謝元華, 相 陽(yáng), 梁?jiǎn)㈧? 李現(xiàn)瑾, 韓 進(jìn), 由美雁, 朱 彤
東北大學(xué)機(jī)械工程與自動(dòng)化學(xué)院, 遼寧 沈陽(yáng) 110819
流體剪切與超聲空化破解剩余污泥的參數(shù)優(yōu)化
謝元華, 相 陽(yáng), 梁?jiǎn)㈧? 李現(xiàn)瑾, 韓 進(jìn), 由美雁, 朱 彤*
東北大學(xué)機(jī)械工程與自動(dòng)化學(xué)院, 遼寧 沈陽(yáng) 110819
為提高剩余污泥的破解效果并降低能耗,采用FS(fluid shear,流體剪切)、UC(ultrasonic cavitation,超聲空化)、FS和UC聯(lián)合工藝(FS-UC,UC-FS)破解剩余污泥,并應(yīng)用單因素試驗(yàn)結(jié)合響應(yīng)面法對(duì)聯(lián)合工藝進(jìn)行優(yōu)化. 結(jié)果表明:FS對(duì)剩余污泥破解效果一般,只在開(kāi)始階段具有較好效果,隨作用時(shí)間延長(zhǎng),破解效果未有顯著提高甚至下降. UC對(duì)剩余污泥破解效果明顯,隨作用時(shí)間延長(zhǎng),破解效果顯著提升,但能耗也隨之增大,EDR(energy disintegration ratio,效能比)明顯下降. 相同作用時(shí)間下,UC破解效果優(yōu)于FS破解效果,UC破解剩余污泥的DDCOD(degree of disintegration,破解率)與EDR均明顯高于FS方法. 單因素試驗(yàn)得出的較優(yōu)FS作用時(shí)間范圍為2~8 min,較優(yōu)UC作用時(shí)間范圍為5~15 min. 響應(yīng)面法試驗(yàn)結(jié)果顯示,聯(lián)合工藝的剩余污泥破解效果和能量利用率均優(yōu)于單一方法,聯(lián)合工藝中FS-UC工藝的破解效果優(yōu)于UC-FS工藝. FS-UC工藝的最佳參數(shù):FS處理5.6 min再UC處理15.0 min,該條件下剩余污泥實(shí)際DDCOD為50.8%,EDR為26.8%. UC-FS工藝的最佳參數(shù):先UC作用15.0 min再FS作用7.8 min,該條件下剩余污泥實(shí)際DDCOD為36.5%,EDR為17.1%. 研究顯示,以DDCOD和EDR為指標(biāo),4種工藝的高效性順序?yàn)镕S-UC>UC-FS>UC>FS,其中FS-UC工藝具有能耗低、破解效率高的特點(diǎn),是4種工藝中剩余污泥破解效果最好的一種工藝.
廢物處理; 優(yōu)化設(shè)計(jì); 降解; 流體剪切; 超聲空化; 剩余污泥
城市污水處理廠運(yùn)行過(guò)程中產(chǎn)生大量剩余污泥,如果處理不當(dāng)將對(duì)生態(tài)環(huán)境造成極其嚴(yán)重的影響. 剩余污泥厭氧消化技術(shù)是處置剩余污泥的有效途徑. 研究[1]表明,剩余污泥厭氧消化過(guò)程中污泥水解緩慢是導(dǎo)致污泥消化效率不高的主要原因,將剩余污泥進(jìn)行預(yù)處理可以有效提高厭氧消化效率.
目前,剩余污泥預(yù)處理技術(shù)繁多,一般可分為物理法、機(jī)械法、化學(xué)法、生物法及物理、機(jī)械與化學(xué)聯(lián)合法等[2-4]. FS(fluid shear,流體剪切)是機(jī)械預(yù)處理方法的一種. LEE等[5]采用球磨法預(yù)處理剩余污泥,ρ(SCOD)(SCOD為溶解性化學(xué)需氧量)從 2 000 mg/L 增至 9 000 mg/L. Clarke等[6]采用高壓均質(zhì)設(shè)備破解剩余污泥,對(duì)細(xì)胞破解的流體動(dòng)力學(xué)進(jìn)行分析,流體以超過(guò)100 m/s的速度通過(guò)限流狹縫作用于細(xì)胞,流體剪切力是導(dǎo)致細(xì)胞破損碎裂的主要原因. ZHANG等[7]研究發(fā)現(xiàn),均質(zhì)壓力和均質(zhì)次數(shù)對(duì)剩余污泥的破解存在著相關(guān)性,優(yōu)化高壓均質(zhì)工藝參數(shù),可提高高壓均質(zhì)破解性能和降低能耗. ZHANG等[8]研究表明,通過(guò)增加均質(zhì)壓力和均質(zhì)使用周期,可提高厭氧污泥消化的效率. 韓進(jìn)等[9]采用高速轉(zhuǎn)盤對(duì)剩余污泥進(jìn)行破解發(fā)現(xiàn),轉(zhuǎn)盤高速旋轉(zhuǎn)所產(chǎn)生的流體剪切力是導(dǎo)致剩余污泥破解的主要原因,破解污泥的中值粒徑可達(dá)15 μm以下,DDCOD(degree of disintegration,破解率)在50%以上. 轉(zhuǎn)盤旋轉(zhuǎn)速度(5 000 r/min)高,剩余污泥破解時(shí)間較短;而轉(zhuǎn)盤旋轉(zhuǎn)速度(3 500 r/min)較低時(shí),剩余污泥破解時(shí)間較長(zhǎng),但在后期會(huì)使剩余污泥快速增溶,應(yīng)該選擇哪種方法可由成本決定[10].
研究[11-15]表明,UC(ultrasonic cavitation,超聲空化)對(duì)破碎細(xì)菌細(xì)胞壁具有良好的效果,其空化作用能夠分散絮體結(jié)構(gòu)、破壞細(xì)菌細(xì)胞、釋放胞內(nèi)物質(zhì)、將高分子物質(zhì)分解為小分子物質(zhì). Tiehm等[16]研究表明,剩余污泥在超聲波(3.6 kW、31 kHz)作用下 64 s,ρ(SCOD)可從630 mg/L增至 2 270 mg/L. Chiu等[17]采用投堿(1 mol/L)和超聲波(120 W,20 kHz)結(jié)合的方法處理剩余污泥,可使剩余污泥中78%的TCOD(總化學(xué)需氧量)溶出. Jung等[18]比較了兩個(gè)單頻超聲和雙頻超聲波對(duì)剩余污泥解體的情況,雙頻(28 kHz+40 kHz)超聲波比單頻(28 kHz或40 kHz)超聲波破解剩余污泥更有效. Akin[19]研究不同超聲能密度對(duì)剩余污泥解體情況,發(fā)現(xiàn)超聲聲能密度顯著影響SCOD的釋放. Gr?nroos等[20]用超聲破解剩余污泥,短時(shí)高超聲功率能源效率要高于長(zhǎng)時(shí)低超聲功率. 在小距離探頭中剩余污泥的超聲效率與輸入功率呈線性上升.
研究顯示,UC在單獨(dú)破解剩余污泥的方法中能耗最低[21],F(xiàn)S對(duì)菌膠團(tuán)的破解效果在破解開(kāi)始階段良好[22],UC與FS具有互補(bǔ)的特點(diǎn). 相關(guān)研究[23-34]表明,作用方式不同的剩余污泥破解方法聯(lián)合作用時(shí)效果可能彼此增強(qiáng),獲得更好的剩余污泥破解效果. 該研究采用FS和UC單獨(dú)處理及聯(lián)合工藝對(duì)剩余污泥進(jìn)行破解,采用DDCOD和EDR(energy disintegration ratio,效能比)進(jìn)行評(píng)價(jià),并運(yùn)用CCD(central composite design,中心組合設(shè)計(jì))方法進(jìn)行優(yōu)化設(shè)計(jì),研究各方法的破解效果和機(jī)理,以期探究FS和UC聯(lián)合工藝的最優(yōu)組合參數(shù).
1.1試驗(yàn)裝置
流體剪切采用組織搗碎機(jī)(美國(guó)Waring,HGB550),轉(zhuǎn)速為 24 000 r/min,電機(jī)功率746 W. 超聲空化采超聲波細(xì)胞破碎儀(南京舜瑪儀器設(shè)備有限公司,GM-1200D),工作頻率為20 kHz,功率為600 W.
1.2剩余污泥來(lái)源
剩余污泥采用筆者所在實(shí)驗(yàn)室培養(yǎng)的活性污泥. 試驗(yàn)用剩余污泥的ρ(MLSS)(MLSS為混合液懸浮固體)為 8 370 mg/L,ρ(SCOD)為377.5 mg/L,剩余污泥平均中位徑為120 μm.
1.3試驗(yàn)設(shè)計(jì)
1.3.1FS和UC單獨(dú)處理
由于試驗(yàn)所用組織搗碎機(jī)轉(zhuǎn)速固定,流體剪切強(qiáng)度的變化只能由改變作用時(shí)間來(lái)反映,因此考察FS時(shí)間對(duì)剩余污泥破解的影響. 在轉(zhuǎn)速為 24 000 r/min的條件下,考察作用時(shí)間分別為3、7、10、17 min下的處理效果. 每次剩余污泥處理量均為500 mL. 提取破解前后剩余污泥上清液檢測(cè)ρ(SCOD).
研究[25]表明,UC時(shí)間、頻率、輸入能量均對(duì)剩余污泥破解效果有影響,但UC時(shí)間對(duì)破解效果的影響最大. 在20 kHz、600 W、脈沖比為3∶3的條件下,考察作用時(shí)間分別為3、7、10、17 min下的處理效果. 每次剩余污泥破解量為500 mL. 提取破解前后剩余污泥上清液檢測(cè)ρ(SCOD).
1.3.2FS與UC聯(lián)合處理工藝
對(duì)FS-UC(先FS再UC)與UC-FS(先UC再FS)兩種工藝破解剩余污泥效果進(jìn)行對(duì)比研究. 以FS和UC的處理時(shí)間為自變量,以剩余污泥的DDCOD為因變量進(jìn)行結(jié)果分析. 由單因素試驗(yàn)結(jié)果,確定FS時(shí)間和UC優(yōu)化時(shí)間范圍,采用CCD方法確定試驗(yàn)方案,試驗(yàn)因素與水平見(jiàn)表1.
表1 試驗(yàn)因素水平表
1.4分析方法
DDCOD計(jì)算公式[27]:
(1)
式中:CODS為破解后剩余污泥上清液的ρ(SCOD),mgL;CODSO為破解前剩余污泥上清液的ρ(SCOD),mgL;CODNaOH為堿解ρ(SCOD),mgL.
破解剩余污泥不僅要考慮DDCOD,還要考慮能量的消耗. 破解剩余污泥的能量消耗常用ES(比能耗,指一段時(shí)間內(nèi)破解單位體積剩余污泥的能量輸入)來(lái)表示[28],計(jì)算公式:
ES=P·t/(V·TS)
(2)
式中:P為破解功率,kW;t為破解時(shí)間,s;V為剩余污泥體積,L;TS為剩余污泥總固體濃度,gL.
采用EDR作為破解剩余污泥能量利用的考察指標(biāo),其物理意義是消耗一定能量處理一定量剩余污泥獲得的剩余污泥DDCOD. EDR越大說(shuō)明該方法能量利用率越高. EDR的計(jì)算公式:
EDR=DCCOD/ES×100%
(3)
2.1流體剪切和超聲空化單因素試驗(yàn)結(jié)果
FS和UC單獨(dú)處理破解剩余污泥的趨勢(shì)如圖1所示. 由圖1(a)可見(jiàn),隨著處理時(shí)間的延長(zhǎng),UC的破解效果優(yōu)于FS.
FS的DDCOD在最初階段(7 min)隨時(shí)間延長(zhǎng)逐漸增加,但到10 min時(shí),DDCOD增加緩慢,到17 min時(shí)出現(xiàn)了下降. 這可能是由于在破解初期,較大的菌膠團(tuán)被破碎成細(xì)胞單體和小顆粒的菌膠團(tuán),使DDCOD逐漸增加. 隨著時(shí)間延長(zhǎng),剩余污泥中的微小菌膠團(tuán)和細(xì)菌不斷增加,而流體剪切力不易對(duì)這些菌膠團(tuán)和細(xì)菌進(jìn)行破解,故產(chǎn)生了DDCOD不再上升的現(xiàn)象[29]. 同時(shí)隨著破解的不斷進(jìn)行,破解液溫度升高,可能導(dǎo)致部分小分子發(fā)生再凝聚,這也是DDCOD后期不再上升的原因.
UC破解剩余污泥的DDCOD在開(kāi)始階段(3~7 min)增長(zhǎng)緩慢,10 min左右時(shí)迅速提高,但超過(guò)10 min 后DDCOD增加放緩. 其原因可能是在破解初期,剩余污泥多以菌膠團(tuán)的形式存在,使能量被吸收,效果減弱. 另外,剩余污泥破解的有效空穴直徑為20~80 μm[30],與剩余污泥中菌膠團(tuán)大小相當(dāng),并且菌膠團(tuán)分布不均,也影響了破解的效果. 但隨著時(shí)間延長(zhǎng),大顆粒菌膠團(tuán)被分解成微菌膠團(tuán)和細(xì)菌單體,DDCOD迅速提高. 但是,由于微小菌膠團(tuán)和細(xì)菌單體被破解,數(shù)量減少,超聲空化作用對(duì)剩余污泥的破解效果受到影響,造成剩余污泥的破解效果增加放緩.
由圖1(b)可見(jiàn),F(xiàn)S破解的EDR隨作用時(shí)間的增加呈下降趨勢(shì). 3 min時(shí),EDR較高,但由于作用時(shí)間短,剩余污泥DDCOD較低. 7 min時(shí),雖然EDR有所下降但剩余污泥DDCOD有了明顯提高. 10 min時(shí),DDCOD雖然有所上升,但是EDR的下降更為明顯,這說(shuō)明單純延長(zhǎng)FS時(shí)間不能有效提高剩余污泥DDCOD,還會(huì)造成能量的浪費(fèi).
圖1 FS、UC破解剩余污泥的DDCOD與EDRFig.1 DDCOD and EDR of excess sludge disintegration by FS and UC
UC的EDR先下降,到10 min時(shí)略有上升,之后繼續(xù)下降. 雖然在3 min時(shí)EDR較高,但由于作用時(shí)間短,剩余污泥DDCOD相對(duì)低. UC作用3~17 min,EDR呈下降趨勢(shì),但在10 min左右有一個(gè)峰值,能量利用率較大. 在17 min又呈下降趨勢(shì),說(shuō)明延長(zhǎng)時(shí)間能耗利用不會(huì)顯著增加. 為達(dá)到最優(yōu)的剩余污泥處理效果,需要選擇一個(gè)適當(dāng)?shù)腢C時(shí)間,既實(shí)現(xiàn)充分的剩余污泥破解,又具有較高的EDR.
綜合分析可知,在單因素作用下,F(xiàn)S處理7 min和UC處理10 min具有較高的DDCOD和EDR. 因此選擇FS處理2~8 min,UC處理5~15 min作為聯(lián)合工藝的因素水平范圍.
2.2UC與FS聯(lián)合破解剩余污泥的優(yōu)化試驗(yàn)
2.2.1FS-UC工藝
根據(jù)單因素試驗(yàn)確定的因素水平,設(shè)計(jì)響應(yīng)面試驗(yàn),并進(jìn)行破解研究. 對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行擬合,獲得FS時(shí)間和UC時(shí)間對(duì)剩余污泥DDCOD影響的二次多項(xiàng)回歸方程,其中A代表FS時(shí)間,B代表UC時(shí)間.
Y1=38.46+2.77A+13.19B-6.54A2
(4)
對(duì)模型方程進(jìn)行方差和顯著性分析,模型的F值為18.67,(Prob>F)=0.000 3,小于0.05,回歸方程對(duì)FS時(shí)間和UC時(shí)間兩個(gè)因素與響應(yīng)值之間的非線性關(guān)系顯著,說(shuō)明該研究的方法可靠. 在設(shè)計(jì)范圍內(nèi),該模型的R2(確定系數(shù))為 0.861 6,AdjR2(調(diào)整后的確定系數(shù))為0.815 4,說(shuō)明模型能解釋86.16%響應(yīng)值的變化,具有較好的回歸性. 一般信噪比(Adeq Precision)大于4才可進(jìn)行模擬,該研究的信噪比為13.252,符合要求.
結(jié)合回歸方程和各因素間關(guān)系得到FS-UC工藝的剩余污泥DDCOD響應(yīng)曲面. 由圖2可見(jiàn),F(xiàn)S時(shí)間和UC時(shí)間存在一定的交互作用,但并不顯著. 剩余污泥DDCOD與UC時(shí)間基本呈線性關(guān)系,隨著UC時(shí)間的增加DDCOD也隨之增加,這與之前單因素試驗(yàn)的結(jié)論吻合.
圖2 FS時(shí)間和UC時(shí)間對(duì)DDCOD的交互影響Fig.2 Interactive effects of FS time and UC time on DDCOD
而FS時(shí)間對(duì)剩余污泥DDCOD的影響近似呈拋物線形式,隨FS時(shí)間的增加先增再減. 而且FS時(shí)間變化對(duì)于DDCOD的影響較為平緩,說(shuō)明FS作用相對(duì)于UC作用是一個(gè)次要影響因素. 通過(guò)回歸方程求得最優(yōu)條件為先FS處理5.6 min再UC處理15 min,該條件下DDCOD為51.9%,EDR為27.4%.
2.2.2UC-FS工藝
UC-FS工藝中FS時(shí)間和UC時(shí)間對(duì)剩余污泥DDCOD影響的二次多項(xiàng)回歸方程如下,其中C代表UC時(shí)間,D代表FS時(shí)間.
Y1=23.43+7.68C+2.68D-0.63CD+
0.8C2+3.96D2
(5)
對(duì)模型方程進(jìn)行方差和顯著性分析,模型的F值為38.74,(Prob>F)<0.000 1<0.05,回歸方程對(duì)FS時(shí)間和UC時(shí)間兩個(gè)因素與響應(yīng)值之間的非線性關(guān)系顯著,說(shuō)明該研究的方法可靠. 在設(shè)計(jì)范圍內(nèi),該模型的R2為 0.965 1,AdjR2為 0.940 2,說(shuō)明模型能解釋96.51%響應(yīng)值的變化,模型具有較好的回歸性;信噪比為19.221,符合要求.
結(jié)合回歸方程和各因素間關(guān)系得到UC-FS工藝的剩余污泥DDCOD響應(yīng)曲面圖. 由圖3可見(jiàn),F(xiàn)S時(shí)間和UC時(shí)間對(duì)剩余污泥DDCOD的影響趨勢(shì)與圖2相同,但不同的是最終剩余污泥DDCOD較低. 通過(guò)回歸方程求得最優(yōu)條件為先UC處理15 min再FS處理7.8 min,該條件下DDCOD為37.4%,EDR為17.6%. UC-FS的最優(yōu)值相比于FS-UC的最優(yōu)值不僅能耗更高,而且DDCOD也相差較大,說(shuō)明FS-UC工藝優(yōu)于UC-FS工藝.
圖3 UC時(shí)間和FS時(shí)間對(duì)DDCOD的交互影響Fig.3 Interactive effects of UC time and FS time on DDCOD
2.2.3優(yōu)化條件下的試驗(yàn)驗(yàn)證
在最佳試驗(yàn)條件下進(jìn)行了驗(yàn)證試驗(yàn). 先FS作用5.6 min再UC作用15 min得到剩余污泥DDCOD為50.8%,EDR為26.8%;先UC作用15 min再FS作用7.8 min得到剩余污泥DDCOD為36.5%,EDR為17.1%. 結(jié)果均與模擬值接近,進(jìn)一步驗(yàn)證了模型的有效性.
2.3剩余污泥破解方法的對(duì)比
在作用總時(shí)間相同的情況下,不同破解方法破解剩余污泥后DDCOD、EDR情況如圖4所示. 由圖4可見(jiàn),4種剩余污泥破解工藝的高效性順序?yàn)镕S-UC>UC-FS>UC>FS. FS破解剩余污泥的DDCOD一般,延長(zhǎng)破解時(shí)間,剩余污泥DDCOD沒(méi)有明顯提高,EDR有所降低. UC對(duì)剩余污泥的破解效果明顯,延長(zhǎng)作用時(shí)間,DDCOD也隨之提高,但EDR也下降顯著. FS和UC聯(lián)合工藝比單獨(dú)使用FS和UC方法破解剩余污泥具有更好的效果,不僅DDCOD隨著破解時(shí)間的延長(zhǎng)增加顯著,而且能量利用率也遠(yuǎn)高于單一方法. FS-UC是對(duì)剩余污泥破解效果最好的工藝,不但有較高的DDCOD,而且能量利用率也最高.
圖4 4種工藝破解剩余污泥的DDCOD與EDRFig.4 DDCOD and EDR of excess sludge disintegration by 4 processes
a) 相對(duì)其他單一破解方法,單獨(dú)UC破解剩余污泥效果更好. 增加破解時(shí)間,破解效果會(huì)顯著提高,但能耗也隨之增大. FS方法破解剩余污泥,破解的開(kāi)始階段具有較好的破解效果,增加作用時(shí)間,不能有效提高破解效果.
b) FS與UC聯(lián)合作用破解剩余污泥比單一方法具有更好的破解效果. 在聯(lián)合工藝中,F(xiàn)S-UC要優(yōu)于UC-FS. 剩余污泥中的大顆粒菌膠團(tuán)在流體剪切作用下被打散,形成微小的菌膠團(tuán)或細(xì)菌單體并均勻分布,而超聲空化對(duì)均勻分布的細(xì)菌或微小菌膠團(tuán)具有顯著的破解作用,提高了剩余污泥的破解效果.
c) FS-UC工藝的優(yōu)化參數(shù):先FS處理5.6 min再UC處理15 min,該條件下剩余污泥實(shí)際DDCOD為50.8%,EDR為26.8%.
[1] TORECI I,KENNEDY K J,DROSTE R L.Evaluation of continuous mesophilic anaerobic sludge digestion after high temperature microwave pretreatment[J].Water Research,2009,43(5):1273-1284.
[2] 郝曉地,蔡正清,甘一萍.剩余污泥預(yù)處理技術(shù)概覽[J].環(huán)境科學(xué)學(xué)報(bào),2011,31(1):1-12.
HAO Xiaodi,CAI Zhengqing,GAN Yiping.Review of pretreatment technologies for excess sludge[J].Acta Scientiae Circumstantiae,2011,31(1):1-12.
[3] 邵立明,李天水,王天烽,等.剩余污泥熱水溶性有機(jī)物的提取方法優(yōu)化研究[J].環(huán)境科學(xué)研究,2014,27(1):71-77.
SHAO Liming,LI Tianshui,WANG Tianfeng,etal.Optimization for extraction of hot water-soluble organic matter from waste activated sludge[J].Research of Environmental Sciences,2014,27(1):71-77.
[4] 方琳,劉振華,陶虎春.超臨界水氧化法處理剩余污泥的參數(shù)優(yōu)化[J].環(huán)境科學(xué)研究,2011,24(9):1029-1034.
FANG Lin,LIU Zhenhua,TAO Huchun.Parameter optimization of excess sludge treatment by supercritical water oxidation[J].Research of Environmental Sciences,2011,24(9):1029-1034.
[5] LEE M J,KIM T H,YOO G Y,etal.Reduction of sewage sludge by ball mill pretreatment and Mn catalytic ozonation[J].KSCE Journal of Civil Engineering,2010,14(5):693-697.
[6] CLARKE A,PRESCOTT T,KHAN A,etal.Causes of breakage and disruption in a homogeniser[J].Applied Energy,2010,87(12):3680-3690.
[7] ZHANG Yuxuan,ZHANG Pamyue,MA Baoqiang,etal.Sewage sludge disintegration by high-pressure homogenization:a sludge disintegration mode[J].Journal of Environmental Sciences,2012,24(5):814-820.
[8] ZHANG Sheng,ZHANG Panyue,ZHANG Guangming,etal.Enhancement of anaerobic sludge digestion by high-pressure homogenization[J].Bioresource Technology,2012,118(4):496-501.
[9] 韓進(jìn),朱彤,今井剛,等.基于高速轉(zhuǎn)盤法的剩余污泥可溶化處理[J].化工學(xué)報(bào),2008,59(2):478-483.
HAN Jin,ZHU Tong,IMAI T,etal.Solubilization of excess sludge by high speed rotary disk[J].Journal of Chemical Industry and Engineering (China),2008,59(2):478-483.
[10] IMAI T,LIU Y Y,UKITA M,etal.Solubilization of sewage sludge to improve anaerobic digestion[M]//WANG L K,TAY J H,TAY S T L,etal.Environmental Bioengineering.New Jersey:Humana Press,2010:75-122.
[11] ZIELEWICZ E.Effects of ultrasonic disintegration of excess sewage sludge[J].Applied Acoustics,2016,103(10):182-189.
[12] 薛玉偉,季民,李文彬.超聲功率對(duì)超聲破解污泥的影響[J].化工學(xué)報(bào),2007,58(4):1037-1041.
XUE Yuwei,JI Min,LI Wenbin.Effect of ultrasonic power on waste activated sludge disintegration[J].Journal of Chemical Industry and Engineering (China),2007,58(4):1037-1041.
[13] PILLI S,BHUNIA P,YAN S,etal.Ultrasonic pretreatment of sludge:a review[J].Ultrasonics Sonochemistry,2011,18(1):1-18.
[14] HE Junguo,WAN Tian,ZHANG Guangming,etal.Ultrasonic reduction of excess sludge from activated sludge system:energy efficiency improvement via operation optimization[J].Ultrasonics Sonochemistry,2011,18(1):99-103.
[15] LI Huan,JIN Yiying,RASOOL B M,etal.Effects of ultrasonic disintegration on sludge microbial activity and dewaterability[J].Journal of Hazardous Materials,2009,161(2):1421-1426.
[16] TIEHM A,NICHEL K,NEIS U.The use of ultrasound to accelerate the anaerobic digestion of sewage sludge[J].Water Science and Technology,1997,36(36):121-128.
[17] CHIU Y C,CHANG C N,LIN J G,etal.Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion[J].Water Science and Technology,1997,36 (1l):155-162.
[18] JUNG Y,KO H,JUNG B,etal.Application of ultrasonic system for enhanced sewage sludge disintegration:a comparative study of single-and dual-frequency[J].KSCE Journal of Civil Engineering,2011,15(5):793-797.
[19] AKIN B.Waste activated sludge disintegration in an ultrasonic batch reactor[J].Clean,2008,36(4):360-365.
[20] GR?NROOS A,KYLL?NEN H,KORPIJRVI K,etal.Ultrasound assisted method to increase soluble chemical oxygen demand (SCOD) of sewage sludgefor digestion[J].Ultrasonics Sonochemistry,2005,12(1):115-120.
[21] 謝波,郭亮,李小明,等.三種預(yù)處理方法對(duì)污泥的破解效果[J].中國(guó)環(huán)境科學(xué),2008,28(5):417-421.
XIE Bo,GUO Liang,LI Xiaoming,etal.Three kinds pretreatment technique on sludge disintegration effect[J].China Environmental Science,2008,28(5):417-421.
[22] KAMPAS P,PARSONS S A,PEARCE P,etal.Mechanical sludge disintegration for the production of carbon source for biological nutrient removal[J].Water Research,2007,41(8):1734-1742.
[23] KIM D H,JEONG E,OH S E,etal.Combined (alkaline+ultrasonic) pretreatment effect on sewage sludge disintegration[J].Water Research,2010,44(10):3093-3100.
[24] JIN Yiying,LI Huang,MAHAR R B,etal.Combined alkaline and ultrasonic pretreatment of sludge before aerobic digestion[J].Journal of Environmental Sciences,2009,21(3):279-284.
[25] 由美雁.流體剪切與超聲聯(lián)合作用下剩余污泥的破解研究[D].沈陽(yáng):東北大學(xué),2014:101-102.
[26] EATON A D,CLESCERI L S,GREENBERG A E.Standard methods for the examination of water and wastewater[M].19th ed.Washington DC,USA:APHA,1995.
[27] SCHMITZ U,BERGER C R,ORTH H.Protein analysis as a simple method for the quantitative assessment of sewage sludge disintegration[J].Water Research,2000,34(14):3682-3685.
[28] RAI C L,STRUENKMANN G,MUELLER J,etal.Influence of ultrasonic disintegration on sludge growth reduction and its estimation by respirometry[J].Environmental Science & Technology,2004,38(21):5779-5785.
[29] 韓進(jìn),謝里陽(yáng),朱彤,等.剩余污泥高速轉(zhuǎn)盤破解及破解液厭氧消化特性[J].化學(xué)工程,2010,38(10):90-95.
HAN Jin,XIE Liyang,ZHU Tong,etal.Disintegration of excess sludge by high speed rotary disk and anaerobic digestibility of its disintegrated sludge[J].Chemical Engineering (China),2010,38(10):90-95.
[30] TIEHM A,NICKEL K,ZELLHORN M,etal.Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization[J].Water Research,2001,35(8):2003-2009.
ParameterOptimizationinExcessSludgeDisintegrationbyFluidShearandUltrasonicCavitation
XIE Yuanhua, XIANG Yang, LIANG Qiyu, LI Xianjin, HAN Jin, YOU Meiyan, ZHU Tong*
School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
To improve the excess sludge disintegration effect and reduce its energy consumption, Fluid Shear (FS), Ultrasonic Cavitation (UC) and combined FS and UC (FS-UC, UC-FS) processes were performed to disintegrate excess sludge. Based on the single factor experiment results, response surface methodology was used to optimize the operation parameters of combined FS-UC and UC-FS processes. The results showed that FS had modest effects on excess sludge disintegration. Relatively better effects only occurred in the initial disintegration stage. The FS disintegration effect did not improve obviously and even decreased with time. The UC disintegration effect was distinct, increasing significantly with time, accompanied with obvious energy consumption increase and Energy Disintegration Ratio (EDR) decrease. Within the same treatment time, the UC disintegration effect was superior to that of the FS process. The Degree of Disintegration (DDCOD) and EDR of UC process were clearly higher than those of FS process. FS disintegration time of 2-8 min and UC disintegration time of 5-15 min were concluded from the single factor experiments and were used for the response surface experiments. The response surface experiment results proved that the combined process had better disintegration effect and higher energy efficiency than the single process. FS-UC had an advantage over UC-FS between the two combined processes. The optimal FS-UC parameters were FS treatment of 5.6 min, followed by UC treatment of 15.0 min, which achieved DDCODof 50.8% and EDR of 26.8% in actual excess sludge disintegration. The optimal UC-FS parameters were UC treatment of 15.0 min, followed by FS treatment of 7.8 min, which achieved DDCODof 36.5% and EDR of 17.1% in actual excess sludge disintegration. With the target of DDCODand EDR, the efficiency order of the four processes was FS-UC>UC-FS>UC>FS. FS-UC process, with low energy consumption and high disintegration degree, is a new method in the excess sludge disintegration field.
waste treatment; optimal design; degradation; fluid shear; ultrasonic cavitation; excess sludge
2016-12-31
2017-07-27
國(guó)家自然科學(xué)基金項(xiàng)目(51178089);教育部中央高?;究蒲袠I(yè)務(wù)費(fèi)項(xiàng)目(N150304001,N140306001)
謝元華(1979-),男(土家族),湖南張家界人,副教授,博士,主要從事污水污泥處理與環(huán)境機(jī)械研究,yhxie@mail.neu.edu.cn.
*責(zé)任作者,朱彤(1963-),男,陜西白水人,教授,博士,博導(dǎo),主要從事污水污泥處理與環(huán)境機(jī)械研究,tongzhu@mail.neu.edu.cn
謝元華,相陽(yáng),梁?jiǎn)㈧?等.流體剪切與超聲空化破解剩余污泥的參數(shù)優(yōu)化[J].環(huán)境科學(xué)研究,2017,30(11):1777-1782.
XIE Yuanhua,XIANG Yang,LIANG Qiyu,etal.Parameter optimization in excess sludge disintegration by fluid shear and ultrasonic cavitation[J].Research of Environmental Sciences,2017,30(11):1777-1782.
X703;X705
1001-6929(2017)11-1777-06
A
10.13198j.issn.1001-6929.2017.03.20