叢 鑫, 姜久寧, 劉寒冰, 楊 兵*, 薛南冬
1.遼寧工程技術(shù)大學(xué)環(huán)境科學(xué)與工程學(xué)院, 遼寧 阜新 123000 2.中國(guó)環(huán)境科學(xué)研究院,環(huán)境基準(zhǔn)與風(fēng)險(xiǎn)評(píng)估國(guó)家重點(diǎn)實(shí)驗(yàn)室, 北京 100012
堆肥化處理TNT紅水污染土壤
叢 鑫1,2, 姜久寧1,2, 劉寒冰2, 楊 兵2*, 薛南冬2
1.遼寧工程技術(shù)大學(xué)環(huán)境科學(xué)與工程學(xué)院, 遼寧 阜新 123000 2.中國(guó)環(huán)境科學(xué)研究院,環(huán)境基準(zhǔn)與風(fēng)險(xiǎn)評(píng)估國(guó)家重點(diǎn)實(shí)驗(yàn)室, 北京 100012
DNTS〔二硝基甲苯磺酸鹽,主要包括2,4-DNT-3-SO3-(2,4-二硝基甲苯-3-磺酸鹽)和2,4-DNT-5-SO3-(2,4-二硝基甲苯-5-磺酸鹽〕是TNT(2,4,6-三硝基甲苯)紅水污染土壤中主要污染物質(zhì),為研究堆肥化對(duì)土壤中DNTS的降解效果,采用有機(jī)廢物堆肥方法,探討堆肥化對(duì)TNT紅水污染土壤中DNTS降解的可行性,以及溫度、含水率和pH變化對(duì)降解效果的影響. 結(jié)果表明,有機(jī)廢物堆肥能處理TNT紅水污染土壤,在堆肥60 d內(nèi),5個(gè)堆肥體系(豬糞+木屑、豬糞+麥殼、污泥+木屑、污泥+麥殼和馬糞+木屑)對(duì)2,4-DNT-3-SO3-的降解率為65.5%~88.4%,對(duì)2,4-DNT-5-SO3-的降解率為60.9%~100%. 在第4天各堆肥體系的高溫階段(29.7~53.6 ℃),5個(gè)堆肥化體系中2,4-DNT-3-SO3-總量的49.5%~67.3%被降解,說(shuō)明各堆體的中溫-高溫階段對(duì)有機(jī)物的降解起重要作用. 堆體含水率隨堆肥時(shí)間的延長(zhǎng)呈下降趨勢(shì),在堆肥第8天,外源補(bǔ)水至體系含水率為50%,豬糞+麥殼體系對(duì)2,4-DNT-3-SO3-的降解率從70.2%增至88.4%,說(shuō)明適當(dāng)?shù)耐庠囱a(bǔ)水可提高2,4-DNT-3-SO3-的降解率. 5個(gè)堆肥體系中pH均呈初期上升、后期下降并趨于穩(wěn)定的趨勢(shì),但在整個(gè)堆肥過(guò)程中,堆體pH始終保持在7.3~8.3之間. 研究顯示,5個(gè)堆肥體系中豬糞+麥殼體系對(duì)DNTS的降解率最高,分別為88.4%和100%.
堆肥; TNT紅水; 土壤; DNTS
TNT(2,4,6-三硝基甲苯)紅水是TNT精制過(guò)程中產(chǎn)生的含有DNTS(dinitrotoluenesulfonate,二硝基甲苯磺酸鹽)的高濃度廢水[1]. DNTS是一類(lèi)有毒物質(zhì),包括2,4-DNT-3-SO3-(2,4-二硝基甲苯-3-磺酸鹽)和2,4-DNT-5-SO3-(2,4-二硝基甲苯-5-磺酸鹽)兩種異構(gòu)體,在環(huán)境中可以轉(zhuǎn)化為具有相似或更大毒性的物質(zhì). TNT紅水進(jìn)入環(huán)境中后,可以通過(guò)滲透和溢流等作用在環(huán)境介質(zhì)間遷移,從而導(dǎo)致土壤污染甚至造成地下水污染[2-3]. 因此此類(lèi)土壤修復(fù)研究受到高度關(guān)注. ZHU等[4]研究了納米鐵顆粒還原降解TNT紅水中二硝基甲基磺酸鈉的可行性,結(jié)果表明,納米鐵能夠?qū)⑾趸D(zhuǎn)化為氨基,將硝酸氮轉(zhuǎn)化為氨氮,但納米鐵容易團(tuán)聚限制了它在環(huán)境修復(fù)中的應(yīng)用. 一些學(xué)者采用活性焦吸附、芬頓法和生物處理等方法去除TNT紅水中的有機(jī)物質(zhì),但這些方法存在處理費(fèi)用較高等問(wèn)題[5-8].
堆肥化修復(fù)污染土壤是20世紀(jì)80年代以來(lái)興起的治理環(huán)境污染的生物工程技術(shù),主要是利用生物特有的分解有毒有害物質(zhì)的能力,采用諸如提高通氣效率、外源加水、補(bǔ)充營(yíng)養(yǎng)等辦法來(lái)提高微生物的代謝作用和降解活性水平,以加快對(duì)污染物的降解速率[9]. 目前堆肥化修復(fù)石油、殺蟲(chóng)劑和多環(huán)芳烴等污染土壤方法和研究已見(jiàn)報(bào)道[10-13],但鮮見(jiàn)堆肥化修復(fù)TNT紅水污染土壤的相關(guān)報(bào)道. 鑒于此,該研究通過(guò)不同的有機(jī)廢物堆肥化體系,探討優(yōu)化堆肥條件下二硝基甲苯磺酸鹽的降解規(guī)律,以期為T(mén)NT紅水污染土壤修復(fù)提供依據(jù).
1.1試驗(yàn)材料
試驗(yàn)所用的新鮮豬糞取自天津某養(yǎng)豬場(chǎng),馬糞和麥殼取自北京郊區(qū)農(nóng)場(chǎng),脫水污泥取自北京某污水處理廠,木屑取自天津某木材加工廠. 堆肥試驗(yàn)所采用的畜禽糞便、污泥、木屑和麥殼等材料性質(zhì)如表1所示. 堆肥土壤中w(2,4-DNT-3-SO3-)為500.46 mg/kg,w(2,4-DNT-5-SO3-)為25.24 mg/kg;5種堆肥原料(豬糞、馬糞、污泥、木屑和麥殼)中均未檢出2,4-DNT-3-SO3-和2,4-DNT-5-SO3-.
2,4-二硝基甲苯-3-磺酸鈉(2,4-DNT-3-SO3Na)標(biāo)準(zhǔn)樣品(98%)和2,4-二硝基甲苯-5-磺酸鈉(2,4-DNT-5-SO3Na)標(biāo)準(zhǔn)樣品(98%)均購(gòu)自德國(guó)Synchem公司;乙腈,色譜純,購(gòu)自美國(guó)J.T.Baker公司;磷酸二氫鉀,優(yōu)級(jí)純,購(gòu)自國(guó)藥集團(tuán)化學(xué)試劑有限公司;磷酸,優(yōu)級(jí)純,購(gòu)自天津市光復(fù)科技發(fā)展有限公司.
表1 堆肥原料基本理化性質(zhì)
注:n=3.
1.2堆肥試驗(yàn)裝置
所用強(qiáng)制通風(fēng)靜態(tài)筒式堆肥反應(yīng)器如圖1所示. 該靜態(tài)桶由PVC材料制成,直徑30 cm,高度50 cm,有效體積為32 L. 該裝置底面布設(shè)一根十字型的曝氣管,曝氣管表面均勻分布圓孔,同時(shí)底面上鋪有粒徑為2~4 mm、5 cm厚的石英砂層,使得空氣能夠均勻流過(guò)堆體,不會(huì)造成沖擊性或通風(fēng)的強(qiáng)弱不均. 筒壁厚1 cm,具有保溫作用. 桶壁上面有一層黑色塑料布,作用是防止堆肥化過(guò)程中水分蒸發(fā),同時(shí)減少堆肥化前期異味的擴(kuò)散. 每天進(jìn)行滲濾液收集,滲濾液閥打開(kāi)后將滲濾液回收到堆肥體系中,確保將滲濾液中污染物有效的去除. 同時(shí)每天利用電子溫度計(jì)測(cè)定堆體溫度.
圖1 堆肥反應(yīng)器示意Fig.1 Schematic diagram of composting reactor
1.3試驗(yàn)設(shè)計(jì)
堆肥試驗(yàn)在通風(fēng)狀況良好的溫室(25±5)℃中進(jìn)行. 各堆肥化體系中土壤、有機(jī)廢物、調(diào)理劑質(zhì)量及初始加水量如表2所示. 在土壤(有機(jī)廢物+調(diào)理劑)質(zhì)量比為1∶1的條件下,調(diào)節(jié)其CN在20~25之間以有利于微生物的生長(zhǎng)[14-15]. 各堆肥體系通過(guò)加水保證堆肥體系的初始含水率為50%. 按照表2所示,將土壤、有機(jī)廢物+調(diào)理劑進(jìn)行混合,加入指定水量,均勻攪拌,裝入堆肥化裝置中. 參照胡天覺(jué)等[16]堆肥試驗(yàn)裝置設(shè)計(jì),該試驗(yàn)采用間歇供氧,通過(guò)氣體流量計(jì)調(diào)節(jié)閥將通入堆肥桶內(nèi)的通風(fēng)量調(diào)解到0.3 m3min,試驗(yàn)前10 d,空氣泵開(kāi)10 min,停110 min,通氣量為1.5 m3(kg·d),10 d后空氣泵開(kāi)10 min,停170 min,通氣量為1.0 m3(kg·d),每個(gè)堆肥體系設(shè)3個(gè)重復(fù).
表2 各堆肥體系參數(shù)
1.4取樣及分析測(cè)定
堆肥試驗(yàn)歷時(shí)60 d,分別在堆肥開(kāi)始后的第0天、第4天、第7天、第14天、第21天、第28天、第42和第60天取樣. 方法為用土鉆在堆體上層、中層和下層共取約250 g的樣品,混合均勻,用保鮮袋密封. 將50 g保存于-20 ℃條件下以備微生物群落多樣性分析,將100 g樣品密封并保存于4 ℃以備含水率和pH測(cè)定,將100 g樣品風(fēng)干后過(guò)425 μm篩,以備土壤理化指標(biāo)的測(cè)定.
堆體土壤樣品的含水率采用Precisa測(cè)定儀測(cè)定. 堆體土壤樣品的w(TN)采用凱氏定氮法測(cè)定. 堆體土壤樣品的w(TC)采用有機(jī)碳測(cè)定儀(Multi NC 31000,耶拿分析儀器股份公司,德國(guó))測(cè)定. 堆體土壤樣品的pH采用METTLER TOLEDO測(cè)定儀〔梅特勒-托利多儀器(上海)有限公司〕測(cè)定. 每日14:00監(jiān)測(cè)堆體上層、中層和下層的溫度,以其平均值作為當(dāng)天堆體的溫度,同時(shí)記錄環(huán)境溫度. DNTS提取條件:提取劑為去離子水,土液比為1∶5(gmL),提取時(shí)間為24 h. 液相色譜測(cè)定條件:高效液相色譜儀LC-10AT-紫外檢測(cè)器,C18鍵合硅膠色譜柱(4.6 mm×250 mm,5 μm),流動(dòng)相為乙腈磷酸緩沖溶液〔pH為3.0,2080(VV)〕,流速為1 mLmin,進(jìn)樣量為 20 μL. 2,4-DNT-3-SO3-和2,4-DNT-5-SO3-的添加回收率為69.4%~111%.
2.1堆肥體系中的二硝基甲苯磺酸鹽堆肥降解效果
在整個(gè)堆肥周期不同體系中二硝基甲苯磺酸鹽的去除效果如圖2所示,結(jié)果顯示,5個(gè)堆肥體系均能降解土壤中的二硝基甲苯磺酸鹽,但降解效果有所不同. 從圖2(a)可以看出,在堆肥0~4 d期間,各堆體中w(2,4-DNT-3-SO3-)的降幅較大,4~42 d內(nèi)下降相對(duì)平緩,42 d后堆體中w(2,4-DNT-3-SO3-)基本趨于穩(wěn)定. 從圖2(b)可以看出,與2,4-DNT-3-SO3-相比,2,4-DNT-5-SO3-的降解周期較短,但降解特征較為一致:在0~4 d內(nèi),w(2,4-DNT-5-SO3-)的降幅較大,這可能由于0~4 d堆體處于高溫階段,微生物較為活躍,通過(guò)代謝作用將污染物分解,使得污染物呈現(xiàn)較明顯的下降趨勢(shì).w(2,4-DNT-5-SO3-)在14 d后趨于穩(wěn)定,第14天時(shí)5個(gè)體系中2,4-DNT-5-SO3-的降解率基本可達(dá)到100%. 5個(gè)堆肥體中2,4-DNT-5-SO3-的降解率均高于2,4-DNT-3-SO3-. ZHANG等[17]在研究生物降解紅水中DNTS時(shí)也發(fā)現(xiàn)這一去除率差異較大的現(xiàn)象,觀察到2,4-DNT-5-SO3-能夠有效地被微生物降解,這可能是與這兩種異構(gòu)體結(jié)構(gòu)上的差異有關(guān),2,4-DNT-3-SO3-磺酸基團(tuán)的空間位阻效應(yīng)使其比2,4-DNT-5-SO3-更難被還原.
圖2 不同堆體中DNTS含量及其降解率變化Fig.2 Change of DNTS concentration and degradation rate during composting
堆肥第60天,豬糞+木屑、豬糞+麥殼、污泥+木屑、污泥+麥殼和馬糞+木屑5個(gè)堆肥體系對(duì)2,4-DNT-3-SO3-的降解率分別為66.7%、88.4%、74.7%、87.5%和65.5%,對(duì)2,4-DNT-5-SO3-的降解率均可以達(dá)到100%. 在試驗(yàn)條件下,各堆肥體系對(duì)二硝基甲苯磺酸鹽降解率由大到小依次為豬糞+麥殼體系>污泥+麥殼體系>污泥+木屑體系>豬糞+木屑體系>馬糞+木屑體系,即試驗(yàn)條件下5個(gè)堆肥體系中豬糞+麥殼體系更能有效修復(fù)TNT紅水污染土壤. 豬糞和污泥體系的降解效果略好于馬糞體系,這可能是由于,相比馬糞,豬糞和污泥中含有豐富的水分和碳源,微生物生長(zhǎng)活躍,對(duì)堆體中二硝基甲苯磺酸鹽降解效果相對(duì)較好;同時(shí),含有麥殼的堆肥體系比含有木屑的堆肥體系降解效果略好,有研究[18]表明,麥殼多的堆體有利于生產(chǎn)纖維素微生物的生長(zhǎng),相應(yīng)堆體中纖維素酶的活性也較高,纖維素酶在纖維素的降解中起著非常重要的作用. 胡天覺(jué)[19]將飲食業(yè)農(nóng)業(yè)植物廢物、樹(shù)葉、庭院雜草、花生殼和木屑等類(lèi)典型的城市固體有機(jī)廢物分別進(jìn)行堆肥試驗(yàn)時(shí),發(fā)現(xiàn)木屑的有機(jī)物降解率最低,這主要是受其結(jié)構(gòu)所影響.
堆肥過(guò)程中DNTS主要是通過(guò)微生物作用將DNTS降解,不是高溫作用使化合物結(jié)構(gòu)降解,也不是堆肥材料的吸附作用導(dǎo)致DNTS的減少. 堆肥過(guò)程中樣品的液相色譜圖如圖3所示. 通過(guò)LC-MS對(duì)產(chǎn)物進(jìn)行分析可知,隨著時(shí)間的推移,色譜圖中含硝基污染物的峰面積逐漸減小,濃度在逐漸減小,含氨基的峰面積逐漸增大,可以確定含氨基物質(zhì)含量增加. ZHANG等[17]利用好氧厭氧條件下將微生物固定到活性炭對(duì)含DNTS的TNT紅水進(jìn)行降解,反應(yīng)結(jié)束后DNTS上的硝基被微生物轉(zhuǎn)化為氨基. WANG等[20]利用固定化微生物對(duì)TNT廢水降解時(shí),反應(yīng)結(jié)束后檢測(cè)到TNT上的硝基被轉(zhuǎn)化為氨基. 陳琛[21]在研究Escherchiacoli降解TNT時(shí),發(fā)現(xiàn)產(chǎn)物中有ADNT、DANT產(chǎn)生. 可得在微生物的作用下,DNTS的硝基轉(zhuǎn)化為氨基.
注: ①—2,4-DNT-5-SO3-; ②—2,4-DNT-3-SO3-; ③—2,4-DNT-5-SO3-轉(zhuǎn)化產(chǎn)物; ④—2,4-DNT-3-SO3-轉(zhuǎn)化產(chǎn)物. 圖3 堆肥樣品液相色譜圖Fig.3 Liquid chromatograms of composting samples
2.2堆肥體系溫度變化及溫度對(duì)DNTS降解效果的影響
溫度是反映堆肥進(jìn)程與腐熟度的重要指標(biāo),它直接影響微生物的數(shù)量與活性,進(jìn)而影響有機(jī)質(zhì)的分解速度和腐殖化進(jìn)程[22]. 5個(gè)堆肥體系堆體溫度與周?chē)h(huán)境溫度變化如圖4(a)所示. 從圖4(a)可以看出,堆體溫度變化主要經(jīng)歷了升溫、高溫、降溫和穩(wěn)定4個(gè)階段. 堆肥初期,5個(gè)堆肥體系溫度都迅速升高,在堆肥第3天時(shí)豬糞+麥殼和污泥+麥殼體系達(dá)到最高溫度,分別為53.7和54.2 ℃. 豬糞+木屑、污泥+木屑和馬糞+木屑體系溫度上升的幅度相對(duì)較小,在堆肥的5~6 d達(dá)到最高溫度,分別為31.3、31.6和37.3 ℃. 各堆體高溫階段污染物質(zhì)2,4-DNT-3-SO3-
的降解率如圖4(b)所示,5個(gè)堆肥體系對(duì)污染物質(zhì)2,4-DNT-3-SO3-的降解率為49.5%~67.3%,其中豬糞+麥殼體系對(duì)2,4-DNT-3-SO3-降解率最高,其次是污泥+麥殼體系,降解率最低的是豬糞+木屑體系. 圖4(b)中數(shù)據(jù)表明,在堆體處于高溫階段時(shí),體系中微生物可降解大部分的二硝基甲苯磺酸鹽. 這與已有研究成果[23-24]較為一致,即堆肥過(guò)程的升溫階段,微生物迅速增殖,當(dāng)堆肥進(jìn)入高溫階段時(shí),有機(jī)物迅速降解.
堆肥化3~6 d后,各堆體溫度開(kāi)始下降,這是由于堆體停留在高溫階段一段時(shí)間后,大部分有機(jī)物被降解,由于營(yíng)養(yǎng)物質(zhì)缺乏使得堆體中微生物活動(dòng)減弱,發(fā)熱量減少,堆體溫度逐漸下降. 在這一階段,嗜溫菌開(kāi)始占據(jù)優(yōu)勢(shì),對(duì)部分殘余較難分解的有機(jī)物作進(jìn)一步分解,有機(jī)物種類(lèi)和濃度趨于穩(wěn)定化[25]. 堆肥后期,堆體異味消除,(豬糞+麥殼)體系的CN由20.0降至13.1,其他幾個(gè)堆肥體系堆肥過(guò)程CN由20.6~24.0降至16.0以下,說(shuō)明堆肥已經(jīng)完全腐熟[26].
圖4 堆體溫度變化及堆體溫度對(duì)污染物降解率的影響Fig.4 Change of temperature during composting and the effect of temperature to pollutants degradation
2.3堆肥體系含水率變化及含水率對(duì)DNTS降解效果的影響
含水率是堆肥過(guò)程中的一個(gè)重要參數(shù),水分不僅溶解有機(jī)物,參與微生物的新陳代謝,而且通過(guò)蒸發(fā)作用帶走熱量,調(diào)解堆體溫度. 堆肥體系的最佳含水率通常是在40%~60%之間[27],試驗(yàn)中5個(gè)堆肥體系初始含水率均為50%,各堆肥體系含水率變化曲線如圖5(a)所示. 從圖5(a)可知,5個(gè)堆肥體系在0~7 d內(nèi)堆體的含水率急劇降低,第7天時(shí)豬糞+麥殼和污泥+麥殼這兩個(gè)體系的含水率已低于40%,分別降至38.6%和39.1%. 有學(xué)者[28]認(rèn)為,堆肥過(guò)程中濕度的連續(xù)下降是有機(jī)質(zhì)降解的重要標(biāo)志. 在堆肥第8天向各堆體外源添加水,調(diào)節(jié)堆體含水率至50%左右. 從圖5(a)可以看出,各堆體中含水率仍呈現(xiàn)持續(xù)降低趨勢(shì),直至堆肥結(jié)束,測(cè)得5個(gè)堆體的含水率在36.8%~41.1%之間,豬糞+麥殼和污泥+麥殼這兩個(gè)堆肥體系含水率下降得最快.
圖5 堆體中含水率的變化及含水率對(duì)污染物降解效果的影響Fig.5 Change of moisture during composting and the effect of moisture to pollutants degradation
選取高溫階段2,4-DNT-3-SO3-降解率最高的豬糞+麥殼體系進(jìn)行污染物質(zhì)含量的測(cè)定,在外源加水和對(duì)照(無(wú)外源加水)兩種條件下監(jiān)測(cè)并計(jì)算得到污染物質(zhì)2,4-DNT-3-SO3-的降解率如圖5(b)所示,第60天,2,4-DNT-3-SO3-在外源加水和無(wú)外源加水兩種條件下的降解率分別88.4%和70.2%,即外源加水之后堆體中2,4-DNT-3-SO3-的降解率要高于對(duì)照堆體中污染物質(zhì)降解率(18.2%). 這可能是由于堆肥過(guò)程中水分損失過(guò)多使得微生物繁殖慢,分解過(guò)程遲緩,從而導(dǎo)致有機(jī)物降解速率相應(yīng)降低[29]. 一些相關(guān)研究[30]也表明,當(dāng)濕度小于45%時(shí),有機(jī)物降解速率會(huì)明顯降低.
圖6 堆體中pH的變化Fig.6 Change of pH during composting
2.4堆肥體系pH的變化
在堆肥過(guò)程中,pH是影響堆肥效果的重要因素,適宜的pH可以使微生物有效的發(fā)揮作用. 堆肥期內(nèi)5個(gè)堆肥體系pH變化情況如圖6所示. 5個(gè)堆肥體系的初始pH各不相同,堆肥初期,各堆體pH迅速上升,這可能是由于物料中一些含氮化合物在微生物作用下氨化,產(chǎn)生大量的氨氣,使得堆體pH升高[31-32]. 在堆肥的后期,pH呈下降趨勢(shì)并趨于穩(wěn)定,這可能由于硝化作用使NH4+-N含量大幅降低,釋放出的H+不斷增多,使得pH下降. 另外可能是由于堆肥過(guò)程中有機(jī)物的分解而產(chǎn)生有機(jī)酸導(dǎo)致pH下降[33]. 整個(gè)堆肥過(guò)程中,堆體pH始終保持在7.3~8.3之間,已有報(bào)道[34]表明,一般微生物最適宜的pH為中性或弱堿性,pH太高或太低都會(huì)影響堆肥效果.
a) 5個(gè)堆肥體系均能有效降解紅水污染土壤中二硝基甲苯磺酸鹽,堆肥第60天,豬糞+木屑、豬糞+麥殼、污泥+木屑、污泥+麥殼和馬糞+木屑體系對(duì)2,4-DNT-3-SO3-的降解率分別為66.7%、88.4%、74.7%、87.5%和65.5%,對(duì)2,4-DNT-5-SO3-的降解率均可以達(dá)到100%,豬糞+麥殼體系對(duì)污染物質(zhì)2,4-DNT-3-SO3-的降解率最高.
b) 試驗(yàn)條件下,5個(gè)堆肥體系在3~6 d達(dá)到最高溫度. 各堆體的高溫階段降解了49.5%以上的2,4-DNT-3-SO3-.
c) 堆肥過(guò)程中各體系的含水率均不斷下降,通過(guò)外源加水可提高2,4-DNT-3-SO3-的降解率.
d) 堆肥初期,各堆肥體系pH呈現(xiàn)較明顯上升趨勢(shì),之后pH呈現(xiàn)下降趨勢(shì),最后呈現(xiàn)穩(wěn)定. 整個(gè)堆肥過(guò)程中,各堆體pH始終保持在7.3~8.3之間.
[1] FU Dan,ZHANG Yihe,LV Fengzhu,etal.Removal of organic materials from TNT red water by bamboo charcoal adsorption[J].Chemical Engineering Journal,2012,193/194:39-49.
[2] ZHANG Mohe,ZHAO Quanlin,YE Zhengfang.Organic pollutants removal from 2,4,6-trinitrotoluene (TNT) red water using low cost activated coke[J].Journal of Environmental Sciences,2011,23(12):1962-1969.
[3] ZHAO Quanlin,YE Zhengfang,ZHANG Mohe.Treatment of 2,4,6-trinitrotoluene (TNT) red water by vacuum distillation[J].Chemosphere,2010,80(8):947-950.
[4] ZHU Shini,LIU Guohua,YE Zhengfang,etal.Reduction of dinitrotoluenesulfonates in TNT red water using nanoscalezerovalent iron particles[J].Environmental Science and Pollution Research,2012,19(6):2372-2380.
[5] AN Fuqiang,GAO Baojiao,FENG Xiaoqin.Adsorption performance and mechanism of 2,4,6-trinitrotoluene on a novel adsorption material polyvinylbenzyl acid/SiO2[J].Applied Surface Science,2009,255(9):5031-5035.
[6] HAO O J,PHULL K K,CHEN J M,etal.Factors affecting wet air oxidation of TNT red water:rate studies[J].Journal of Hazardous Materials,1993,34(1):51-68.
[7] BARRETO-RODRIGUES M,SILVA F T,PAIVA T C B.Optimization of Brazilian TNT industry wastewater treatment using combined zero-valent iron and Fenton processes[J].Journal of Hazardous Materials,2009,168(2/3):1065-1069.
[8] TSAI T S.Biotreatment of red water-a hazardous waste stream from explosive manufacture with fungal systems[J].Hazardous Waste and Hazardous Materials,1991,8(3):231-244.
[9] 毛麗華.石油污染土壤生物通風(fēng)堆肥修復(fù)研究[D].北京:中國(guó)地質(zhì)大學(xué),2006.
[10] VASUDEVAN N,RAJARAM P.Bioremediation of oil sludge-contaminated soil[J].Environment International,2001,26(5/6):409-411.
[11] ZENG Guangming,YU Zhen,CHEN Yaoning,etal.Response of compost maturity and microbial community composition to pentachlorophenol (PCP)-contaminated soil during composting[J].Bioresource Technology,2011,102(10):5905-5911.
[12] ZHANG Yuan,ZHU Yongguan,HOUOT S,etal.Remediation of polycyclic aromatic hydrocarbon (PAH) contaminated soil through composting with fresh organic wastes[J].Environmental Science and Pollution Research,2011,18(9):1574-1584.
[13] WEI Li,MA Fang,ZHAO Guang.Composition and dynamics of sulfate-reducing bacteria during the waterflooding process in the oil field application[J].Bioresource Technology,2010,101:2643-2650.
[14] 趙建榮,高德才,汪建飛,等.不同C/N下雞糞麥秸高溫堆肥腐熟過(guò)程研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2011,30(5):1014-1020.
ZHAO Jianrong,GAO Decai,WANG Jianfei,etal.The high-rate composting of chicken manure and wheat straw in different C/N[J].Journal of Agro-Environment Science,2011,30(5):1014-1020.
[15] 高孟春,于安,楊麗娟,等.雞糞/木屑強(qiáng)制通風(fēng)堆肥的研究[J].環(huán)境科學(xué)與技術(shù),2010,33(1):11-15.
GAO Mengchun,YU An,YANG Lijuan.Forced aerated composting with chicken manure and sawdust[J].Environmental Science & Technology (China),2010,33(1):11-15.
[16] 胡天覺(jué),曾光明,袁興中.城市固體有機(jī)廢物堆肥試驗(yàn)裝置設(shè)計(jì)[J].環(huán)境污染治理技術(shù)與設(shè)備,2002,3(2):71-75.
HU Tianjue,ZENG Guangming,YUAN Xingzhong.Design of composting experimental device of municipal organic solid waste[J].Techniques and Equipment for Environmental Pollution Control,2002,3(2):71-75.
[17] ZHANG Mohe,LIU Guohua,SONG Kai,etal.Biological treatment of 2,4,6-trinitrotoluene (TNT) red water by immobilized anaerobic-aerobic microbial filters[J].Chemical Engineering Journal,2015,259:876-884.
[18] LIU Dongyang,ZHANG Ruifu,WU Hongsheng,etal.Changes in biochemical and microbiological parameters during the period ofrapid composting of dairy manure with rice chaff[J].Bioresource Technology,2011,102(19):9040-9049.
[19] 胡天覺(jué).城市有機(jī)固體廢物倉(cāng)式好氧堆肥工藝改進(jìn)及理論研究[D].長(zhǎng)沙:湖南大學(xué),2004.
[20] WANG Zhongyou,YE Zhengfang,ZHANG Mohe,etal.Degradation of 2,4,6-trinitrotoluene (TNT) by immobilized microorganism-biological filter[J].Process Biochemistry,2010,45(6):993-1001.
[21] 陳琛.Escherichia coli厭氧降解TNT的研究[D].大連:大連理工大學(xué),2008.
[22] 潘攀,王曉昌,李倩,等.初始溫度對(duì)人糞便好氧堆肥過(guò)程的影響[J].環(huán)境工程學(xué)報(bào),2015,9(2):939-945.
PAN Pan,WANG Xiaochang,LI Qian,etal.Effect of initial temperature on aerobic composting of human feces[J].Chinese Journal of Environmental Engineering,2015,9(2):939-945.
[23] 席北斗,李英軍,劉鴻亮,等.溫度對(duì)生活垃圾堆肥效率的影響[J].環(huán)境污染治理技術(shù)與設(shè)備,2005,6(7):33-36.
XI Beidou,LI Yingjun,LIU Hongliang,etal.Effect of temperature on composting process of municipal solid waste[J].Techniques and Equipment for Environmental Pollution Control,2005,6(7):33-36.
[24] 卜貴軍,于靜,邸慧慧,等.雞糞堆肥有機(jī)物演化對(duì)重金屬生物有效性影響研究[J].環(huán)境科學(xué),2014,35(11):4352-4358.
BU Guijun,YU Jing,DI Huihui,etal.Influence of organic matter evolution during composting on the bioavailability of heavy metals[J].Environmental Science,2014,35(11):4352-4358.
[25] 余震.毒死蜱降解菌的篩選、鑒定及其在污染土壤堆肥修復(fù)中的應(yīng)用[D].長(zhǎng)沙:湖南大學(xué),2009.
[26] ARIAS O,VIA S,UZAL M,etal.Composting of pig manure and forest green waste amended with industrial sludge[J].Science of the Total Environment,2017,586:1228-1236.
[27] JUVONEN R,MARTIKAINEN E,SCHULTZ E,etal.A battery of toxicity tests as indicators of decontamination in composting oily waste[J].Ecotoxicology and Environmental Safety,2000,47(2):156-166.
[28] MILLER F C,FINSTEIN M S.Materials balance in the composting of wastewater sludge as affected by process control strategy[J].Water Pollution Control Federation,1985,57(2):122-127.
[29] 羅維,陳同斌.濕度對(duì)堆肥理化性質(zhì)的影響[J].生態(tài)學(xué)報(bào),2004,24(11):2656-2663.
LUO Wei,CHEN Tongbin.Effects of moisture content of compost on its physical and chemical properties[J].Acta Ecologica Sinica,2004,24(11):2656-2663.
[30] HIGGINS C W,WALKER L P.Validation of a new model for aerobic organic solids decomposition:simulations with substrate specific kinetics[J].Process Biochemistry,2001,36(8/9):875-884.
[31] 周金波,金樹(shù)權(quán),陳若霞,等.剩余污泥與木屑·雞糞·豬糞混合好氧堆肥研究[J].安徽農(nóng)業(yè)科學(xué),2012,40(33):16191-16192.
ZHOU Jinbo,JIN Shuquan,CHEN Ruoxia,etal.Research on aerobic composting of sewage sludge mixed with sawdust,chicken manure and pig manure[J].Journal of Anhui Agricultural Sciences,2012,40(33):16191-16192.
[32] 邱珊,趙龍彬,馬放,等.不同通風(fēng)速率對(duì)厭氧殘余物沼渣堆肥的影響[J].中國(guó)環(huán)境科學(xué),2016,36(8):2402-2408.
QIU Shan,ZHAO Longbin,MA Fang,etal.The influence of aeration rate on intermittent forced-aeration composting of biogas residue[J].China Environmental Science,2016,36(8):2402-2408.
[33] 張翠綿,賈楠,胡棟,等.低溫型復(fù)合發(fā)酵菌劑接種雞糞堆肥的效應(yīng)[J].環(huán)境工程學(xué)報(bào),2016,10(10):5881-5885.
ZHANG Cuimian,JIA Nan,HU Dong,etal.Fermentation effects of chicken manure inoculating with compound inoculants of low temperature character[J].Chinese Journal of Environmental Engineering,2016,10(10):5881-5885.
[34] 胡濤,王曉昌,李倩,等.好氧堆肥反應(yīng)器對(duì)人糞便堆肥中溫降解的中試研究[J].環(huán)境工程學(xué)報(bào),2013,7(12):4965-4970.
HU Tao,WANG Xiaochang,LI Qian,etal.A pilot scale study on a human feces composting in aerobic medium temperature composting reactor[J].Chinese Journal of Environmental Engineering,2013,7(12):4965-4970.
CompostingSoilsContaminatedbyTNTRedWater
CONG Xin1,2, JIANG Jiuning1,2, LIU Hanbing2, YANG Bing2*, XUE Nandong2
1.College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, China 2.State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Dinitrotoluenesulfonates (2,4-dinitrotoluene-3-sulfonate and 2,4-dinitrotoluene-5-sulfonate) are the main pollutants of soils contaminated by TNT red water from explosives factories. The present study assessed the effectiveness of composting with organic waste to degrade dinitrotoluenesulfonates, as well as the effects of the changes in moisture, temperature and pH during the composting process. The obtained results revealed that the degradation rates in five composting systems (i.e., pig manure+sawdust, pig manure+rice chaff, sewage sludge+sawdust, sewage sludge+rice chaff, and horse manure+sawdust) were 65.5%-88.4% for 2,4-dinitrotoluene-3-sulfonate and 60.9%-100% for 2,4-dinitrotoluene-5-sulfonate during the 60-day composting. More than 49.5% of dinitrotoluenesulfonates were degraded in the thermophilic period (29.7-53.6 ℃) in the fourth day. The moisture contents of the five composting systems declined during the composting process, and supplementing water to 50% in the eighteenth day caused an increase from 70.2% to 88.4% in the degradation rate of 2,4-dinitrotoluene-3-sulfonate (pig manure+rice chaff). The pH of the five composting systems increased initially, decreased subsequently and stabilized finally. The results showed that organic waste composting can treat soil polluted by TNT red water. The pig manure+sawdust system had the highest degradation rate among the five studied composting systems, representing degradation rates of 88.4% and 100% for 2,4-dinitrotoluene-3-sulfonate and 2,4-dinitrotoluene-5-sulfonate, respectively.
composting; TNT red water; soil; dinitrotoluenesulfonates
2017-04-05
2017-08-17
國(guó)家自然科學(xué)基金項(xiàng)目(41571481,41403100)
叢鑫(1976-),女,遼寧阜新人,副教授,博士,主要從事土壤環(huán)境化學(xué)研究,congxin1800@163.com.
*責(zé)任作者,楊兵(1976-),男,湖北荊州人,副研究員,博士,主要從事區(qū)域土壤風(fēng)險(xiǎn)評(píng)估與修復(fù)研究,yangbing@craes.org.cn
叢鑫,姜久寧,劉寒冰,等.堆肥化處理TNT紅水污染土壤[J].環(huán)境科學(xué)研究,2017,30(11):1732-1738.
CONG Xin,JIANG Jiuning,LIU Hanbing,etal.Composting soils contaminated by TNT red water[J].Research of Environmental Sciences,2017,30(11):1732-1738.
X53
1001-6929(2017)11-1732-07
A
10.13198j.issn.1001-6929.2017.03.22