO S. Endogenous GLP-1 as a key self-defense molecule against lipotoxicity in pancreatic islets[J]. Int J Mol Med, 2015,36(1):173.

      [64] MCCLEAN P L, PARTHSARATHY V, FAIVRE E, et al. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease[J]. J Neurosci, 2011,31(17):6587.

      [65] VELMURUGAN K, BALAMURUGAN A N, LOGANATHAN G, et al. Antiapoptotic actions of exendin-4 against hypoxia and cytokines are augmented by CREB[J]. Endocrinology, 2012,153(3):1116.endprint

      [66] IWAI T, ITO S, TANIMITSU K, et al. Glucagon-like peptide-1 inhibits LPS-induced IL-1beta production in cultured rat astrocytes[J]. Neurosci Res, 2006,55(4):352.

      [67] AKARTE A S, SRINIVASAN B P, GANDHI S, et al. Chronic DPP-IV inhibition with PKF-275-055 attenuates inflammation and improves gene expressions responsible for insulin secretion in streptozotocin induced diabetic rats[J]. Eur J Pharm Sci, 2012,47(2):456.

      [68] AZEVEDO DA SILVA M, SINGH-MANOUX A, BRUNNER E J, et al. Bidirectional association between physical activity and symptoms of anxiety and depression: the Whitehall II study[J]. European journal of epidemiology, 2012,27(7):537.

      [69] CONN V S. Depressive Symptom Outcomes of Physical Activity Interventions: Meta-analysis Findings[J]. ANNALS OF BEHAVIORAL MEDICINE, 2010,39(2):128.

      [70] LIU W, XU Y, LU J, et al. Swimming exercise ameliorates depression-like behaviors induced by prenatal exposure to glucocorticoids in rats[J]. Neuroscience Letters, 2012,524(2):119.

      [71] 崔建梅, 蘇曉云, 王昕, 等. 自愿轉(zhuǎn)輪運動對抑郁模型大鼠行為學、腦組織神經(jīng)Y肽及中央杏仁核一氧化氮合酶表達的影響[J]. 體育科學, 2014(5):15.

      [72] UEDA S Y, YOSHIKAWA T, KATSURA Y, et al. Comparable effects of moderate intensity exercise on changes in anorectic gut hormone levels and energy intake to high intensity exercise[J]. J Endocrinol, 2009,203(3):357.

      [73] UEDA S Y, YOSHIKAWA T, KATSURA Y, et al. Changes in gut hormone levels and negative energy balance during aerobic exercise in obese young males[J]. J Endocrinol, 2009,201(1):151.

      [74] MARTINS C, MORGAN L M, BLOOM S R, et al. Effects of exercise on gut peptides, energy intake and appetite[J]. J Endocrinol, 2007,193(2):251.

      [75] CHANOINE J P, MACKELVIE K J, BARR S I, et al. GLP-1 and appetite responses to a meal in lean and overweight adolescents following exercise[J]. Obesity (Silver Spring), 2008,16(1):202.

      [76] 王卡. 長期廣場舞運動對老年女性血清GLP-1的影響[D]. 上海:上海體育學院, 2015.

      [77]付德榮, 孫小華, 劉承宜, 等. 有氧運動加谷氨酰胺補充對2型糖尿病大鼠骨骼肌炎癥因子NF-κB、MPO及MCP-1基因表達的影響[J]. 體育科學, 2012,32(12):55.

      [78] KIM H G, LIM E Y, JUNG W R, et al. Effects of treadmill exercise on hypoactivity of the hypothalamo-pituitary-adrenal axis induced by chronic administration of corticosterone in rats[J]. Neurosci Lett, 2008,434(1):46.

      [79] ZHENG H, LIU Y, LI W, et al. Beneficial effects of exercise and its molecular mechanisms on depression in rats[J]. Behav Brain Res, 2006,

      168(1):47.

      [80] SINGH B, SINGH D, GOEL R K. Dual protective effect of Passiflora incarnata in epilepsy and associated post-ictal depression[J]. J Ethnopharmacol, 2012,139(1):273.endprint

      [81] MEEUSEN R, THORRE K, CHAOULOFF F, et al. Effects of tryptophan and/or acute running on extracellular 5-HT and 5-HIAA levels in the hippocampus of food-deprived rats[J]. Brain Res, 1996,740(1/2):245.

      [82] CHAOULOFF F, LAUDE D, MERINO D, et al. Amphetamine and alpha-methyl-p-tyrosine affect the exercise-induced imbalance between the availability of tryptophan and synthesis of serotonin in the brain of the rat[J]. Neuropharmacology, 1987,26(8):1099.

      [83] LIU W, ZHOU C. Corticosterone reduces brain mitochondrial function and expression of mitofusin, BDNF in depression-like rodents regardless of exercise preconditioning[J]. Psychoneuroendocrinology, 2012,37(7):1057.

      [84] DRENTH J P, VAN UUM S H, VAN DEUREN M, et al. Endurance run increases circulating IL-6 and IL-1ra but downregulates ex vivo TNF-alpha and IL-1 beta production[J]. J Appl Physiol , 1995,79(5):1497.

      [85] KOHUT M L, MCCANN D A, RUSSELL D W, et al. Aerobic exercise, but not flexibility/resistance exercise, reduces serum IL-18, CRP, and IL-6 independent of beta-blockers, BMI, and psychosocial factors in older adults[J]. Brain Behav Immun, 2006,20(3):201.endprint

      猜你喜歡
      抑郁癥炎癥運動
      對炎癥的幾種常見誤解
      對炎癥的幾種常見誤解
      不正經(jīng)運動范
      對一例因抑郁癥有自殺傾向的案例分析
      文拉法辛聯(lián)合米氮平治療老年抑郁癥的效果及安全性
      西酞普蘭治療抑郁癥的療效及安全性
      古代都做什么運動
      瘋狂的運動
      永春县| 平罗县| 保山市| 大厂| 太谷县| 保山市| 江都市| 太谷县| 唐山市| 昌吉市| 合山市| 嵊泗县| 兰溪市| 壶关县| 来宾市| 饶阳县| 临朐县| 久治县| 拜泉县| 新乡县| 衡水市| 辉南县| 渝中区| 文成县| 财经| 黄石市| 锦州市| 潼南县| 丰城市| 教育| 甘孜县| 泰宁县| 宝清县| 乌恰县| 商南县| 娄烦县| 焦作市| 香港| 崇文区| 龙门县| 宿州市|