于清波,許杞祥,方宋輝
安徽理工大學(xué)材料科學(xué)與工程學(xué)院,安徽 淮南 232001
銀復(fù)合對(duì)石墨型氮化碳結(jié)構(gòu)及光催化性能的影響
于清波,許杞祥,方宋輝
安徽理工大學(xué)材料科學(xué)與工程學(xué)院,安徽 淮南 232001
為了提高石墨型氮化碳(g-C3N4)的可見(jiàn)光催化性能,利用水熱合成,通過(guò)片狀g-C3N4自組裝法制備了銀復(fù)合的石墨型氮化碳材料,研究了不同硝酸銀加入量對(duì)Ag/g-C3N4復(fù)合材料的結(jié)構(gòu)與光催化性能的影響。采用紫外-可見(jiàn)(UV-Vis)分光光度計(jì)、X射線衍射光譜(XRD)、紅外傅立葉變換光譜(FT-IR)和掃描電子顯微鏡(SEM)對(duì)材料的結(jié)構(gòu)與性能進(jìn)行表征。結(jié)果表明:所得復(fù)合材料由于g-C3N4自組裝行為而形成球狀結(jié)構(gòu),其球形的直徑隨著硝酸銀加入量的增加而減??;與g-C3N4相比,復(fù)合材料具有高的催化性能,可能由于其銀的均勻復(fù)合以及所形成的 3維結(jié)構(gòu);而 Ag(60)/g-C3N4表現(xiàn)出最高的催化活性,原因在于銀離子濃度對(duì)制備的復(fù)合催化劑的光學(xué)性質(zhì)、能帶及結(jié)構(gòu)的影響。
水熱合成 銀/石墨型氮化碳復(fù)合材料 結(jié)構(gòu) 性能
石墨型氮化碳(g-C3N4)具有適中的帶隙寬度、獨(dú)特的電子性質(zhì)以及良好的化學(xué)穩(wěn)定性,作為可見(jiàn)光催化劑在光解水制氫、有機(jī)合成及降解污染物等方面顯示出優(yōu)越性[1-3]。但由于光生載流子存在壽命短和易復(fù)合等缺陷,g-C3N4的催化活性比較低。通過(guò)雜原子摻雜[4-7]、引入空位缺陷[8]、控制微觀結(jié)構(gòu)[9,10]或與其他半導(dǎo)體耦合[11]等手段,可有效提高g-C3N4的催化活性。其中,g-C3N4與貴金屬,尤其是金屬銀復(fù)合[12,13]制備復(fù)合材料,方法簡(jiǎn)捷方便。但是,該方法以往的研究主要集中在將金屬銀沉積在二維片狀 g-C3N4上,很少涉及到多維及大尺度方面的研究。水熱合成法在新穎結(jié)構(gòu)材料的制備與性能改進(jìn)方面得到廣泛的應(yīng)用。劉佳承等[14]通過(guò)水熱合成法制備了二氧化鈦納米棒陣列。汪建德等[15]通過(guò)水熱法制備了不同還原程度的3維還原氧化石墨烯。他們發(fā)現(xiàn),當(dāng)調(diào)節(jié)水熱反應(yīng)溫度時(shí),可制得3維結(jié)構(gòu)石墨烯水凝膠,內(nèi)部存在多孔網(wǎng)狀結(jié)構(gòu)。本工作通過(guò)水熱合成法制備3維球狀的銀復(fù)合石墨型氮化碳材料。采用紫外-可見(jiàn)(UV-Vis)分光光度計(jì)、X射線衍射光譜(XRD)儀、紅外傅里葉變換光譜(FTIR)和掃描電子顯微鏡(SEM)對(duì)復(fù)合材料進(jìn)行表征,研究銀前軀體(硝酸銀)的加入量對(duì)復(fù)合材料微觀結(jié)構(gòu)及光學(xué)性質(zhì)的影響,并考察了復(fù)合材料對(duì)可見(jiàn)光催化降解性能的影響。
首先根據(jù)文獻(xiàn)[16]的方法合成水分散良好的片狀g-C3N4。之后分別在10 mL(濃度為2 mg/mL)的g-C3N4水分散液中加入0.015,0.030和0.060 mL濃度為1 mg/mL的硝酸銀溶液,攪拌均勻后,將3組混合液加入反應(yīng)釜中,然后將反應(yīng)釜放入烘箱中,設(shè)置加熱溫度為120 ℃,加熱時(shí)間10 h。反應(yīng)結(jié)束后,產(chǎn)物經(jīng)離心、洗滌和干燥處理,得到系列銀復(fù)合g-C3N4,記為Ag(x)/g-C3N4,其中,x分別為15,30和60。
樣品形貌在美國(guó)FEI公司的Sirion 200型掃描電子顯微鏡(SEM)上進(jìn)行分析;紅外分析在德國(guó)Bruker公司的Tensor 27型傅立葉紅外光譜(FT-IR)儀上進(jìn)行;采用美國(guó)PE公司的Lamda-900型紫外-可見(jiàn)-近紅外光譜(UV-Vis)儀測(cè)定樣品的可見(jiàn)光吸收;由日本島津公司LabX-6000型X射線衍射(XRD)儀測(cè)定樣品的物相組成,分析條件為以Cu靶Kα1作為輻射電源,工作電壓40 kV,工作電流30 mA。
將5 mg銀復(fù)合g-C3N4分散到濃度為10 mg/L,體積為50 mL的亞甲基藍(lán)溶液中,經(jīng)暗反應(yīng)后進(jìn)行光催化實(shí)驗(yàn)。在設(shè)定時(shí)間間隔內(nèi)收集3 mL樣品,通過(guò)紫外分光光度計(jì)檢測(cè)亞甲基藍(lán)濃度。光催化實(shí)驗(yàn)所使用的光源為帶有波長(zhǎng)大于420 nm濾波片的300 W氙燈。
圖1為g-C3N4,Ag(15)/g-C3N4和Ag(60)/g-C3N4的SEM照片。由圖可知,通過(guò)化學(xué)氧化法制備的g-C3N4為片層狀結(jié)構(gòu)。當(dāng)g-C3N4與硝酸銀混合后經(jīng)水熱合成反應(yīng)得到的Ag/g-C3N4復(fù)合材料為球狀結(jié)構(gòu),如圖1b和c。比較圖1b和c可看出,隨著銀前驅(qū)體加入量的增加,所得復(fù)合材料的球狀結(jié)構(gòu)變得越來(lái)越小,而且更加均勻。
圖1 g-C3N4, Ag(15)/g-C3N4和Ag(60)/g-C3N4的SEM照片F(xiàn)ig.1 SEM images of g-C3N4, Ag(15)/g-C3N4 and Ag(60)/g-C3N4
圖2為g-C3N4和Ag(60)/g-C3N4的XRD圖譜。由圖可見(jiàn),在2θ為27.9°處,g-C3N4存在一個(gè)明顯的衍射峰,這對(duì)應(yīng)于g-C3N4的(002)晶面[16]。而Ag(60)/g-C3N4中該衍射峰向小角偏移到2θ為27°處,這可能是銀離子摻入了 g-C3N4的平面晶格結(jié)構(gòu),較大的銀離子擴(kuò)大了層間距[17]引起的。Ag(60)/g-C3N4中其他 4 個(gè)明顯的布拉格衍射峰分別歸屬于面心立方(fcc)晶型 Ag(111),(200),(220)和(311)晶面的衍射。
圖2 g-C3N4和Ag(60)/g-C3N4的XRD圖譜Fig.2 XRD patterns of g-C3N4 and Ag(60)/g-C3N4
圖3 g-C3N4和Ag(60)/g-C3N4的FTIR圖譜Fig.3 FTIR patterns of g-C3N4 and Ag(60)/g-C3N4
圖3為g-C3N4和Ag(60)/g-C3N4的紅外光譜圖。由圖可知,g-C3N4的吸收峰出現(xiàn)在1 254~1 639 cm-1內(nèi)及 807 cm-1處,與文獻(xiàn)相符[18],分別對(duì)應(yīng) C-N芳環(huán)的伸縮振動(dòng)及 C-N環(huán)的面外伸展振動(dòng)。而Ag(60)/g-C3N4的紅外譜圖與g-C3N4的是相似的,表明銀的引入并沒(méi)有引起二元復(fù)合物結(jié)構(gòu)的變化。
從以上表征發(fā)現(xiàn),可用片狀g-C3N4的自組裝行為說(shuō)明所得Ag/g-C3N4復(fù)合材料的結(jié)構(gòu)。前期研究成果表明[19,20],通過(guò)化學(xué)氧化法所得的水分散性良好的片狀 g-C3N4表面含有羥基、羧基或醛基等含氧官能團(tuán)。這些基團(tuán)不僅可以在反應(yīng)過(guò)程中與銀離子形成化學(xué)鍵或自身形成氫鍵,從而自組裝成球形結(jié)構(gòu),而且其具有還原性,可將銀離子還原成單質(zhì)銀,形成球狀A(yù)g/g-C3N4復(fù)合材料。這種自組裝的3維復(fù)合結(jié)構(gòu),不僅有利于單質(zhì)銀的良好分散,而且與片狀的二維結(jié)構(gòu)相比,其可能更有利于催化性能的改善。
圖4 樣品的可見(jiàn)光催化性能(a)和ln(C0/Ct)-t曲線(b)Fig.4 The photo-catalytic performance of samples(a) and the curves of ln(C0/Ct)-t(b)C0 is initial concentration of methylene blue; Ct is concentration of methylene blue at t time
Ag(x)/g-C3N4系列復(fù)合物及g-C3N4在可見(jiàn)光下對(duì)亞甲基藍(lán)的降解反應(yīng)結(jié)果如圖4所示。與g-C3N4相比,所有與銀復(fù)合后所得復(fù)合材料的催化性能都有所提高。一方面,可能由于單質(zhì)銀良好的電子傳輸能力,避免了g-C3N4光生電子空穴的復(fù)合;另一方面,可能由于復(fù)合材料特殊的3維球狀自組裝結(jié)構(gòu),為均勻的銀分布提供了良好的傳輸通道。這兩方面共同作用提高了復(fù)合材料的光催化性能。由圖4a還可看出,在3種復(fù)合材料中,Ag(60)/g-C3N4表現(xiàn)出最高的催化活性,50 min內(nèi),降解率達(dá)到29%。而Ag(30)/g-C3N4和Ag(15)/g-C3N4的降解率則分別為19%和15%,說(shuō)明銀離子含量對(duì)復(fù)合催化劑的可見(jiàn)光催化性能有顯著影響。圖4b表明,復(fù)合催化劑的光降解反應(yīng)遵循一級(jí)反應(yīng)動(dòng)力學(xué),Ag(60)/g-C3N4的速率常數(shù)分別為 Ag(30)/g-C3N4和Ag(15)/g-C3N4的1.1和1.3倍。這可能是由于不同Ag(x)/g-C3N4復(fù)合物微觀結(jié)構(gòu)的不同(如圖1b和c),進(jìn)而影響其對(duì)可見(jiàn)光吸收,導(dǎo)致其光催化性能的不同。
圖5 Ag(15)/g-C3N4和Ag(60)/g-C3N4的UV-Vis圖譜Fig.5 UV-Vis spectra of Ag(15)/g-C3N4 and Ag(60)/g-C3N4
圖5為Ag(60)/g-C3N4和Ag(15)/g-C3N4的UV-Vis譜圖,與Ag(15)/g-C3N4相比,Ag(60)/g-C3N4的可見(jiàn)光吸收范圍更廣。利用公式Eg = 1 240 / λg(Eg為禁帶寬度,eV;λg為吸收波長(zhǎng)閾值,nm)計(jì)算出兩者的帶隙能分別為2.75和2.40 eV。這說(shuō)明銀離子對(duì)制備的復(fù)合催化劑的光學(xué)性質(zhì)及能帶結(jié)構(gòu)有顯著影響。
通過(guò)水熱合成法可以制備球狀的Ag/g-C3N4復(fù)合材料,其球狀結(jié)構(gòu)的大小與硝酸銀的加入量有關(guān)。在10 mL g-C3N4水分散液(2 mg/L)中加入0.060 mL硝酸銀溶液(1 mg/L)制得Ag(60)/g-C3N4,其表現(xiàn)出較好的光催化性能。銀離子濃度對(duì)制備的復(fù)合催化劑的光學(xué)性質(zhì)及能帶結(jié)構(gòu)有顯著影響。
[1]Zhang J, Zhang G, Chen X, et al.Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light[J].Angew Chem Int Edit, 2012, 51(13): 3183-3187.
[2]Zhang Y, Mori T, Niu L, et al.Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion[J].Energ Environ Sci, 2011, 4(11): 4517-4521.
[3]Lee E, Jun Y, Hong W, et al.Cubic mesoporous graphitic carbon (IV) nitride: an all-in-one chemosensor for selective optical sensing of metal ions[J].Angew Chem Int Edit, 2010, 49(50): 9706-9710.
[4]Lin Z, Wang X.Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis[J].Angew Chem Int Edit, 2013, 52(6): 1735-1738.
[5]Hou Y, Laursen A B, Zhang J, et al.Layered nanojunctions for hydrogen-evolution catalysis[J].Angew Chem Int Edit, 2013, 52(13):3621-3625.
[6]Yan D, Wang X, Arne T, et al.Making metal-carbon nitride heterojunctions for improved photocatalytic hydrogen evolution with visible light[J].ChemCatChem, 2010, 2(7): 834-838.
[7]Zhang J, Sun J, Kazuhiko M, et al.Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis[J].Energy Environ Sci, 2011, 4: 675-678.
[8]Niu P,Liu G,Cheng H.Nitrogen vacancy-promoted photocatalytic activity of graphitic ca-rbonnitride[J].J PhysChem C, 2012, 116(20):11013-11018.
[9]Wang X, Kazuhiko M, Chen X, et al.Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light[J].J Am Chem Soc, 2009, 131(5): 1680-1681.
[10]Li X, Markus A.Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott-Schottky heterojunctions for catalysis[J].Chem Soc Rev, 2013, 42: 6593-6604.
[11]Yu Q, Li X, Zhang L, et al.Synthesize of PANI/g-C3N4composites by interfacial polymerization method and study of the visible-light driven photocatalytic performance of the composites[J].Journal of Polymer Materials, 2015, 32(4): 417-428.
[12]Yan S C, Li Z S, Zou Z G.Photodegradation performance of g-C3N4fabricated by directly heating melamine[J].Langmuir, 2009, 25:10397-10401.
[13]Meng Y, Shen J, Chen D, et al.Photodegradation performance of methylene blue aqueous solution on Ag/g-C3N4catalyst[J].Rare Metals, 2011, 30(1): 276-279.
[14]劉佳承, 梅海林, 唐立丹,等.水熱合成工藝對(duì) TiO2納米棒陣列形貌和結(jié)構(gòu)的影響[J].遼寧工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2016,36(3): 207-210.Liu Jiacheng, Mei Hailin, Tang Lidan, et al.Effect of hydrothermal parameter on structure properties of TiO2nanostructure arrays[J].Journal of Liaoning University of Technology (Natural Science Edition), 2016, 36(3): 207-210.
[15]汪建德, 彭同江, 孫紅娟, 等.水熱反應(yīng)溫度對(duì)三維還原氧石墨烯的形貌、結(jié)構(gòu)和超級(jí)電容性能的影響[J].2014, 30(11):2077-2084.Wang Jiande, Peng Tongjiang, Sun Hongjuan, et al.Effect of the hydrothermal reaction temperature on three-dimensional reduced graphene oxide's appearance, structure and super[J].Acta Phys-Chim Sin, 2014, 30(11): 2077-2084.
[16]Li H, Sun B, Sui L, et al.Preparation of water-dispersible porous g-C3N4with improved photocatalytic activity by chemical oxidation[J].Phys Chem Chem Phys, 2015, 17(5): 3309-3315.
[17]張 健, 王彥娟, 胡紹爭(zhēng).鉀離子摻雜對(duì)石墨型氮化碳光催化劑能帶結(jié)構(gòu)及光催化性能的影響[J].物理化學(xué)學(xué)報(bào), 2015, 31(1):159-165.Zhang Jian, Wang Yanjuan, Hu Shaozheng.Effect of K+doping on the band structure and photocatalytic performance of graphitic carbon nitride photocatalysts[J].Acta Phys-Chim Sin, 2015, 31(1): 159-165.
[18]Yu Q, Li X, Zhang M.One-step fabrication and high photocatalytic activity of porous graphitic carbon nitride synthesised via direct polymerization of dicyandiamide without templates[J].Micro Nano Lett, 2014, 9(1): 1-5.
[19]Yu Q, Hu K, Wang C, et al.Ag NPS/g-C3N4nanosheets nanocomposites used for SERS nanosensors[J].Spectrosc Spect Anal, 2017, (6):1987-1992.
[20]Yu Qingbo, Li Xianhua, Gao Junsan, et al.Self-assembled g-C3N4nanosheets by Ca2+linkage[J].Russ J Phys Chem A+, 2017, 91 (5):946-950.
Effect of Ag Composite on the Structure and Photocatalytic Performance of Graphitic Carbon Nitride
Yu Qingbo, Xu Qixiang, Fang Songhui
Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
To improve the visible-light photocatalytic performance of graphitic-type carbon nitride (g-C3N4),Ag/g-C3N4composites graphite carbon nitride was prepared by hydrothermal synthesis of flake g-C3N4self-assembly method.The effects of adding amounts of silver nitrate on the structure and photocatalytic performance of Ag/g-C3N4composites were investigated.Ultraviolet visible spectrophotometer (UV-Vis),X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy(SEM) were used to characterize the structure and properties of the composites.The results indicated that the resulting composite had a spherical structure due to the self-assembly behavior of g-C3N4, and its spherical diameter decreased with the increase of silver nitrate.Compared with g-C3N4, the composite material had high catalytic performance, possibly due to its uniform silver composition and the formation of the three-dimensional structure.Ag(60)/g-C3N4exhibited the highest catalytic activity because of the influence of the silver ion concentration on optical properties, band and structure of the prepared composite catalyst.
hydrothermal method; silver/graphitic-type carbon nitride composite; structure; performance
O643.36
A
1001—7631 ( 2017 ) 04—0380—05
10.11730/j.issn.1001-7631.2017.04.0380.05
2017-07-12;
2017-08-01。
于清波(1978—),女,副教授。E-mail: 24003526@qq.com。
國(guó)家自然科學(xué)基金(21401001)。