納小凡 鄭國(guó)旗 邢正操 馬金平 李占輝 盧俊輝 馬 飛
(1 寧夏大學(xué)生命科學(xué)學(xué)院,銀川 750021)
(2 寧夏大學(xué)環(huán)境工程研究所,銀川 750021)
(3 寧夏農(nóng)林科學(xué)院枸杞研究所,銀川 750013)
連作對(duì)再植枸杞根際細(xì)菌群落多樣性和群落結(jié)構(gòu)的影響*
納小凡1鄭國(guó)旗1邢正操1馬金平3李占輝1盧俊輝1馬 飛2?
(1 寧夏大學(xué)生命科學(xué)學(xué)院,銀川 750021)
(2 寧夏大學(xué)環(huán)境工程研究所,銀川 750021)
(3 寧夏農(nóng)林科學(xué)院枸杞研究所,銀川 750013)
受枸杞道地產(chǎn)區(qū)土地資源等因素限制,連作障礙已成為影響枸杞產(chǎn)業(yè)發(fā)展的重要原因之一,導(dǎo)致嚴(yán)重的經(jīng)濟(jì)損失。研究連作條件下枸杞農(nóng)田土壤生態(tài)系統(tǒng)微生物群落的演替規(guī)律對(duì)枸杞產(chǎn)業(yè)的可持續(xù)發(fā)展具有重要的理論意義。以寧夏銀川市南梁農(nóng)場(chǎng)連作多年的枸杞地為研究對(duì)象,利用Illumina MiSeq測(cè)序技術(shù)分析了連作對(duì)再植枸杞根際/非根際細(xì)菌群落的影響。結(jié)果表明,連作地顯著抑制再植枸杞苗地徑的增加,且其土壤pH較對(duì)照樣地顯著降低(p<0.05)。測(cè)序結(jié)果證實(shí),與對(duì)照樣地相比,連作地再植枸杞根際土壤細(xì)菌物種數(shù)顯著降低(p<0.05),細(xì)菌群落α多樣性下降(p>0.05)。主坐標(biāo)分析表明,連作和對(duì)照樣地間枸杞非根際細(xì)菌群落結(jié)構(gòu)無(wú)明顯差異,但連作顯著改變?cè)僦茶坭礁H細(xì)菌的群落結(jié)構(gòu)。對(duì)細(xì)菌群落豐度的統(tǒng)計(jì)分析發(fā)現(xiàn),連作地枸杞根際浮霉菌門、非根際假單胞菌門的相對(duì)豐度較對(duì)照樣地顯著降低(p<0.05)。此外,冗余分析結(jié)果表明:枸杞園土壤pH和有效磷含量是影響枸杞非根際土壤細(xì)菌群落結(jié)構(gòu)變化的主要因素,分別解釋了41.8%和35.4%的群落結(jié)構(gòu)變化(p<0.05),其他土壤因子無(wú)統(tǒng)計(jì)學(xué)意義,但土壤理化因子對(duì)再植枸杞根際細(xì)菌群落結(jié)構(gòu)變化的影響均未達(dá)顯著水平。這些結(jié)果證實(shí)連作能夠顯著抑制再植枸杞生長(zhǎng)、影響再植枸杞根際細(xì)菌群落結(jié)構(gòu)和多樣性,干擾枸杞與土壤細(xì)菌群落間的互作關(guān)系。這些研究結(jié)果將為解析枸杞連作障礙機(jī)制提供理論基礎(chǔ)。
枸杞;連作;根際;細(xì)菌群落;16S rRNA
枸杞子是衛(wèi)生部公布的第一批藥食兩用中藥材,該商品涵蓋了飲品、保健品和食品等多個(gè)領(lǐng)域,需求量逐年增加。目前,我國(guó)枸杞種植主要分布在寧夏、新疆、內(nèi)蒙和青海四大產(chǎn)區(qū),其中以寧夏地區(qū)枸杞種植面積及產(chǎn)量最大,是枸杞唯一國(guó)家地理標(biāo)志產(chǎn)品保護(hù)區(qū)。截至2015年底,寧夏全區(qū)枸杞種植面積達(dá)6×104hm2,枸杞干果總產(chǎn)量8.8×103t,年綜合產(chǎn)值達(dá)100億元。枸杞產(chǎn)業(yè)已經(jīng)成為促進(jìn)寧夏農(nóng)業(yè)增效和區(qū)域經(jīng)濟(jì)增長(zhǎng)最具潛力的富民產(chǎn)業(yè)之一。但受枸杞生產(chǎn)年限、道地產(chǎn)區(qū)土地資源緊張和農(nóng)民種植習(xí)慣等因素影響,連作障礙已成為枸杞產(chǎn)業(yè)可持續(xù)發(fā)展面臨的重大難題之一。研究表明,生長(zhǎng)超過10年的枸杞樹均出現(xiàn)鮮果百粒重下降等現(xiàn)象[1]。筆者在近五年的田間調(diào)查中也發(fā)現(xiàn),枸杞園死樹苗的原位補(bǔ)種及連作果園老樹更新時(shí)均存在再植苗成活率低和生長(zhǎng)勢(shì)弱等特點(diǎn)。因此,連作障礙已經(jīng)成為制約枸杞產(chǎn)量和品質(zhì)提高以及區(qū)域經(jīng)濟(jì)發(fā)展的重要因素之一,導(dǎo)致嚴(yán)重的經(jīng)濟(jì)損失和生態(tài)問題。研究枸杞連作障礙及其作用機(jī)制對(duì)改善枸杞生產(chǎn),促進(jìn)枸杞產(chǎn)業(yè)的可持續(xù)發(fā)展具有重大的理論和實(shí)踐意義。
近期對(duì)寧夏枸杞園土壤銅含量的分析發(fā)現(xiàn),枸杞園土壤有效銅和全銅含量隨種植年限增長(zhǎng)顯著增加[2]。對(duì)寧夏中寧和惠農(nóng)地區(qū)不同種植年限枸杞園土壤理化性質(zhì)的分析表明,枸杞園土壤速效氮?dú)埩粢韵鯌B(tài)氮為主,且硝態(tài)氮含量及有效磷含量隨樹齡增加而增大[3]。另一項(xiàng)對(duì)不同種植年限枸杞園土壤線蟲的研究表明:當(dāng)樹齡大于9年時(shí),枸杞根際土壤線蟲多樣性指數(shù)、均勻度指數(shù)和豐富度指數(shù)均呈現(xiàn)降低趨勢(shì);同時(shí)植物寄生線蟲的相對(duì)豐度較低齡樹顯著增多[4]。利用測(cè)序技術(shù),納小凡等[1]對(duì)枸杞根際細(xì)菌和真菌群落組成隨種植年限增長(zhǎng)的變化規(guī)律進(jìn)行了初步分析。這些結(jié)果從不同方面證實(shí)了枸杞園土壤微環(huán)境在長(zhǎng)期連作過程中的變化模式。
研究表明,土壤微生物群落區(qū)系變異是導(dǎo)致植物連作障礙形成的主要原因之一[5]。在農(nóng)田土壤生態(tài)系統(tǒng)中,土壤微生物具有提高農(nóng)田土壤肥力、改善土壤結(jié)構(gòu)、增強(qiáng)植物對(duì)生物/非生物脅迫抗性、提高植物對(duì)水分和土壤養(yǎng)分的利用效率等重要作用[6-7]。在連作條件下,同類型植物根系分泌物、植物殘片及滲出液不斷輸入土壤,導(dǎo)致土壤微生物群落多樣性下降、群落結(jié)構(gòu)失衡和功能紊亂,嚴(yán)重影響了土壤微生物與植物間的有益互作,從而誘發(fā)連作障礙[5]。
然而,由于植物連作障礙的成因復(fù)雜,不同植物產(chǎn)生連作障礙的機(jī)制也不盡相同[5]。在近幾年對(duì)寧夏枸杞生產(chǎn)情況的調(diào)研中發(fā)現(xiàn),多數(shù)枸杞產(chǎn)業(yè)從業(yè)人員和農(nóng)業(yè)科技人員對(duì)枸杞連作障礙現(xiàn)象已深有了解,但目前有關(guān)枸杞連作障礙及其作用機(jī)制的研究尚少見報(bào)道。為進(jìn)一步探索枸杞連作障礙形成的分子機(jī)制,本文利用Illumina MiSeq測(cè)序技術(shù),分析了連作地再植四年枸杞根際/非根際細(xì)菌群落的多樣性和組成變化。同時(shí)結(jié)合枸杞生長(zhǎng)和土壤理化性質(zhì)分析,探討了土壤理化因子與枸杞根際/非根際細(xì)菌群落間的耦合關(guān)系,為揭示枸杞連作障礙機(jī)制提供理論基礎(chǔ)。
所選樣地位于銀川市南梁農(nóng)場(chǎng),區(qū)域氣候、土壤類型見文獻(xiàn)[1]。試驗(yàn)以區(qū)域內(nèi)種植十年的枸杞園為連作地,以前期的設(shè)施農(nóng)業(yè)用地為對(duì)照樣地(拆除溫室大棚等設(shè)施,無(wú)枸杞種植歷史)。挖去連作地內(nèi)種植枸杞,連作及對(duì)照樣地經(jīng)整理后于2012年4月種植一年生枸杞苗(寧杞一號(hào))。枸杞田間管理參照文獻(xiàn)[1]。
于2016年8月進(jìn)行枸杞根際/非根際土壤樣本采集。在連作和對(duì)照樣地內(nèi)隨機(jī)設(shè)置3個(gè)樣方,分別于每個(gè)樣方內(nèi)采用隨機(jī)布點(diǎn)法設(shè)置至少5個(gè)采樣點(diǎn),利用土鉆采集樹冠范圍內(nèi)深度0~20 cm土壤。同一樣方內(nèi)的土壤合并為1個(gè)土壤樣品(非根際樣本)。同時(shí)于采樣點(diǎn)附近挖取深度在0~20 cm枸杞根,用無(wú)菌剪刀快速剪下直徑小于2 mm的枸杞根15~20 cm,用無(wú)菌鑷子抖去浮土,轉(zhuǎn)至15 ml無(wú)菌離心管中。同一樣方內(nèi)的5個(gè)樣本合并成1個(gè)根際樣品。所有樣品標(biāo)記后立即置于冰上保存,帶回實(shí)驗(yàn)室進(jìn)行后續(xù)分析。
向盛有新鮮枸杞根的離心管中加入5 ml無(wú)菌0.1% NaCl,充分震蕩、洗下附于根表面的土壤顆粒。所得液體經(jīng)10 000 g離心10 min,小心棄去上清、收集離心管底部根際土壤,此步進(jìn)行3次。將制備得到的枸杞根際土壤樣品直接用于DNA提取。枸杞根際/非根際土壤DNA提取及質(zhì)量檢測(cè)參照文獻(xiàn)[1]。
將采集的枸杞非根際樣品風(fēng)干,過1 mm篩。土壤有機(jī)碳采用重鉻酸鉀容量法[8]、全氮采用凱氏定氮法、堿解氮采用堿解擴(kuò)散法[8]、無(wú)機(jī)氮采用流動(dòng)分析儀法、土壤pH采用酸度計(jì)法[9]、土壤電導(dǎo)率采用電導(dǎo)率儀法[9]、全磷采用礬鉬抗比色法[10]、有效磷采用0.5 mol L-1NaHCO3浸提—鉬銻抗比色法[8]、全鉀采用ICP法[10]、速效鉀采用乙酸銨提取—火焰光度計(jì)法[10]測(cè)定。
分別對(duì)不同樣地中的三個(gè)平行枸杞根際和非根際土壤DNA樣本進(jìn)行PCR擴(kuò)增和文庫(kù)構(gòu)建(n=3)。細(xì)菌16S rRNA V4區(qū)段擴(kuò)增引物為515F(5′-GTGCCAGCMGCCGCGGTAA-3′)和806R(5′-GGACTACHVGGGTWTCTAAT-3′),擴(kuò)增方法參照文獻(xiàn)[1]。文庫(kù)構(gòu)建參照Na等的方法[11],測(cè)序由Illumina MiSeq2500測(cè)序平臺(tái)(Novogene,北京)完成。
測(cè)序原始數(shù)據(jù)的拼接、過濾、聚類分析及物種注釋均參照文獻(xiàn)[11]。其中,序列拼接利用FLASH(V1.2.7)、序列過濾利用QIIME(V1.7.0)、聚類利用UPARSE pipeline(V7.0.1001)、物種注釋利用RDP classifier(V2.2)軟件。此外,利用QIIME計(jì)算不同樣品中細(xì)菌群落的α多樣性和β多樣性指標(biāo)[12]。
數(shù)據(jù)用Excel(2010)進(jìn)行處理,統(tǒng)計(jì)分析采用SPSS (22.0)處理。單因素方差分析(one way ANOVA,Tukey t-test)用于不同處理間的差異顯著性校驗(yàn)(p=0.05),皮爾遜相關(guān)系數(shù)(Pearson correlation coefficient)用于評(píng)價(jià)土壤理化性質(zhì)與土壤細(xì)菌群落間的相關(guān)性。土壤理化因子對(duì)細(xì)菌群落結(jié)構(gòu)變異的解釋度利用Conoco(5.0)軟件中基于距離矩陣的冗余分析(distance based-Redundancy Analysis,db-RDA)進(jìn)行。繪圖使用Origin(8.0)軟件。
對(duì)連作及對(duì)照枸杞園土壤理化性質(zhì)分析表明,連作地土壤堿解氮和有效磷含量較對(duì)照樣地顯著升高,而土壤pH和電導(dǎo)率則顯著降低(表1)。同時(shí)對(duì)不同樣地再植枸杞的生長(zhǎng)情況分析表明,連作地再植枸杞地徑(21.7 mm±4.2 mm,均值±SD)較對(duì)照樣地(31.4 mm±4.8 mm)顯著降低(p<0.01),證實(shí)枸杞連作障礙現(xiàn)象的存在。
表1 連作及對(duì)照枸杞園土壤主要理化性質(zhì)Table 1 Soil properties of the monocropping field and control
細(xì)菌16S rRNA V4區(qū)段的測(cè)序結(jié)果表明,連作地再植枸杞根際土壤細(xì)菌種類較對(duì)照樣地顯著降低(p<0.05),細(xì)菌群落α多樣性指數(shù)也有所下降,但結(jié)果不顯著(p=0.16,圖1)。枸杞非根際土壤的細(xì)菌種類及群落α多樣性在不同樣地間無(wú)顯著變化。在同一樣地內(nèi),枸杞非根際土壤中的細(xì)菌種類均顯著高于根際土壤(p<0.05),但僅對(duì)照樣地的非根際土壤細(xì)菌群落α多樣性顯著高于枸杞根際土壤(圖1)。
對(duì)測(cè)序結(jié)果的主坐標(biāo)分析(Principal coordinate analysis,PCoA)發(fā)現(xiàn),連作及對(duì)照樣地枸杞非根際土壤微生物群落結(jié)構(gòu)較為相似,但連作地枸杞根際土壤細(xì)菌群落結(jié)構(gòu)與對(duì)照樣地相比差異較大,說明長(zhǎng)期種植對(duì)枸杞根際土壤微生物群落結(jié)構(gòu)的影響較非根際土壤更加明顯(圖2A)。聚類分析也進(jìn)一步證實(shí),連作和對(duì)照樣地枸杞非根際土壤細(xì)菌群落的相似度最高,而連作地枸杞根際土壤細(xì)菌群落結(jié)構(gòu)與其他土樣差異最大(圖2B)。
對(duì)各樣品中測(cè)序得到的OTU進(jìn)行分類表明,所有四類樣品中共有OTU為3124個(gè)。此外,連作地枸杞根際/非根際土壤中分別具有特異OTU為476和325個(gè),對(duì)照樣地則分別為287和358個(gè)(圖3)。
對(duì)不同樣品中優(yōu)勢(shì)細(xì)菌門的分析表明,枸杞根際/非根際相對(duì)豐度排名前十的優(yōu)勢(shì)細(xì)菌門分別為變形菌門(Proteobacteria)、放線菌門(Actinobacteria)、芽單胞菌門(Gemmatimonadetes)、擬桿菌門(Bacteroidetes)、酸桿菌門(Acidobacteria)、
藍(lán)藻門(Cyanobacteria)、厚壁菌門(Firmicutes)、疣微菌門(Verrucomicrobia)、綠彎菌門(Chloroflexi)以及浮霉菌門(Planctomycetes)。這些細(xì)菌的相對(duì)比例占各樣品總序列數(shù)的93.8%~96.1%(表2)。雖然這些細(xì)菌的相對(duì)豐度在不同樣品內(nèi)(重復(fù)之間)變化較大,但芽單胞菌門和浮霉菌門的相對(duì)豐富在不同樣品間仍發(fā)生顯著變化(表2)。其中,連作地枸杞根際土壤中浮霉菌門的相對(duì)豐度較對(duì)照顯著降低。
圖1 枸杞根際/非根際土壤細(xì)菌群落物種數(shù)(A)及α多樣性指標(biāo)(B)Fig. 1 Number of soil bacterial species(A)and shannon index(B)of the rhizosphere of Lycium barbarum L. and bulk soil
圖2 枸杞根際/非根際土壤細(xì)菌群落β多樣性分析Fig. 2 β diversity analysis of the soil bacterial communities in the rhizosphere and bulk soil
圖3 枸杞根際/非根際土壤細(xì)菌群落OTUs的維恩圖Fig. 3 Venn diagram of the OTUs of the soil bacterial communities in the rhizosphere and bulk soils
在所有樣品中,相對(duì)豐度排名前十的優(yōu)勢(shì)屬分別為不動(dòng)細(xì)菌屬(Acinetobacter)、假單胞菌屬(Pseudomonas)、根瘤菌屬(Rhizobium)、克羅諾桿菌屬(Cronobacter)、類芽孢桿菌屬(Paenibacillus)、芽孢桿菌屬(Bacillus)、分枝桿菌屬(Mycobacterium)、鞘氨醇單胞菌屬(Sphingomonas)、假黃色單胞菌屬(Pseudoxanthomonas)以及鞘氨醇桿菌屬(Sphingobacterium),這些細(xì)菌占所測(cè)細(xì)菌總數(shù)的10.4%~23.2%。統(tǒng)計(jì)分析表明,在所檢測(cè)到的579個(gè)細(xì)菌屬中,共有40個(gè)屬的相對(duì)豐度在不同樣地間發(fā)生顯著改變(表3)。其中,連作地枸杞根際中Azohydromonas、Variovorax、Caenimonas、Hydrogenophaga及Azospirillum的相對(duì)豐度較對(duì)照樣地顯著增加,而Mycobacterium、Phyllobacterium、Blastocatella、Altererythrobacter、Devosia、Pir4 lineage、Brevundimonas、Nitriliruptor、Algoriphagus、Thalassobaculum、Legionella、CL500-3及I-8的相對(duì)豐度則顯著降低(表3)。對(duì)非根際細(xì)菌而言,連作地中Woodsholea、Adhaeribacter、Parapedobacter和Nocardiopsis的相對(duì)豐度較對(duì)照樣地顯著增加,而Euzebya、Nitriliruptor、I-8、unidentified SK259和unidentified SAR11的相對(duì)豐度則顯著減少(表3)。
表2 枸杞根際/非根際細(xì)菌群落在門水平上的豐度變化Table 2 Relative abundance of dominant bacterial phyla in rhizosphere of Lycium barbarum L. and bulk soil
相關(guān)性分析表明,在枸杞根際土壤中,芽孢單菌門與pH、浮霉菌門與EC呈顯著正相關(guān)關(guān)系,而放線菌門與銨態(tài)氮含量、芽孢單菌門與有效磷含量以及浮霉菌門與有效磷含量呈顯著負(fù)相關(guān)關(guān)系(表4)。在枸杞非根際土壤中,芽孢單菌門與pH、變形菌門與硝態(tài)氮含量存在顯著正相關(guān),而變形菌門與pH、藍(lán)藻門與全氮含量、綠彎菌門與銨態(tài)氮含量、放線菌門與硝態(tài)氮含量、藍(lán)藻門與全磷含量、厚壁菌門與有效磷含量間則存在顯著負(fù)相關(guān)(表4)。此外,土壤有效鉀含量與任何優(yōu)勢(shì)細(xì)菌門均無(wú)顯著相關(guān)性。
為進(jìn)一步了解枸杞園土壤理化性質(zhì)變化對(duì)枸杞根際/非根際土壤細(xì)菌群落組成的影響,利用Canoco 5.0軟件進(jìn)行了基于距離的冗余分析(db-RNA)。結(jié)果表明,枸杞園土壤主要理化因子不能解釋枸杞根際細(xì)菌群落的變化(p>0.05,表5),但土壤pH和有效磷含量則分別解釋了枸杞非根際土壤細(xì)菌群落變異的41.8%和35.4%(p<0.01,表5),其他因子的影響均無(wú)統(tǒng)計(jì)學(xué)意義。這一結(jié)果說明,連作導(dǎo)致的土壤酸化驅(qū)動(dòng)了枸杞非根際細(xì)菌群落的演替,而連作對(duì)枸杞根際細(xì)菌群落的影響可能主要通過影響再植枸杞生長(zhǎng)以及再植枸杞與土壤細(xì)菌間的互作而實(shí)現(xiàn)。
表4 土壤理化性質(zhì)與枸杞根際/非根際優(yōu)勢(shì)細(xì)菌門豐度的相關(guān)系數(shù)Table 4 Pearson correlation coefficients of relative abundance of the dominant bacterial phyla in rhizosphere of Lycium barbarum L. and bulk soils with soil properties
表5 土壤理化性質(zhì)對(duì)枸杞根際/非根際細(xì)菌群落結(jié)構(gòu)變異的影響Table 5 Effects of soil properties on composition of the bacterial communities in the rhizosphere of Lycium barbarum L. and bulk soil
枸杞園土壤環(huán)境是枸杞-土壤-土壤生物組成的特殊微環(huán)境。經(jīng)過多年耕作,連年不斷的施肥、翻耕及噴灑農(nóng)藥等高強(qiáng)度人工管理,以及枸杞根系分泌物、樹葉凋落物和組織滲濾液年復(fù)一年輸入土壤,必然深刻影響著枸杞園土壤的理化性質(zhì)和微生物群落組成。探索枸杞園土壤微生物群落及其功能變化,對(duì)于揭示枸杞連作障礙機(jī)制具有重要研究意義。
研究表明,土壤類型[13-14]、土壤理化特征[15-16]、環(huán)境因子[11,16]及植物種類[17]均能在不同程度直接或間接地影響土壤微生物的群落結(jié)構(gòu)。其中,土壤pH被認(rèn)為是預(yù)測(cè)陸地土壤微生物群落演替規(guī)律的最佳因子之一[18],并顯著影響土壤細(xì)菌的群落多樣性[19]。本研究的樣地位于銀川市南梁農(nóng)場(chǎng),是典型的銀北鹽堿地區(qū)域之一[1]。由于土壤pH較高、土壤含鹽量較大,種植枸杞是當(dāng)?shù)剞r(nóng)戶的主要經(jīng)濟(jì)來(lái)源。本文的研究結(jié)果表明,與對(duì)照樣地相比,長(zhǎng)期連作能夠?qū)е妈坭綀@土壤pH顯著降低(表1),并影響枸杞園土壤細(xì)菌群落結(jié)構(gòu)(表5)。相關(guān)性分析發(fā)現(xiàn),枸杞非根際土壤中變形菌門和芽單胞菌門的相對(duì)豐度與土壤pH存在顯著相關(guān)關(guān)系(表4)。其中,變形菌門在對(duì)照和連作樣地枸杞非根際土壤中的相對(duì)豐度分別達(dá)48.2%和56.5%(表2),是豐度最高的優(yōu)勢(shì)細(xì)菌門。因此,pH對(duì)枸杞非根際土壤細(xì)菌群落的影響可能主要通過影響變形菌門而實(shí)現(xiàn)。
目前研究認(rèn)為,土壤pH能夠通過直接和/或間接因素影響土壤微生物群落結(jié)構(gòu)。例如,pH可以直接影響土壤微生物生理代謝、改變微生物群落間競(jìng)爭(zhēng)關(guān)系或抑制非適應(yīng)性微生物生長(zhǎng)等方式,改變土壤微生物群落結(jié)構(gòu)[18]。此外,許多土壤特征(營(yíng)養(yǎng)有效性、金屬陽(yáng)離子可溶性、有機(jī)碳特征、土壤鹽分及含水量)與土壤pH直接或間接相關(guān)[20]。因此,土壤pH的變化不僅影響土壤微生物群落多樣性和結(jié)構(gòu),而且對(duì)多種土壤生物學(xué)過程具有顯著作用。對(duì)茶園土壤的研究發(fā)現(xiàn)茶園土壤的pH隨植茶年齡增加逐漸降低,且土壤硝化速率與土壤pH顯著負(fù)相關(guān)[21],表明土壤酸化影響了茶園土壤的氮素循環(huán)過程。通過對(duì)寧夏主要枸杞產(chǎn)區(qū)土壤養(yǎng)分的分析,劉云翔等[3]發(fā)現(xiàn)枸杞園土壤中速效氮以硝態(tài)氮為主,其含量隨樹齡增加而積累。本文的結(jié)果表明連作地土壤堿解氮含量較對(duì)照樣地顯著升高(p<0.05),且硝態(tài)氮含量也高于對(duì)照樣地(表1,p>0.05)。相關(guān)性分析也表明土壤pH分別與堿解氮含量(R2=-0.82,p<0.05)及硝態(tài)氮含量(R2=-0.87,p<0.05)顯著負(fù)相關(guān),這些結(jié)果說明長(zhǎng)期連作可能影響枸杞園土壤的硝化和反硝化過程。Yao等[21]的結(jié)果還表明,氨氧化古菌是茶園酸化土壤中硝化作用的主要驅(qū)動(dòng)因子,但在枸杞連作條件下,土壤硝化和反硝化過程以及生物固氮等氮素循環(huán)過程如何變化仍需進(jìn)一步研究。
db-RDA分析還發(fā)現(xiàn)土壤速效磷含量是影響枸杞非根際土壤細(xì)菌群落結(jié)構(gòu)變化的另一個(gè)主要因素,這一結(jié)果與前期研究結(jié)論一致[1]。研究表明,土壤中的磷元素多以不溶或難溶的復(fù)雜化合物形式存在,僅20%能被植物利用,是限制植物生長(zhǎng)的關(guān)鍵元素之一[22]。土壤解磷微生物,如假單胞菌屬、芽孢桿菌屬、曲霉屬以及青霉屬等,能夠通過溶解或礦化過程釋放土壤全磷中的有機(jī)磷和無(wú)機(jī)磷供植物吸收,同時(shí)增強(qiáng)土壤微生物的固氮效率,促進(jìn)植物生長(zhǎng)[22]。目前認(rèn)為,土壤類型、氣候和環(huán)境因子、植被類型以及連作等均能顯著影響土壤解磷菌的種群豐度和群落結(jié)構(gòu)[22]。近期,馬雪松等[23]利用宏基因組測(cè)序技術(shù)分析了楊樹連作對(duì)其根際/非根際土壤解磷菌群落的影響,表明土壤磷酸酶總豐度隨連作時(shí)間的加長(zhǎng)而逐漸降低,且土壤解磷菌的豐度變化與土壤pH呈顯著正相關(guān)。這一結(jié)果可能與土壤pH對(duì)土壤磷形態(tài)轉(zhuǎn)化及其有效性的影響有關(guān)[24]。當(dāng)土壤pH升高時(shí),土壤中磷的有效性下降,迫使植物-微生物間的互作關(guān)系改變,并通過增加土壤解磷菌豐度以提高磷的有效性。在連作條件下,枸杞園土壤pH的降低增加了土壤磷的有效性,因此表現(xiàn)為土壤有效磷含量與pH顯著負(fù)相關(guān)(R2=-0.90,p<0.01)。此外,對(duì)解磷微生物的相對(duì)豐度分析發(fā)現(xiàn),僅有假單胞菌屬的相對(duì)豐度在連作和對(duì)照樣地間發(fā)生顯著變化,該屬細(xì)菌在連作地再植枸杞根際中的相對(duì)豐度是對(duì)照樣地的3.2倍(表3)。而我們前期的研究結(jié)果也發(fā)現(xiàn)土壤有效磷含量與酸桿菌門、厚壁菌門、變形菌門、芽單胞菌門、子囊菌門、擔(dān)子菌門和結(jié)合菌門的相對(duì)豐度顯著相關(guān)[1]。這些結(jié)果表明在長(zhǎng)期種植過程中,枸杞園土壤生態(tài)系統(tǒng)中的磷素循環(huán)過程及相關(guān)微生物群落可能受到影響,并且這種作用可能與土壤pH的變化有關(guān)。然而,本研究所采用的擴(kuò)增子測(cè)序技術(shù)僅能從細(xì)菌群落組成及相對(duì)豐度的角度分析連作對(duì)枸杞園土壤微生物群落結(jié)構(gòu)的作用,對(duì)于連作條件下微生物群落功能的變化規(guī)律仍需要利用宏基因組、宏轉(zhuǎn)錄組及酶活分析等技術(shù)從不同角度進(jìn)行解析和驗(yàn)證。
根際是植物根系和土壤生物之間形成的獨(dú)特群落環(huán)境。在根際,植物通過根系分泌物和沉淀物調(diào)節(jié)和塑造根際微生物群落[25]?,F(xiàn)已發(fā)現(xiàn),根際微生物對(duì)植物生長(zhǎng)和生存存在有益、中性或有害的生理效應(yīng)。例如,益生菌能夠提高植物抗性、固氮、解磷以及分泌生長(zhǎng)素而促進(jìn)植物生長(zhǎng),同時(shí)致病菌則可影響植物生長(zhǎng)和發(fā)育[11]。因此,理解根際微生物群落的變化對(duì)于揭示土壤功能變化和植物-微生物互作機(jī)制至關(guān)重要。本研究結(jié)果發(fā)現(xiàn),枸杞根際土壤細(xì)菌物種數(shù)量顯著低于非根際土壤(圖1),表明枸杞根與土壤微生物間的相互選擇和作用。前人對(duì)枸杞根以及枸杞根皮層(地骨皮)有效成分的分析發(fā)現(xiàn),枸杞根或地骨皮的主要成分為黃酮類物質(zhì)、多肽類、有機(jī)酸(阿魏酸、香草酸)、地骨皮甲素/乙素、東茛菪內(nèi)酯、甾醇、香豆素和揮發(fā)油等[26]。其中,地骨皮甲素/乙素、東茛菪內(nèi)酯、香豆素、阿魏酸和香草酸等活性物質(zhì)均具有一定的抗菌作用[26]。隨著連作年限的增加,這些活性物質(zhì)的不斷輸入和/或積累可能導(dǎo)致連作地再植枸杞根際土壤微生物物種數(shù)量和群落α多樣性的下降(圖1)。而db-RDA分析結(jié)果進(jìn)一步證實(shí),連作地對(duì)再植枸杞根際細(xì)菌群落的影響可能首先通過影響再植枸杞的生長(zhǎng)和生理狀況所實(shí)現(xiàn)。相對(duì)于對(duì)照樣地而言,連作地的土壤環(huán)境不利于再植枸杞生長(zhǎng)。脅迫條件促使再植枸杞根系分泌物組成和數(shù)量發(fā)生改變,進(jìn)一步引發(fā)細(xì)菌群落結(jié)構(gòu)變化和多樣性降低(圖1和圖2),使枸杞根際土壤生態(tài)系統(tǒng)的穩(wěn)定性下降。此外,由于土壤微生物群落遺傳多樣性與其功能多樣性間存在顯著相關(guān)關(guān)系[27],由連作導(dǎo)致的群落多樣性和結(jié)構(gòu)的變化必然引起群落功能改變,使枸杞-土壤-土壤微生物間形成負(fù)調(diào)控,誘發(fā)連作障礙。
對(duì)枸杞根際/非根際細(xì)菌群落豐度的對(duì)比分析表明,不同細(xì)菌間存在明顯不同的根際效應(yīng)。例如,變形菌門和藍(lán)藻門更易聚集在枸杞根際,芽單胞菌門和綠彎菌門在非根際土壤的相對(duì)豐度更高,而放線菌門、擬桿菌門、酸桿菌門、疣微菌門及浮霉菌門則在根際和非根際土壤中無(wú)明顯差別(表2)。在連作條件下,一些細(xì)菌在再植枸杞根際/非根際土壤中的分布規(guī)律也受到影響。例如疣微菌門和浮霉菌門的相對(duì)豐度在連作地再植枸杞根際較對(duì)照樣地明顯降低(表2)。在屬水平,連作地再植枸杞根際的貪食菌屬(Variovorax)、噬氫胞菌屬(Hydrogenophaga)以及固氮螺旋菌屬(Azospirillum)的相對(duì)豐度顯著較對(duì)照升高,而葉瘤桿菌屬(Phyllobacterium)、戴沃斯菌屬(Devosia)等則顯著降低(表4)。這些細(xì)菌中,貪食菌屬具有固氮、解磷、抗逆等促生作用[28],噬氫胞菌屬具有反硝化作用[29],固氮螺旋菌屬[30]和葉瘤桿菌屬[31]具有固氮和促生作用,戴沃斯菌屬參與氮、磷循環(huán)等過程[32]。此外,前期對(duì)不同種植年限枸杞根際細(xì)菌和真菌群落的分析發(fā)現(xiàn),種植年限與可能致病菌的相對(duì)豐度呈拋物線關(guān)系,即種植10年枸杞根際致病菌群落豐度最低,隨后逐漸增加[1]。這些結(jié)果均說明連作能夠干擾再植枸杞與土壤微生物間的互相作用、影響枸杞根際益生菌和致病菌群間的平衡關(guān)系。然而,雖然本文通過高通量測(cè)序技術(shù)分析了連作條件下枸杞園土壤細(xì)菌群落的相對(duì)豐度及其變化規(guī)律,但就這些細(xì)菌及其豐度變化所導(dǎo)致的生態(tài)系統(tǒng)功能改變?nèi)孕柽M(jìn)一步研究。這些研究將為進(jìn)一步改良枸杞種植技術(shù)和減緩枸杞連作障礙提供理論基礎(chǔ)。
?
本文研究表明,連作顯著抑制再植枸杞苗的生長(zhǎng),并導(dǎo)致土壤酸化和土壤堿解氮及有效磷的積累。測(cè)序結(jié)果表明,與對(duì)照樣地相比,連作地再植枸杞根際細(xì)菌物種數(shù)顯著降低、群落多樣性指數(shù)下降、群落結(jié)構(gòu)發(fā)生顯著改變,而連作對(duì)枸杞非根際土壤細(xì)菌群落的影響相對(duì)較小。RDA分析表明,土壤pH和速效磷含量是影響枸杞非根際細(xì)菌群落結(jié)構(gòu)變化的主要因素,分別解釋了細(xì)菌群落結(jié)構(gòu)變異的41.8%和35.4%(p<0.05),但土壤理化因子對(duì)枸杞根際細(xì)菌群落結(jié)構(gòu)的變化無(wú)顯著影響(p>0.05)。
[1] 納小凡,鄭國(guó)琦,彭勵(lì),等. 不同種植年限寧夏枸杞根際微生物多樣性變化. 土壤學(xué)報(bào),2016,53(1):241—252 NA X F,Zheng G Q,Peng L,et al. Microbial biodiversity in rhizosphere ofLycium bararumL. relative to cultivation history(In Chinese). Acta Pedologica Sinica,2016,53(1):241—252
[2] 王彩艷,李彩虹,王曉菁. 不同種植年限枸杞園土壤銅空間變異規(guī)律. 寧夏農(nóng)林科技,2016,57(1):21—22 Wang C Y,Li C H,Wang X J. Spatial heterogeneity of soil copper in Chinese wolfberry fields with different planting duration(In Chinese). Ningxia Journal of Agricultural and Forest Science and Technology,2016,57(1):21—22
[3] 李云翔,王少東,柯英,等. 寧夏主要枸杞產(chǎn)區(qū)施肥現(xiàn)狀與土壤養(yǎng)分特征. 干旱地區(qū)農(nóng)業(yè)研究,2016,34(2):113—118 Li Y X,Wang S D,Ke Y,et al. Characteristics of soil nutrients and present situation of fertilization in the major wolfberry producing areas of Ningxia(In Chinese). Agricultural Research in the Arid Areas,2016,34(2):113—118
[4] 張俊華,鄭國(guó)琦. 寧夏枸杞根際土壤線蟲群落特征. 應(yīng)用生態(tài)學(xué)報(bào),2016,27(5):1647—1656 Zhang J H,Zheng G Q. Soil nematode community structure in the rhizosphere ofLycium barbarum(In Chinese). Chinese Journal of Applied Ecology,2016,27(5):1647—1656
[5] Huang L F, Song L X, Xia X J, et al. Plantsoil feedbacks and soil sickness:from mechanisms to application in agriculture. Journal of Chemical Ecology, 2013,39(2):232—242
[6] Artursson V,F(xiàn)inlay R D,Jansson J K. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth.Environmental Microbiology,2006,8(1):1—10
[7] de Vrieze J. The littlest farmhands. Science,2015,349(6249):680—683
[8] 謝文軍,張衍鵬,張淼,等. 濱海鹽漬化土壤理化性質(zhì)與小麥生產(chǎn)間的關(guān)系. 土壤學(xué)報(bào),2015,52(2):461—466 Xie W J,Zhang Y P,Zhang M,et al. Relationships between soil physicochemical properties and wheat production in coastal saline soil(In Chinese). Acta Pedologica Sinica,2015,52(2):461—466
[9] 王璐,仲啟鋮,陸穎,等. 群落配置對(duì)濱海圍墾區(qū)土壤理化性質(zhì)的影響. 土壤學(xué)報(bào),2014,51(3):638—647 Wang L,Zhong Q,Lu Y,et al. Effects of configuration of plant community on physical and chemical properties of coastal polder soil(In Chinese). Acta Pedologica Sinica,2014,51(3):638—647
[10] 朱丹,韋澤秀,劉曉燕,等. 菌肥對(duì)青稞根際土壤理化性質(zhì)以及微生物群落的影響. 土壤學(xué)報(bào),2014,51(3):627—637 Zhu D,Wei Z X,Liu X Y,et al. Effects of bacterial manure on soil physicochemical properties and microbial community diversity in rhizosphere of highland barley(In Chinese). Acta Pedologica Sinica,2014,51(3):627—637
[11] Na X F,Xu T T,Li M,et al. Bacterial diversity in the rhizosphere of two phylogenetically closely related plant species across environmental gradients. Journal of Soils and Sediments,2017,17(1):122—132
[12] Caporaso J G,Kuczynski J,Stombaugh J,et al.QIIME allows analysis of high-throughput community sequencing data. Nature Methods,2010,7:335—336
[13] Guan X Y,Wang J F,Zhao H,et al. Soil bacterial communities shaped by geochemical factors and land use in a less-explored area,Tibetan Plateau. BMC Genomics,2013,14(1):820
[14] Sheng R,Meng D L,Wu M N,et al. Effect of agricultural land use change on community composition of bacteria and ammonia oxidizers. Journal of Soils and Sediments,2013,13(7):1246—1256
[15] Landa B B,Montes-Borrego M,Aranda S,et al. Soil factors involved in the diversity and structure of soil bacterial communities in commercial organic olive orchards in Southern Spain. Environmental Microbiology Reports,2014,6(2):196—207
[16] van Horn D J,van Horn M L,Barrett J E,et al.Factors controlling soil microbial biomass and bacterial diversity and community composition in a cold desert ecosystem:Role of Geographic Scale. PloS One,2013,8(6):e66103
[17] Marques J M,da Silva T F,Vollu R E,et al. Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants.FEMS Microbiology Ecology,2014,88:424—435
[18] L a u b e r C L,H a m a d y M,K n i g h t R,e t a l.Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology,2009,75(15):5111—5120
[19] Zhang X M,Liu W,Zhang G M,et al. Mechanisms of soil acidification reducing bacterial diversity. Soil Biology & Biochemistry,2015,81:275—281
[20] Brady N C,Weil R R. The nature and properties of soil.New Jersey:Prentice Hall,2007
[21] Yao H,Gao Y,Nicol G W,et al. Links between ammonia oxidizer community structure,abundance,and nitrification potential in acidic soils. Applied and Environmental Microbiology,2011,77(13):4618—4625
[22] Vassileva M,Serrano M,Bravo V,et al. Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions. Applied Microbiology and Biotechnology,2010,85(5):1287—1299
[23] 馬雪松,王文波,王延平,等. 楊樹人工林連作與輪作對(duì)土壤解磷微生物類群的影響. 應(yīng)用生態(tài)學(xué)報(bào),2016,27(6):1877—1885 Ma X S,Wang W B,Wang Y P,et al. Characteristics of phosphate-solubilizing microbial community in the soil of poplar plantations under successive-planting and rotation(In Chinese). Chinese Journal of Applied Ecology,2016,27(6):1877—1885
[24] 劉世亮,介曉磊,李有田,等. 土壤-植物根際磷的生物有效性研究進(jìn)展. 土壤與環(huán)境,2002,11(2):178—182 Liu S L,Jie X L,Li Y T,et al. Advance of study on phosphorus bioavailability in the soil-plant rhizosphere(In Chinese). Soil and Environmental Sciences,2002,11(2):178—182
[25] Bais H P,Weir T L,Perry L G,et al. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology,2006,57(1):233—266
[26] 趙曉玲,張?chǎng)维帲未耗?,? 不同來(lái)源地骨皮藥材中地骨皮甲素和乙素及阿魏酸的含量測(cè)定分析. 中國(guó)藥業(yè),2014,23(12):58—61 Zhao X L,Zhang X Y,He C N,et al. Analysis on content determination of kukoamine A/B and ferulic acid in different sources of Cortex Lycii(In Chinese).China Pharmaceuticals,2014,23(12):58—61
[27] Fierer N,Leff J W,Adams B J,et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences,2012,109(52):21390—21395
[28] Han J I,Choi H K,Lee S W,et al. Complete genome sequence of the metabolically versatile plant growthpromoting endophyteVariovorax paradoxusS110. Journal of Bacteriology,2011,193(5):1183—1190
[29] Khanitchaidecha W,Kazama F. Hydrogenotrophic denitrification in an attached growth reactor under various operating conditions. Water Science and Technology Water Supply,2012,12:72—80
[30] Amavizca E,Bashan Y,Ryu C M,et al. Enhanced performance of the microalgaChlorella sorokinianaremotely induced by the plant growth-promoting bacteriaAzospirillum brasilenseandBacillus pumilus. Scientific Reports,2017,DOI:10.1038/srep41310
[31] Bouchiba Z,Boukhatem Z F,Ighilhariz Z,et al.Diversity of nodular bacteria ofScorpiurus muricatusin western Algeria and their impact on plant growth.Canadian Journal of Microbiology,2017,63(5):450—463
[32] Agnieszka W,Agnieszka K,Urszula Z,et al.Metagenomic analysis of some potential nitrogen-fixing bacteria in arable soils at different formation processes.Microbial Ecology,2016,73(1):162—176
Effects of Monocropping on Diversity and Structure of the Bacterial Community in Rhizosphere of ReplantedLycium barbarumL.
NA Xiaofan1ZHENG Guoqi1XING Zhengcao1MA Jinping3LI Zhanhui1LU Junhui1MA Fei2?
(1School of Life Science,Ningxia University,Yinchuan750021,China)
(2Institute of Environmental Engineer,Ningxia University,Yinchuan750021,China)
(3Institute of Wolfberry of Agro-forestry Science,Ningxia Academy of Agriculture and Forestry Science,Yinchuan750013,China)
【Objective】 Owing to the limitation of soil resources in the traditional wolfberry(Lycium barbarumL.)production regions,monocropping of the plants has become one of the major factors affecting sustainable development of the industry of wolfberry production and causing serious economic loss every year in Ningxia. It is,therefore,of great theoretic significance to sustainable development of the industry to explore effects of monocropping of the plants on evolution of the soil microbial community in the soil ecosystem.A wolfberry plantation,the Nanliang Farm in Yingchuan of Ningxia was selected as the subject for the study.The Illumina MiSeq sequencing technique was used to analyze the effects.【Method】 Soil samples were collected form rhizosphere and bulk soils of the monocropping wolfberry fields and control(non-monocropping field)for analysis of diversity and structure of the soil microbial communities,and plant samples were,too,for characterization of plant growth. Total genomic DNA was isolated form the rhizosphere and bulk soils using a Power Soil DNA Isolation Kit. Then V4 sections of 16S rDNA were sequenced with the aid of the Illumina MiSeq system and soil microbial communities in the rhizosphere and bulk soils were analyzed for diversity and structure with QIIME.【Result】It was found that soil available nitrogen and phosphorus were significantly higher in the monocropping field than in the control,while soil pH and electric conductivity exhibited a reverse trend;that monocropping significantly inhibited growth of the replanted wolfberry.The barcoded pyrosequencing data revealed that in the monocropping field,the number of soil bacterial species in the rhizosphere significantly decreased(p<0.05)and the soil bacterial community structure substantially altered as compared with the control. However,no much difference in bacterial community diversity and structure was observed in bulk soil between the two fields. Proteobacteria,Actinobacteria,Gemmatimonadetes,Bacteroidetes,Acidobacteria,Cyanobacteria,F(xiàn)irmicutes,Verrucomicrobia,Chloroflexi and Planctomycetes were the most dominant bacterial phyla in all the soil samples,accounting for 93.8%~96.1% of the total taxon tags. Planctomycetes in rhizosphere significantly decreased in relative abundance in the monocropping field as compared with the control(p< 0.05). The analysis at the genera level also shows that 40 of the total 579 genera of soil bacteria obviously varied in relative abundance between the two treatments(p< 0.05). Pearson’s correlation coefficients analysis also shows that in the bulk soils significantly positive relationships were found between soil pH and Gemmatimonadetes and between nitrate nitrogen content and Proteobacteria,whereas highly negative ones were between Proteobacteria and pH,between Cyanobacteria and total nitrogen content,between Chloroflexi and ammonium nitrogen content,between Actinobacteria and nitrate nitrogen content,between Cyanobacteria and total phosphorus content,and between Firmicutes and available phosphorus content,while in the rhizosphere,positive ones were found between soil pH and Gemmatimonadetes,and between electric conductivity and Planctomycetes,whereas negative ones were between ammonium nitrogen content and Actinobacteria,between available phosphorus content and Gemmatimonadetes,and between available phosphorus content and Planctomycetes.Furthermore,distance based redundancy analysis(db-RDA)indicates that soil pH and available phosphorus content were the major factors affecting structure of soil bacterial community in the bulk soil,explained 41.8% and 35.4% of variances(p<0.05),respectively,whereas none of the soil properties was found responsible for the changes in the soil bacterial community structure in the rhizosphere.【Conclusion】 All the findings in this experiment demonstrate that monocropping ofLycium barbarumL. has caused serious soil problems,which in turn affect activity and composition of the soil bacterial community in the rhizosphere of the replantedLycium barbarumL.
Lycium barbarumL.;Monocropping;Rhizosphere;Bacterial community;16S rRNA
S154.36
A
10.11766/trxb201702070036
* 國(guó)家自然科學(xué)基金項(xiàng)目(31560345,31660188)資助 Supported by the National Natural Science Foundation of China(Nos.31560345,31660188)
? 通訊作者 Corresponding author,E-mail: mafei05@163.com
納小凡(1983—),男,寧夏人,博士,副教授,主要從事植物生理、植物根土互作及植物營(yíng)養(yǎng)學(xué)。E-mail:nxf-0324@163.com
2017-02-07;
2017-04-24;優(yōu)先數(shù)字出版日期(www.cnki.net):2017-06-19
(責(zé)任編輯:盧 萍)