• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      以一種黏土礦物材料為非均相類芬頓催化劑對(duì)甲基橙的降解

      2017-11-10 00:44:04阿旺次仁李紅娜唐哲仁彭懷麗朱昌雄李鍾斗方建雄
      環(huán)境科學(xué)研究 2017年11期
      關(guān)鍵詞:叔丁醇芬頓甲基

      阿旺次仁, 李紅娜*, 唐哲仁, 彭懷麗, 朱昌雄, 李鍾斗, 方建雄

      1.中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所農(nóng)業(yè)清潔流域團(tuán)隊(duì), 北京 100081 2.韓國(guó)(株)量子能技術(shù)研究所, 韓國(guó) 仁川 431-804 3.韓國(guó)紐約州立大學(xué)QELBY研究院, 韓國(guó) 仁川 406-840

      以一種黏土礦物材料為非均相類芬頓催化劑對(duì)甲基橙的降解

      阿旺次仁1, 李紅娜1*, 唐哲仁1, 彭懷麗1, 朱昌雄1, 李鍾斗2, 方建雄3

      1.中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所農(nóng)業(yè)清潔流域團(tuán)隊(duì), 北京 100081 2.韓國(guó)(株)量子能技術(shù)研究所, 韓國(guó) 仁川 431-804 3.韓國(guó)紐約州立大學(xué)QELBY研究院, 韓國(guó) 仁川 406-840

      為實(shí)現(xiàn)以甲基橙為代表的偶氮類染料的高效降解,采用一種黏土礦物材料——Quantum Energy?Radiating Material(下稱QE)為催化劑,系統(tǒng)分析了其在非均相類芬頓反應(yīng)中的催化劑協(xié)同靜態(tài)吸附作用,并考察了不同因素對(duì)甲基橙去除效果的影響,同時(shí)基于降解過(guò)程中Fe2+和總Fe析出量(以ρ計(jì))、·OH等的變化過(guò)程,探討了QE降解甲基橙的作用機(jī)制. 結(jié)果表明,QE對(duì)甲基橙具有良好的吸附作用,同時(shí),其作為非均相類芬頓催化劑對(duì)甲基橙的降解受到pH、溫度、c(H2O2)、催化劑投加量等因素的影響. 優(yōu)化后的降解條件:初始ρ(甲基橙)為50 mgL、QE投加量為5 gL、c(H2O2)為100 mmolL、pH為2、溫度為60 ℃,在該條件下反應(yīng)40 min后,甲基橙的去除率可達(dá)到99%. 以叔丁醇作為·OH淬滅劑,隨著c(叔丁醇)的增高,反應(yīng)體系中甲基橙的去除率隨之下降,說(shuō)明·OH在該體系甲基橙降解中起重要作用;對(duì)在反應(yīng)過(guò)程中Fe2+和總Fe析出量的監(jiān)測(cè)數(shù)據(jù)表明,體系中QE對(duì)甲基橙的降解為均相芬頓反應(yīng)、非均相芬頓反應(yīng)和吸附作用協(xié)同作用的結(jié)果. 研究顯示,以QE為催化劑,通過(guò)吸附協(xié)同催化氧化作用可以有效處理含甲基橙的染料廢水.

      甲基橙; 非均相類芬頓; 催化劑; 礦物材料; 吸附; 降解

      礦物材料以其優(yōu)越的物化性能和低廉的價(jià)格,在環(huán)保領(lǐng)域有著廣闊的應(yīng)用前景[1]. 近些年來(lái),礦物質(zhì)材料作為類芬頓反應(yīng)催化劑在處理染料廢水中得到了廣泛的應(yīng)用,表現(xiàn)出降解率高、處理成分濃度低、適用性強(qiáng)、無(wú)二次污染等特點(diǎn)[2]. 已有的報(bào)道表明,黃鐵礦[3]、針鐵礦[4]、蒙脫石[5]、含鐵黏土礦物[6-7]等礦物,由于自身含鐵量高或負(fù)載鐵的能力強(qiáng)等原因,在利用芬頓技術(shù)處理有機(jī)污染物中起到重要的作用. 余力等[8]在通過(guò)電氣石作為類芬頓催化劑降解BPA(雙酚A)的研究中發(fā)現(xiàn),電氣石不僅提供鐵源引發(fā)類芬頓反應(yīng),同時(shí)其自身的自極化效應(yīng)產(chǎn)生的靜電場(chǎng),促進(jìn)了Fe3+和Fe2+之間的電子傳遞,有助于催化效率的提高. 同時(shí),礦物質(zhì)材料具有吸附性能高、離子交換效應(yīng)、比表面積大等多種優(yōu)點(diǎn)[9-10]. 一些礦物對(duì)染料廢水中污染物表現(xiàn)出良好的吸附性能,如天然沸石[11]、膨潤(rùn)土[12]、蛭石[13]、硅藻土[14]等在處理染料廢水中得到廣泛的應(yīng)用.

      ZHANG等[15]制備一種介孔Cu/MnO2材料作為類芬頓催化劑,降解苯并三唑的結(jié)果表明,該材料通過(guò)吸附協(xié)同催化氧化,能高效降解苯并三唑,并表明該材料的吸附及催化活性均高于單加MnO2和CuO類芬頓反應(yīng)體系. Jafari等[16]通過(guò)活性炭負(fù)載納米Fe3O4作為過(guò)硫酸鹽活化劑催化氧化四環(huán)素的研究表明,通過(guò)吸附協(xié)同催化氧化可高效降解四環(huán)素. 將礦物材料對(duì)有機(jī)污染物吸附作用與非均相類芬頓催化氧化協(xié)同降解有機(jī)污染物的相關(guān)研究目前較為鮮見(jiàn). 因此,如果將礦物材料吸附功能協(xié)同類芬頓催化氧化技術(shù)降解有機(jī)污染物,對(duì)于去除廢水中有機(jī)污染物的具有一定的應(yīng)用價(jià)值.

      以韓國(guó)特有的長(zhǎng)石類黏土礦物為原料,經(jīng)特殊方式加工后制成的環(huán)境友好材料“Quantum Energy? Radiating Material”(以下簡(jiǎn)稱QE)[17,19]是一種多功能、多用途的高新材料,在畜禽糞便堆肥、農(nóng)業(yè)種植增效、紡織纖維蓄熱保溫以及電氣設(shè)備制作等很多領(lǐng)域[18-19]都表現(xiàn)出極大的應(yīng)用潛力.

      QE具有良好的吸附作用,同時(shí)也可作為非均相類芬頓反應(yīng)催化劑,通過(guò)吸附協(xié)同催化氧化,高效降解水中有機(jī)污染物. 該研究以偶氮染料——甲基橙為例,詳細(xì)分析了不同試驗(yàn)條件下QE對(duì)甲基橙降解效率的影響,并探討了QE降解甲基橙的發(fā)生機(jī)制,以期對(duì)目前水處理領(lǐng)域高效低廉地去除甲基橙等有機(jī)污染物的研究提供理論和試驗(yàn)支撐.

      1 材料與方法

      1.1試驗(yàn)材料

      QE由韓國(guó)(株)量子能技術(shù)研究所提供,該材料由韓國(guó)慶南地區(qū)采集的特有的長(zhǎng)石類黏土礦物(Osaekhyulto)經(jīng)過(guò)篩選、去除有害重金屬、高溫煅燒、發(fā)酵制成,理化性質(zhì)和材料表征及具體制備工藝見(jiàn)文獻(xiàn)[17-19],其成分含量如表1所示.

      該研究中用到的所有化學(xué)試劑均購(gòu)自國(guó)藥集團(tuán)某公司.

      1.2催化劑的表征

      表1 QE主要成分含量[17-19]

      1.3甲基橙去除試驗(yàn)

      1.3.1不同體系的構(gòu)建

      為了初步確認(rèn)QE對(duì)甲基橙的吸附及催化氧化的效果,構(gòu)建了7種不同的反應(yīng)體系(見(jiàn)表2),考察甲基橙的去除效果.

      表2 試驗(yàn)體系

      1.3.2甲基橙催化氧化試驗(yàn)

      在250 mL錐形瓶中分別加入100 mL甲基橙溶液,通過(guò)0.1 molL的HCl和NaOH溶液調(diào)節(jié)pH,加入一定量的QE,以180 rmin的轉(zhuǎn)速,在25 ℃下振蕩10 min,待吸附平衡后加入H2O2,置于一定溫度的水浴鍋中進(jìn)行催化氧化反應(yīng),在選定的時(shí)間內(nèi)取樣,過(guò)0.45 μm過(guò)濾,采用分光光度法在甲基橙最大吸收波長(zhǎng)(465 nm)處繪制甲基橙標(biāo)準(zhǔn)曲線,并測(cè)定濾液中的ρ(甲基橙),通過(guò)式(1)計(jì)算甲基橙去除率. 同時(shí)通過(guò)鄰菲羅啉分光光度法[20]測(cè)定ρ(Fe2+)和ρ(總Fe),考察反應(yīng)過(guò)程中溶出的Fe2+和總Fe析出量(以ρ計(jì))的變化,通過(guò)叔丁醇作為·OH的捕獲劑,抑制甲基橙的降解,考察反應(yīng)過(guò)程中·OH對(duì)甲基橙降解的影響. 在不同因素對(duì)甲基橙去除率影響的試驗(yàn)中,除各因素的變化外,ρ(甲基橙)均為50 mgL,QE投加量均為5 gL,c(H2O2)均為100 mmolL,pH均為2、溫度均為50 ℃.

      φ=(A0-At)/A0×100%

      (1)

      式中:φ為甲基橙去除率,%;A0為初始ρ(甲基橙),mgL;At為t時(shí)刻ρ(甲基橙),mgL.

      2 結(jié)果與討論

      2.1催化劑的表征

      QE的形貌特征如圖1所示. 由圖1可知,QE的表面粗糙不平整、有晶體伸出,這有利于QE對(duì)有機(jī)污染物的吸附. 由圖2(a)可見(jiàn),QE中主要元素成分為O、Si,還含有一定量的Fe、C、Ca、K、Na. 由圖2(b)可見(jiàn),QE作為礦物復(fù)合材料,其物相成分比較復(fù)雜,經(jīng)過(guò)與不同礦物的標(biāo)準(zhǔn)卡片對(duì)照發(fā)現(xiàn),主要為鈉長(zhǎng)石、鈉鈣長(zhǎng)石、金云母、蒙脫石、片沸石、鐵透閃石. 另外,通過(guò)BET法測(cè)定QE比表面積為25.41 m2/g,平均孔徑為17.56 nm,因此QE具有良好的比表面積,有助于污染物質(zhì)的吸附及表面發(fā)生催化反應(yīng).

      圖1 QE的電鏡掃描Fig.1 SEM images of the QE

      圖2 QE的EDS及XRD圖譜Fig.2 The EDS and XRD spectra of the QE

      2.2不同體系對(duì)甲基橙去除率的影響

      由圖3可見(jiàn),在反應(yīng)100 min后,H2體系對(duì)甲基橙去除效果不佳,最終去除率不到5%. 而在Q2、Q4、Q7體系中,由于QE的吸附作用,甲基橙溶液去除率明顯提高,當(dāng)pH=2時(shí),去除率>60%;在pH=4和pH=7時(shí),甲基橙去除率分別為22%和13%,但明顯差于pH=2時(shí). pH對(duì)甲基橙吸附性能起到了很大的影響,主要原因可能是甲基橙作為指示劑,其分子式和溶液顏色可隨著pH的變化而變化,甲基橙的pKa是3.46,在pH<3.64時(shí)甲基橙分子作為帶負(fù)電荷的物質(zhì)存在,直到pH在3.64后甲基橙以中性物質(zhì)存在,而在高pH下甲基橙分子帶微弱的正電荷. 因此,在pH為2時(shí),甲基橙分子帶大量的負(fù)電荷,而QE表面由于過(guò)多的H+帶大量的正電荷,這有助于甲基橙和吸附劑之間形成可觀的靜電吸附作用[21-22]. 這與Subbaiah等[23-24]的研究結(jié)果一致. 在QH2、QH4、QH7體系中,甲基橙去除率進(jìn)一步提高,100 min后QH2體系中甲基橙去除率達(dá)到99%以上. 這說(shuō)明了在特定條件下,QE作為吸附劑及類芬頓反應(yīng)催化劑,可以有效地促進(jìn)甲基橙的去除,QE的吸附作用為類芬頓反應(yīng)提供了更多的表面催化能力,并加快了反應(yīng)體系的去除效率.

      圖3 不同反應(yīng)體系對(duì)甲基橙去除效果的影響Fig.3 Effect of different systems on methyl orange removal

      2.3不同因素對(duì)甲基橙去除率的影響

      由圖4(b)可見(jiàn),隨著QE投加量(1、3、5、10 g/L)的增加,甲基橙的去除率增加. 這是由于反應(yīng)體系中的活性點(diǎn)位增加,吸附和催化效率均增加所致. 當(dāng)QE投加量為10 g/L時(shí),在10 min內(nèi)甲基橙去除率已經(jīng)達(dá)到95%;當(dāng)QE投加量為1 g/L時(shí),反應(yīng)體系初始階段由于催化劑用量較少,吸附作用不明顯,因此初始階段反應(yīng)速率較慢,而隨著反應(yīng)過(guò)程中溶出的Fe逐漸增多,溶液中發(fā)生的均相芬頓反應(yīng)生成了·OH,甲基橙去除率增加.

      由圖4(c)可見(jiàn),甲基橙去除率沒(méi)有隨c(H2O2)的增大而增大.c(H2O2)為50 mmolL時(shí),起始20 min 內(nèi)對(duì)甲基橙去除效果最好,而c(H2O2)為10 mmolL 的反應(yīng)體系優(yōu)于c(H2O2)為100 mmolL對(duì)甲基橙的去除效果. 當(dāng)反應(yīng)進(jìn)行到20 min以后,3種不同c(H2O2)對(duì)甲基橙的去除效果沒(méi)有明顯差別,在100 min時(shí)去除率均在98%以上,這說(shuō)明,QE對(duì)甲基橙的去除效率不隨c(H2O2)增高而增高,其主要原因是由于·OH與H2O2和Fe2+均可發(fā)生反應(yīng)〔見(jiàn)式(2)〕[26].

      ·OH+H2O2→HO2·+H2O

      (2)

      初始ρ(甲基橙)的影響如圖4(d)所示. 由圖4(d) 可見(jiàn),隨著初始ρ(甲基橙)的增大,甲基橙去除效率逐漸降低,初始ρ(甲基橙)為10和25 mgL時(shí),20 min內(nèi)甲基橙去除率分別為93%和94%;當(dāng)ρ(甲基橙)為100 mgL時(shí),20 min時(shí)甲基橙去除率為88%,反應(yīng)100 min時(shí)則達(dá)到95%以上. 究其原因,當(dāng)體系中ρ(甲基橙)較低時(shí),QE吸附了更多比例的甲基橙,同時(shí),QE表面和溶液析出的Fe2+與H2O2進(jìn)行反應(yīng),生成的·OH氧化降解了甲基橙. 高ρ(甲基橙)在QE表面接觸到更多的催化點(diǎn),形成非均相類芬頓反應(yīng),此外析出的Fe2+對(duì)于在溶液中發(fā)生芬頓反應(yīng),從而將高濃度甲基橙迅速降解.

      圖4 不同因素對(duì)甲基橙去除率的影響Fig.4 Effect of environmental factors on methyl orange removal

      由圖4(e)可見(jiàn),由于吸附階段各甲基橙溶液均放置于搖床同一溫度下進(jìn)行振蕩,因此各組去除率均無(wú)差別;而在催化氧化階段,隨著反應(yīng)溫度的不同,各體系甲基橙的去除率有了明顯的變化. 當(dāng)60 ℃時(shí),10 min內(nèi)甲基橙去除率達(dá)到95%,并在60 min內(nèi)去除率已達(dá)到100%,這與文獻(xiàn)[27]報(bào)道的結(jié)果一致,產(chǎn)生這種現(xiàn)象的原因可能是隨著溫度的增加,反應(yīng)物分子平均動(dòng)能增大,溶液中平均動(dòng)能增大,反應(yīng)速率提高[28],從而有利于甲基橙的降解. 然而在初始溫度為30 ℃時(shí),反應(yīng)100 min時(shí)甲基橙去除率到達(dá)93%. 此外,反應(yīng)進(jìn)行到100 min時(shí),初始溫度在40 ℃以上的反應(yīng)體系均達(dá)到95%以上.

      2.4QE降解甲基橙的發(fā)生機(jī)制探討

      2.4.1反應(yīng)體系中析出的Fe和·OH的分析

      在類芬頓體系中溶解性Fe對(duì)催化劑的評(píng)價(jià)與降解機(jī)理具有重要的意義. 在初始為ρ(甲基橙)為50 mgL、QE投加量為5 gL、c(H2O2)為100 mmolL、pH為2、溫度為50 ℃下,測(cè)定了總Fe和Fe2+在反應(yīng)溶液中的析出的情況. 當(dāng)pH為2時(shí),溶液中總Fe析出量達(dá)到8.54 mgL;在pH為4、7時(shí),溶液中總Fe析出量分別為2.50和0.25 mgL. 這說(shuō)明低pH是QEH2O2體系引起類芬頓反應(yīng)的關(guān)鍵因素之一. 結(jié)合不同體系對(duì)甲基橙去除率影響的結(jié)果,當(dāng)pH為2時(shí),QE對(duì)甲基橙的吸附效果最好. 因此,在進(jìn)一步試驗(yàn)中測(cè)定了反應(yīng)體系在pH為2時(shí),F(xiàn)e2+和總Fe析出量的變化趨勢(shì),結(jié)果如圖5所示. 當(dāng)溶液pH為2時(shí),總Fe析出量隨著反應(yīng)時(shí)間逐漸增多,100 min內(nèi)達(dá)到8.54 mgL. 而Fe2+析出量在反應(yīng)的前40 min持續(xù)增長(zhǎng),40 min時(shí)溶液中Fe2+析出量達(dá)到3.27 mgL,40 min后出現(xiàn)下降,這一趨勢(shì)與XU等[29]的研究結(jié)果相一致. 在pH為2的體系中,F(xiàn)e2+、Fe3+引發(fā)的均相芬頓氧化反應(yīng)見(jiàn)式(3);而Fe3+與H2O2反應(yīng)生成自由基的活性較低. 反應(yīng)初始階段Fe2+與H2O2產(chǎn)生的大量自由基引發(fā)了甲基橙的快速降解,然而后期降解則受限于反應(yīng)〔見(jiàn)式(4)〕[30]. 這一點(diǎn)也從Fe2+的變化得以驗(yàn)證.

      圖5 pH=2時(shí)甲基橙溶液中析出的總Fe與Fe2+的變化趨勢(shì)Fig.5 Evolution of total dissolved iron and ferrous iron on pH=2 Fe2++H2O2→Fe3++·OH+OH-

      (3)

      Fe3++H2O2→Fe2++HO2·+H+

      (4)

      圖6 不同c(叔丁醇)對(duì)甲基橙去除率的影響Fig.6 Effect of t-butanol on methyl orange removal

      一些研究者通過(guò)叔丁醇作為類芬頓反應(yīng)自由基捕獲劑確定反應(yīng)體系中生成·OH(叔丁醇與·OH反應(yīng)速率為KOH=6.0108mol(L·s))[31-32],叔丁醇能有效捕獲·OH,從而抑制甲基橙的降解. 為了探究QEH2O2體系中·OH的存在,在初始ρ(甲基橙)為50 mgL、QE投加量為5 gL、c(H2O2)為100 mmolL、pH為2、溫度為50 ℃下,加入不同濃度的叔丁醇從而抑制甲基橙降解,間接證明溶液中生成·OH. 由圖6可以看出,隨著c(叔丁醇)的增高,甲基橙去除率隨之下降. 當(dāng)溶液中未加入叔丁醇時(shí),甲基橙去除率為99%,而c(叔丁醇)為200 mmolL時(shí),甲基橙去除率為84%,甲基橙的降解被抑制,這說(shuō)明甲基橙的降解主要來(lái)自·OH的氧化. 另外,添加叔丁醇后溶液中甲基橙去除率>80%,這是由于QE自身的吸附作用,一部分甲基橙被QE所吸附,而并未在表面催化氧化,另一部分溶液中的甲基橙則可能由氧化性較弱的自由基·O2-、HO2·所氧化. 在試驗(yàn)過(guò)程中未添加叔丁醇的反應(yīng)體系在100 min后催化劑表面為自身顏色(灰色),而添加叔丁醇的反應(yīng)體系中催化劑表面為甲基橙顏色,進(jìn)一步說(shuō)明了QE吸附了甲基橙,并未完全催化降解.

      2.4.2反應(yīng)機(jī)制探討

      均相芬頓反應(yīng):

      Fe2++H2O2→Fe3++·OH+OH-

      (5)

      Fe3++H2O2→Fe2++HO2·O2·-+H+

      (6)

      Fe3++H02· →Fe2++O2+H+

      (7)

      非均相類芬頓反應(yīng)(≡代表礦物表面結(jié)構(gòu)):

      ≡Fe3++H202→≡Fe2++HO2·O2·-+H+

      (8)

      ≡Fe2++H202→≡Fe3++·OH+OH-

      (9)

      ≡Fe2++02→≡Fe3++HO2·+OH-

      (10)

      均相與非均相催化中自由基的競(jìng)爭(zhēng)性反應(yīng)(≡代表礦物表面結(jié)構(gòu)):

      ·OH+≡Fe2+Fe2+→≡Fe3+Fe3++OH-

      (11)

      ·OH+H202→≡HO2·+H2O

      (12)

      ≡Fe2+Fe2++HO2·→ ≡Fe3+Fe3++HOO-

      (13)

      HO2·+HO2·→H202+O2

      (14)

      ·OH+HO2·O2·-→H202+O2

      (15)

      ·OH+·OH→H202

      (16)

      ·OH+甲基橙→降解產(chǎn)物

      (17)

      3 結(jié)論

      a) 通過(guò)不同體系對(duì)甲基橙去除的效果,確認(rèn)了QE對(duì)甲基橙具有吸附作用,在pH為2時(shí)甲基橙去除率達(dá)到66%,同時(shí)QE可作為類芬頓反應(yīng)催化劑,通過(guò)吸附協(xié)同催化氧化甲基橙去除率可達(dá)到99%.

      [1] BIBI I,ICENHOWER J,NIAZI N K,etal.Environmental materials and waste:resource recovery and pollution prevention[M].New York:Elsevier Science Publishing Company Inc.,2016:543-567.

      [2] JIE He,YANG Xiaofang,MEN Bin,etal.Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials:a review[J].Journal of Environmental Sciences,2016,39(1):97-109.

      [3] BARHOUMI N,OTURAN N,OLVERA-VARGAS H,etal.Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine:kinetics,mechanism and toxicity assessment[J].Water Research,2016,94:52-61.

      [4] WANG Yan,GAO Yaowen,CHEN Lu,etal.Goethite as an efficient heterogeneous Fenton catalyst for the degradation of methyl orange[J].Catalysis Today,2015,252:107-112.

      [5] FIDA H,ZHANG G,GUO S,etal.Heterogeneous Fenton degradation of organic dyes in batch and fixed bed using La-Fe montmorillonite as catalyst[J].Journal of Colloid & Interface Science,2016,490(15):859-868.

      [6] AUSAVASUKHI A,SOOKNOI T.Catalytic activity enhancement by thermal treatment and re-swelling process of natural containing iron-clay for Fenton oxidation[J].Journal of Colloid & Interface Science,2014,436:37-40.

      [7] INCHAURRONDO N,FONT J,RAMOS C P,etal.Natural diatomites:efficient green catalyst for Fenton-like oxidation of Orange II[J].Applied Catalysis B:Environmental,2016,181:481-494.

      [8] 余力.超聲助電氣石類芬頓及電氣石負(fù)載TiO2光催化降解水中雙酚A的研究[D].天津:南開(kāi)大學(xué),2014:26-27.

      [10] LI Gang,GUO Shuhai,HU Jinxuan.The influence of clay minerals and surfactants on hydrocarbon removal during the washing of petroleum-contaminated soil[J].Chemical Engineering Journal,2016,286:191-197.

      [11] MIRZAEI N,HADI M,GHOLAMI M,etal.Sorption of acid dye by surfactant modificated natural zeolites[J].Journal of the Taiwan Institute of Chemical Engineers,2015,59:186-194.

      [12] SELIM K A,YOUSSEF M A,ABD E F H,etal.Dye removal using some surface modified silicate minerals[J].International Journal of Mining Science and Technology,2014,24(2):183-189.

      [14] LI Jian,GUAN Peng,ZHANG Yan,etal.A diatomite coated mesh with switchable wettability for on-demand oil/water separation and organic pollutants adsorption[J].Separation & Purification Technology,2017,174:275-281.

      [15] ZHANG Yuting,LIU Cao,XU Bingbing,etal.Degradation of benzotriazole by a novel Fenton-like reaction with mesoporous Cu/MnO2:combination of adsorption and catalysis oxidation[J].Applied Catalysis B:Environmental,2016,199:447-457.

      [16] JAFARI A J,KAKAVANDI B,JAAFARZADEH N,etal.Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4as a heterogeneous persulfate activator:adsorption and degradation studies[J].Journal of Industrial & Engineering Chemistry,2017,45:323-333.

      [17] 阿旺次仁,彭懷麗,朱昌雄,等.一種新型環(huán)境修復(fù)材料的制備及其功能分析[J].中國(guó)農(nóng)業(yè)氣象,2016(5):513-519.

      AWANG Ciren,PENG Huaili,ZHU Changxiong,etal.Preparation and function of a new environmental restoration material[J].Chinese Journal of Agrometeorology,2016(5):513-519.

      [18] BAHNG G W,LEE J D.Development of heat-generating polyester fiber harnessing catalytic ceramic powder combined with heat-generating super microorganisms[J].Textile Research Journal,2014,84(11):1220-1230.

      [19] LEE J D,KULKARNI A,KIM T,etal.Electrical properties of “Quantum Energy? Radiating Material” produced from natural clay minerals of south Korea[J].Materials Focus,2014,3(6):491-495.

      [20] 國(guó)家環(huán)境保護(hù)總局.HJ/T 345─2007 水質(zhì) 鐵的測(cè)定 鄰菲啰啉分光光度法[S].北京:中國(guó)環(huán)境出版社,2007.

      [21] ARAMI M,LIMAEE N Y,MAHMOODI N M,etal.Removal of dyes from colored textile wastewater by orange peel adsorbent:Equilibrium and kinetic studies[J].Journal of Colloid & Interface Science,2005,288(2):371-376.

      [22] KRIKA F,BENLAHBIB O E F.Removal of methyl orange from aqueous solution via adsorption on cork as a natural and low-coast adsorbent:equilibrium,kinetic and thermodynamic study of removal process[J].Desalination & Water Treatment,2014,53(13):3711-3723.

      [23] SUBBAIAH M V,KIM D S.Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder:kinetics,isotherms,and thermodynamic studies[J].Ecotoxicology & Environmental Safety,2016,128:109-117.

      [24] 陳盛,羅志敏,劉燕.殼聚糖-沸石雜化膜的制備及其對(duì)甲基橙的吸附[J].環(huán)境工程學(xué)報(bào),2012,6(5):1613-1618.

      CHEN Sheng,LUO Zhimin,LIU Yan.Preparation of chitosan-zeolite hybrid membrane and its adsorption to methyl orange[J].Chinese Journal of Environmental Engineering,2012,6(5):1613-1618.

      [25] DU Weiping,XU Yiming,WANG Yansong.Photoinduced degradation of orange II on different iron (hydr)oxides in aqueous suspension:rate enhancement on addition of hydrogen peroxide,silver nitrate,and sodium fluoride[J].Langmuir,2008,24(1):175-181.

      [26] DAUD N K,HAMEED B H.Decolorization of acid red 1 by Fenton-like process using rice husk ash-based catalyst[J].Journal of Hazardous Materials,2010,176(1/2/3):938-944.

      [27] GHISELLI G,JARDIM W F,LITTER M I,etal.Destruction of EDTA using Fenton and photo-Fenton-like reactions under UV-A irradiation[J].Journal of Photochemistry & Photobiology A:Chemistry,2004,167(1):59-67.

      [28] 李艷.天然鐵電氣石Fenton反應(yīng)降解甲基橙的效能與機(jī)理研究[D].哈爾濱:哈爾濱理工大學(xué),2012:19-20.

      [29] XU Lejin,WANG Jianlong.Magnetic nanoscaled Fe3O4/CeO2composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol[J].Environmental Science & Technology,2012,46(18):10145-10153.

      [30] RUSEVOVA K,KOPINKE F D,GEORGI A.Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions-Influence of Fe(II)/Fe(III) ratio on catalytic performance[J].Journal of Hazardous Materials,2012,241/242(1):433-440.

      [31] YU Li,WANG Cuiping,REN Xinhao,etal.Catalytic oxidative degradation of bisphenol a using an ultrasonic-assisted tourmaline-based system:influence factors and mechanism study[J].Chemical Engineering Journal,2014,252(18):346-354.

      [32] REISZ E,SCHMIDT W,SCHUCHMANN H P,etal.Photolysis of ozone in aqueous solutions in the presence of tertiary butanol[J].Environmental Science & Technology,2003,37:1941-1948

      [33] CHAKMA S,DAS L,MOHOLKAR V S.Dye decolorization with hybrid advanced oxidation processes comprising sonolysis/ Fenton-like/ photo-ferrioxalate systems:a mechanistic investigation[J].Separation & Purification Technology,2015,156:596-607.

      [34] COSTA R C C,MOURA F C C,ARDISSON J D,etal.Highly active heterogeneous Fenton-like systems based on FeO/Fe3O4,composites prepared by controlled reduction of iron oxides[J].Applied Catalysis B:Environmental,2008,83(1):131-139.

      [35] WEI Luo,ZHU Lihua,NAN Wang,etal.Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3as a reusable heterogeneous Fenton-like catalyst[J].Environmental Science & Technology,2010,44(5):1786-1791.

      [36] 汪快兵,方迪,徐峙暉,等.生物合成施氏礦物作為類芬頓反應(yīng)催化劑降解甲基橙的研究[J].環(huán)境科學(xué),2015,36(3):995-999.

      WANG Kuaibing,FANG Di,XU Zhenghui,etal.Biosynthetic schwertmannite as catalyst in Fenton-like reactions for degradation of methyl orange[J].Environmental Science,2015,36(3):995-999.

      ClayMineralMaterialasCatalystinFenton-LikeReactionsforDegradationofMethylOrange

      AWANG Ciren1, LI Hongna1*, TANG Zheren1, PENG Huaili1, ZHU Changxiong1, LEE Jongdoo2, BAHNG Gunwoong3

      1.Agricultural Clear Watershed Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China 2.Quantum Energy Research Center, Incheon 431-804, Republic of Korea 3.QELBY Institute in State University of New York, Incheon 431-804, Republic of Korea

      ‘Quantum Energy?Radiating Material’ (QE), a type of clay mineral material, was applied in the degradation of azo dye (represented by methyl orange). The synergistic effects of both static adsorption and heterogeneous Fenton-type catalyst of QE were systematically analyzed, and their effects on methyl orange degradation under different influencing factors were also discussed. The degrading mechanism of methyl orange with QE was then discussed based on the monitoring of ferrous ion, total iron and hydroxyl free radicals during the whole process. The results showed that QE showed good adsorption capacity, and the effectiveness of degradation of methyl orange was influenced by pH, temperature, the concentration of H2O2and the dosage of catalyst when QE was used as the heterogeneous Fenton-type catalyst. The removal rate of methyl orange could reach 99% under the optimized conditions of 50 mgLρ(methyl orange), 5 gLρ(QE), 100 mmolLc(H2O2), pH 2.0 and temperature 60 ℃ for 40 min. Furthermore, the production of ·OH and its significant function in methyl orange degradation was demonstrated after tertiary butanol was added as the scavenger of ·OH in the system. In combination with the monitoring data of the Fe2+and total Fe in the process, it was indicated that the degradation of methyl orange was the synergic result of adsorption with QE, and reactions in homogeneous and heterogeneous phases as well. These results showed that application of QE through adsorption and oxidation is effective in disposing wastewater with methyl orange.

      methyl orange; heterogeneous Fenton-like; mineral material; catalysis; adsorption; degradation

      2016-12-24

      2017-07-08

      韓國(guó)量子能公司農(nóng)業(yè)用顆粒(丸)粉末及使用方法在中國(guó)農(nóng)業(yè)生產(chǎn)中實(shí)用效果測(cè)試計(jì)劃〔開(kāi)(2015)1〕;國(guó)家水體污染控制與治理科技重大專項(xiàng)(2014ZX07101-012-001)

      阿旺次仁(1989-),男(藏族),西藏拉薩人,ngatse@163.com.

      *責(zé)任作者,李紅娜(1986-),女,山西運(yùn)城人,助理研究員,博士,主要從事農(nóng)業(yè)面源污染控制、農(nóng)村生活污水深度處理、農(nóng)村廢棄物資源化利用研究,lihongna828@163.com

      阿旺次仁,李紅娜,唐哲仁,等.以一種黏土礦物材料為非均相類芬頓催化劑對(duì)甲基橙的降解[J].環(huán)境科學(xué)研究,2017,30(11):1769-1776.

      AWANG Ciren,LI Hongna,TANG Zheren,etal.Clay mineral material as catalyst in fenton-like reactions for degradation of methyl orange[J].Research of Environmental Sciences,2017,30(11):1769-1776.

      X592

      1001-6929(2017)11-1769-08

      A

      10.13198j.issn.1001-6929.2017.03.02

      猜你喜歡
      叔丁醇芬頓甲基
      高效減排環(huán)己酮氨肟化技術(shù)的開(kāi)發(fā)及其工業(yè)化應(yīng)用
      UIO-66熱解ZrO2負(fù)載CoMoS對(duì)4-甲基酚的加氫脫氧性能
      分子催化(2022年1期)2022-11-02 07:10:56
      氨肟化裝置叔丁醇回收系統(tǒng)雙效精餾的節(jié)能改造
      1,2,4-三甲基苯氧化制備2,3,5-三甲基苯醌的技術(shù)進(jìn)展
      氣相色譜法快速測(cè)定環(huán)境水中叔丁醇的含量
      芬頓氧化處理苯并咪唑類合成廢水實(shí)驗(yàn)研究
      類芬頓試劑應(yīng)用于地下水石油烴污染修復(fù)的實(shí)踐
      芬頓強(qiáng)氧化技術(shù)在硝基氯苯廢水處理工程中的應(yīng)用
      聚甲基亞膦酸雙酚A酯阻燃劑的合成及其應(yīng)用
      芬頓氧化法處理廢水研究
      尚义县| 岑巩县| 寿宁县| 清远市| 基隆市| 永宁县| 进贤县| 平武县| 陇西县| 军事| 阿克苏市| 西贡区| 长春市| 舒城县| 青岛市| 济宁市| 株洲市| 青州市| 长垣县| 莱阳市| 双鸭山市| 阳原县| 攀枝花市| 安多县| 洪雅县| 尤溪县| 巴林右旗| 深水埗区| 奉新县| 军事| 福鼎市| 外汇| 嵊泗县| 英超| 五华县| 乐清市| 西和县| 垦利县| 鹤庆县| 黄山市| 那坡县|