楊全剛,諸葛玉平,曲 揚,劉春增
?
小麥秸稈纖維素均相醚化制備羧甲基纖維素工藝優(yōu)化
楊全剛,諸葛玉平※,曲揚,劉春增
(山東農(nóng)業(yè)大學資源與環(huán)境學院,泰安 271018)
為了利用小麥秸稈通過均相反應制備羧甲基纖維素(CMC,carboxymethyl cellulose),采用氫氧化鈉和過氧化氫回流加熱法制備小麥秸稈纖維素。以加入氧化鋅的氫氧化鈉/尿素/硫脲體系為溶劑,采用凍融循環(huán)法溶解小麥秸稈纖維素,利用正交試驗獲得了該溶解體系的最佳組成。在溶解了小麥秸稈纖維素的氫氧化鈉/尿素/硫脲/氧化鋅的體系中,以氯乙酸鈉為醚化劑制備CMC,并對其進行紅外光譜分析和取代度(degree of substitution,DS)測定。結(jié)果表明:在固液比為1∶20 g/mL,質(zhì)量分數(shù)為10%NaOH,反應溫度為85 ℃,回流3.5 h和固液比為1∶30 g/mL,質(zhì)量分數(shù)為3%H2O2,反應溫度為85 ℃,回流3 h處理小麥秸稈,纖維素提取率最高為84.61%,同時能較好的脫除半纖維素和木質(zhì)素;最佳溶解體系為:質(zhì)量分數(shù)為7%NaOH,11%硫脲,5%尿素,0.05%氧化鋅,0 ℃時,最大溶解度為2.880 1 g。紅外光譜試驗表明小麥秸稈纖維素與微晶纖維素特征吸收峰基本一致,醚化反應生成的CMC與商品CMC的特征吸收峰基本一致。CMC的取代度受纖維素用量、溫度和氯乙酸鈉與纖維素葡萄糖單元(AGU,anhydroglucose unit)的摩爾比影響,隨纖維素用量和氯乙酸鈉與纖維素AGU的摩爾比增大而提高,隨醚化溫度的增加先增大(<55 ℃)后降低。研究結(jié)果為以小麥秸稈為原料,經(jīng)NaOH和H2O2處理獲得纖維素,溶解在加入氧化鋅的氫氧化鈉/尿素/硫脲體系中,與氯乙酸鈉經(jīng)過均相醚化反應合成取代度較高的CMC提供參考。
秸稈;纖維素;優(yōu)化;溶解度;羧甲基纖維素(CMC)
中國秸桿資源豐富,產(chǎn)量大、分布廣、種類多,但主要以小麥、水稻和玉米秸稈為主。2015年全國主要農(nóng)作物秸稈可收集資源量為9.000億t,利用量為7.209億t,秸稈綜合利用率為80.1 %。其中,用作工業(yè)原料的僅占2.7%左右,90%以上作為還田肥料、燃料、飼料和廢棄焚燒[1]。目前秸稈肥料化利用率為43.2%(主要為秸稈機械化直接還田),僅為發(fā)達國家的一半[2]。如東北地區(qū),由于相關部分政策模糊、氣候、地域環(huán)境、技術資金和農(nóng)戶認識水平等原因,導致該地區(qū)無法在短期內(nèi)完全遏制秸稈焚燒現(xiàn)象[3]。以哈爾濱市為例,秸稈資源中,用于生活燃料為20%左右;用作培養(yǎng)基質(zhì)和工業(yè)原料為2%左右;用作飼料為5%左右。能源化綜合利用不足30%;其余70%以上的秸稈資源被廢棄,很大一部分秸稈被隨意丟棄或焚燒[4]。綜上所述,農(nóng)作物秸稈利用方式簡單,資源浪費嚴重,同時污染環(huán)境,因此進一步拓寬和推進秸稈的工業(yè)化利用具有重要意義。羧甲基纖維素(carboxymethyl cellulose,CMC)是最具代表性的離子型纖維素醚,具有增黏、乳化、懸浮、降失水、抗鹽以及熱穩(wěn)定性好等優(yōu)良特性。廣泛用于石油、采礦、造紙、紡織、印染、洗滌劑、食品、化妝品等多個行業(yè),享有“工業(yè)味精”的美譽[5]。然而,由于CMC制備的主要原料精制棉成本高,因此需要尋求新的原材料來制備CMC。目前常用的主要有農(nóng)作物秸稈和工業(yè)副產(chǎn)物,如玉米秸稈[6-7]、小麥秸稈[8-9]、棉花稈[10]、稻草[11]、桑枝皮[12]、木屑[13]、竹屑[14]、甜菜[15]、香蕉莖稈[16]、橘皮[17]、廢棄棉織物[18]、甘蔗渣[19]、廢糖粕[20]、海帶廢渣[21]、馬鈴薯淀粉渣[22]、化纖廠廢堿液等[23]。但其制備方法是把這些原料通過堿液或酸液處理后提取出纖維素,然后制備CMC,或者通過氣爆、機械活化后制備CMC。制備中需要加入有機稀釋劑和催化劑,反應條件復雜,均為異相反應體系,沒有進行纖維素的溶解,直接進行醚化反應。這就需要進行多次加堿和較高的反應溫度,使醚化反應的副反應增強,獲得的CMC取代度在0.4以上才能溶于水[5,24]。這種用異相方法合成的CMC,由于反應只發(fā)生在纖維素無定形區(qū)和結(jié)晶表面,是一個由表及里的過程,反應過程難以精確控制,產(chǎn)物性能無法預測[25]。因此尋求進行均相反應制備CMC是目前的研究熱點,常用的溶解纖維素的均相溶劑體系有LiCl/DMAc、DMSO/TBAF、離子液體和堿/尿素/硫脲溶劑體系[26]。
堿/尿素/硫脲溶劑體系是一種纖維素水溶體系,該溶劑體系預冷至?5~?12 ℃后可迅速溶解纖維素,得到透明的溶液[27]。以微晶纖維素或棉短絨為原料在該體系下均相合成了羥乙基纖維素[28]、兩性纖維素醚[29]、季銨化纖維素陽離子聚電解質(zhì)醚[30-31]、甲基纖維素和羥丙基纖維素[32]等纖維素改性物質(zhì),而且反應條件溫和,不需要有機溶劑,同時在該體系中合成的CMC取代度在0.20時即可溶于水[33]。
本文利用小麥秸稈制備纖維素,選擇加入氧化鋅的堿/尿素/硫脲溶劑體系(NaOH /urea/thiourea/ZnO aqueous solution,SUTZ)對制備的小麥秸稈纖維素進行溶解。并通過正交試驗確定其最大溶解度時的各組分的最佳含量。探討在該溶解體系中直接對纖維素醚化制備CMC的方法,減少了加堿次數(shù),降低了堿的用量,不再加入有機溶劑。同時對在該體系下影響CMC取代度的因素進行了初步探討。獲得了一種利用溶液法由小麥秸稈制備CMC的生產(chǎn)工藝。研究結(jié)果為以小麥秸稈為原料,經(jīng)過處理獲得纖維素,再將小麥秸稈纖維素溶于SUTZ中,均相合成CMC提供參考。
原料:小麥秸稈取自山東農(nóng)業(yè)大學馬莊試驗基地。
試劑:尿素、硫脲、氧化鋅、氫氧化鈉、丙酮、無水乙醇、乙酸、氯乙酸鈉、甲醇、鹽酸、酚酞,均為國產(chǎn)分析純試劑,微晶纖維素和商品羧甲基纖維素(CMC)為生物試劑。
DF-101S集熱式恒溫加熱磁力攪拌器(北京同德創(chuàng)業(yè)科技有限公司);真空干燥器(上海君翼儀器設備有限公司);ND7-1L球磨機(南京萊步科技實業(yè)有限公司);IR-810紅外分光光度計(JASCO日本分光株式會社)。
1.3.1 工藝流程
小麥秸稈→預處理→40目小麥秸稈粉末→NaOH處理→H2O2處理→小麥秸稈纖維素→凍融循環(huán)法和正交試驗→小麥秸稈纖維素均相溶液→55 ℃條件下氯乙酸鈉醚化反應→羧甲基纖維素。
1.3.2 小麥秸稈的預處理
將小麥秸稈去葉,切成1~2 cm長小段,用清水漂洗3~5次除去塵土等雜質(zhì)。再用去離子水清洗3~5次,將蒸餾水煮沸后,加入上述已初步處理的小麥秸稈煮1 h,取出晾干。再在烘箱中烘干,用高速粉碎機粉碎,過40目篩,得到小麥秸稈粉末,放入干燥器中備用[34]。按照參考文獻[35]的方法測定小麥秸稈中纖維素、半纖維素和木質(zhì)素質(zhì)量分數(shù)分別為:48.32%、23.26%和21.14%。
1.3.3 小麥秸稈纖維素的制備
分別配制質(zhì)量分數(shù)為6%、8%、10%、12%的氫氧化鈉溶液[36],按1∶20 g/mL的固液比將過40目篩的小麥秸稈粉末加入到氫氧化鈉溶液中,攪拌,混合均勻后,在85 ℃下回流加熱3.5 h。反應結(jié)束后過濾,用水洗滌至中性,移入烘箱干燥[37]。配制質(zhì)量分數(shù)為3%過氧化氫溶液,將上述用氫氧化鈉溶液處理過的小麥秸稈粉末按1∶30 g/mL的固液比混合。加入少量硅酸鈉作為穩(wěn)定劑,在85 ℃回流加熱3 h,過濾,用水洗滌,移入烘箱干燥。將上述過氧化氫處理過干燥的小麥秸稈粉末用球磨機研磨1.5 h[38]。按照參考文獻[35]的方法測定纖維素、半纖維素和木質(zhì)素含量,計算半纖維素和木質(zhì)素脫除率(脫除率=(秸稈總半纖維素或木質(zhì)素含量-處理后粉末中半纖維素或木質(zhì)素含量)/秸稈總半纖維素或木質(zhì)素含量×100%)。
1.3.4 小麥秸稈纖維素的最佳溶解條件的確定
以氫氧化鈉、硫脲、尿素、氧化鋅在溶劑體系中的質(zhì)量分數(shù)為影響因素,每個因素取5個水平(表1)。以SUTZ對制備纖維素的溶解度為評價指標,設計正交試驗[39],以確定SUTZ的最佳組成。配制100 g一定組成的氫氧化鈉/尿素/硫脲/氧化鋅混合溶劑,加入制備的小麥秸稈纖維素4 g(0)強烈攪拌(7 000 r/min)1 min,得到纖維素懸浮液。將其在?20 ℃的冰箱中放置4 h,取出在冰水浴中解凍后強烈攪拌(7 000 r/min)。將得到的纖維素溶液在高速離心機(8 000 r/min)下離心20 min,將上清液與不溶的部分分離。不溶部分用水反復洗滌至中性,再用丙酮洗滌后真空烘干,稱其質(zhì)量(1,g),并計算小麥秸稈溶解度(,g),=o?1。
表1 正交試驗因素水平表
1.3.5 羧甲基纖維素的制備
分別將1.4、2.1、2.8 g制備的小麥秸稈纖維素溶解在100 g最佳SUTZ中。取上清液,加入5 mL10%的NaOH堿化,設定溫度35 ℃,攪拌回流1 h進行堿化反應,繼續(xù)升溫達到設定的醚化溫度55 ℃時,加入定量的氯乙酸鈉,使氯乙酸鈉與纖維素葡萄糖單元(AGU,anhydroglucose unit)的摩爾比分別為:3.5∶1、7∶1、10.5∶1,攪拌回流5 h[33]。將所得醚化產(chǎn)物用少量乙酸中和,過濾,用無水乙醇反復洗滌固體3~5次。后移入烘箱105 ℃干燥2 h,得到羧甲基纖維素產(chǎn)品[40]。
1.3.6 紅外光譜測定
用溴化鉀壓片法測定醚化前秸稈纖維素、微晶纖維素、醚化后CMC和商品CMC的紅外光譜特征,波長范圍為500~4 000 nm。
1.3.7 取代度的測定
用質(zhì)量分數(shù)為70%的甲醇溶液配制1 mol/L的HCl/CH3OH溶液,取0.5 g醚化纖維素浸于20 mL上述溶液中,攪拌3 h,使CMC完全酸化,抽濾,用蒸餾水洗至溶液無氯離子,用150 mL標準NaOH溶液溶解,得到透明溶液,以酚酞作指示劑,用標準鹽酸溶液滴定至終點,重復3次,求平均值[41]。
用下式計算取代度[41]:
取代度=0.162/(1?0.058)
式中為每克羧甲基纖維素消耗的NaOH毫摩爾數(shù)。=(NaOH用量(mmol)-鹽酸用量(mmol))/醚化纖維素質(zhì)量(g)。
用Excel進行整理分析試驗數(shù)據(jù)并作圖,用Origin 8繪制紅外光譜特征圖,用SPSS 21.0軟件進行正交試驗方差分析。
NaOH質(zhì)量分數(shù)在10%以下時,纖維素提取率、半纖維素和木質(zhì)素的脫除率隨NaOH含量的增加而提高,在NaOH質(zhì)量分數(shù)為10%時,小麥秸稈粉末纖維素提取率最高為84.61%,半纖維素和木質(zhì)素的脫除率分別為84.44%、91.14%。NaOH質(zhì)量分數(shù)為12%時,半纖維素的脫除率和纖維素提取率均降低,木質(zhì)素脫除率提高到92.06%,但只比NaOH質(zhì)量分數(shù)為10%時的脫除率高0.92個百分點,因此選擇NaOH質(zhì)量分數(shù)為10%和3%過氧化氫溶液來脫除半纖維素和木質(zhì)素,制備纖維素(圖1)。出現(xiàn)這種情況的原因可能是NaOH過量,引起纖維素和半纖維素降解,導致在處理后的小麥秸稈粉末中含量下降。但木質(zhì)素卻沒有降解,從而其脫除率繼續(xù)升高[34]。
圖1 纖維素提取率與半纖維素、木質(zhì)素脫除率
對正交試驗結(jié)果進行分析(表2),值表示各因素水平對應試驗指標和的平均值,通過值大小可以判斷最佳水平和最佳組合。在SUTZ中,通過對比NaOH5個水平的平均溶解度發(fā)現(xiàn),隨NaOH含量的增加,對小麥秸稈纖維素的溶解能力越大。在質(zhì)量分數(shù)為8%時,小麥秸稈纖維素的溶解度達到最大為2.578 3 g,但在質(zhì)量分數(shù)為7%,其溶解度為2.577 4 g,與質(zhì)量分數(shù)為8%時相差0.000 9 g,差別幾乎可以忽略。為減少加堿量,降低成本,減少廢堿液的排放,因此選擇NaOH質(zhì)量分數(shù)7%為最佳。
在SUTZ體系中,對比硫脲(CO(SH2)2)和尿素(CO(NH2)2)的5個水平的平均溶解度發(fā)現(xiàn),隨兩者質(zhì)量分數(shù)的增加,硫脲對小麥秸稈纖維素的溶解度先降低后增大,再降低。硫脲在質(zhì)量分數(shù)為11%對小麥秸稈纖維素的溶解能力最大。尿素對小麥秸稈纖維素溶解度先降低后一直增大。尿素在質(zhì)量分數(shù)為13%時溶解度最大為2.232 5 g,但與5%時的溶解度2.224 8 g,相差0.007 7 g,差別較小。為節(jié)約原料和降低成本,選擇尿素最佳質(zhì)量分數(shù)為5%。
表2 小麥秸稈纖維素在SUTZ體系中的溶解度正交試驗結(jié)果
氧化鋅(ZnO)在SUTZ體系中對小麥秸稈纖維素溶解能力的表現(xiàn)與NaoH、硫脲和尿素都不同。比較其5個水平的平均溶解度發(fā)現(xiàn),溶解度隨氧化鋅質(zhì)量分數(shù)的增大先升高后降低,再升高。最大溶解度出現(xiàn)在質(zhì)量分數(shù)為0.05%時,與0.1%的溶解度相差不大。同時氧化鋅質(zhì)量分數(shù)為0時與0.2%對小麥秸稈纖維素的溶解度相差不大,都低于氧化鋅質(zhì)量分數(shù)為0.05%時的溶解度,因此選擇氧化鋅的最佳溶解質(zhì)量分數(shù)為0.05%。
正交試驗中,各因素值表示因素對試驗指標的影響大小,值越大,影響越大,越重要。SUTZ體系中NaOH、硫脲、尿素、氧化鋅值的分別為1.190 7、0.217 4、0.170 8、0.219 9,因此對溶解度影響最大的因素為NaOH。其次為氧化鋅、硫脲。影響最小的為尿素。方差分析也表明(表3),NaOH為影響最顯著因素,其次為氧化鋅。
根據(jù)以上分析,綜合NaOH、硫脲、尿素、氧化鋅的最佳溶解含量,SUTZ體系的最佳組成是:NaOH質(zhì)量分數(shù)為7%,硫脲質(zhì)量分數(shù)為11%,尿素質(zhì)量分數(shù)為5%,氧化鋅質(zhì)量分數(shù)為0.05%。用最佳組成進行小麥秸稈纖維素溶解試驗,測定其溶解度為2.880 1 g。
表3 小麥秸稈纖維素在SUTZ體系中的溶解度方差分析
注:**,極顯著。
Note:**,Very significant
CMC的取代度與醚化反應中氯乙酸鈉與纖維素AGU的摩爾比有關(表4)。當小麥秸稈纖維素的量不變時,隨摩爾比的增大,CMC的取代度逐步提高。在小麥秸稈纖維素用量為1.4 g時,摩爾比分別從3.5∶1增加到10.5∶1,氯乙酸鈉用量增加3倍,CMC的取代度分別從0.12增加到0.31。小麥秸稈纖維素用量為2.1和2.8 g時有相同規(guī)律。當摩爾比不變情況下,纖維素的用量增加,羧甲基纖維素的取代度明顯提高,提高幅度高于增加氯乙酸鈉的用量。在相同摩爾比3.5∶1情況下,當纖維素用量從1.4 g增加2倍到2.8 g時,取代度從0.12增加到0.30。在纖維素醚化過程中,存在兩個競爭反應,一是堿纖維素與氯乙酸鈉的醚化反應,二是氯乙酸鈉與堿的反應生成乙醇酸鈉,當氯乙酸鈉過量時,纖維素用量增加,生成的堿纖維素增加,促進了醚化反應的進行,因此取代度提高[5,33]。
溫度對CMC的取代度有顯著影響(圖2)。DS隨溫度的升高先升高后下降,在溫度較低時取代度很低,只有0.12。隨溫度升高,取代度逐漸升高,在溫度為55 ℃時,取代度最高,達到0.28。而后取代度隨溫度升高而降低。主要原因可能在于溫度過高,首先引起纖維素溶解度下降,其次導致纖維素降解,同時副反應加快,不利于主反應的進行[19,22,33]。因此醚化溫度在55 ℃較佳,纖維素為2.8 g,氯乙酸鈉與纖維素AGU摩爾比為10.5:1時,取代度為0.45(表4)。
表4 SUTZ最佳溶解體系下CMC取代度
注:醚化反應溫度為55 ℃,摩爾比=氯乙酸鈉:纖維素AGU(纖維素質(zhì)量/纖維素AGU相對分子質(zhì)量)。
Note: The etherification reaction temperature of 55 ℃. molar ratio =sodium chloroacetate: cellulose AGU (Cellulose quality /the relative molecular weight of cellulose).
注:纖維素為1.4g,氯乙酸鈉與纖維素AGU摩爾比為7:1。
分析圖3可以看出,小麥秸稈纖維素(a)與微晶纖維素紅外光譜(b)比較,兩者基本重合,2 913 cm-1處的吸收峰歸屬為C-H的伸縮振動峰,1 055 cm-1附近的吸收峰是纖維中醚鍵的特征峰,894 cm-1為環(huán)狀C-O-C不對稱面外伸縮振動或CH2(CH2OH)非平面搖擺振動產(chǎn)生的特征峰[42]。通過對比醚化前小麥秸稈纖維素(a)和醚化后羧甲基纖維素(c)紅外光譜,3 442 cm-1附近的吸收峰是OH基的伸縮振動吸收,醚化后在1 600 cm-1處有明顯的羰基吸收峰,強吸收帶歸屬于羧酸鹽中的–COO–伸縮振動[43];醚化后羧甲基纖維素(c)1 420處吸收峰變強,由此可知–CH2基團的存在,表明羧甲基化反應完成[44]。初步證明產(chǎn)物為羧甲基纖維素。比較小麥秸稈醚化得到的CMC(c)和商品純CMC(d)的紅外譜圖,可以看到二者的特征峰位基本吻合,從而進一步證明從小麥秸稈在SUTZ中均相合成了CMC。在1 000~1 100 cm-1處是醚鍵的對稱與不對稱振動吸收峰,醚化前有較強的峰,醚化后峰基本消失,說明在制備羧甲基纖維素的過程中纖維素的聚合度有較大變化,聚合度降低,CMC的溶解度增加,這也是通過均相SUTZ合成的CMC在取代度小于0.40情況下能溶于水的原因之一[45]。
a. 小麥秸稈纖維素;b. 微晶纖維素;c. 小麥秸稈醚化后得到的羧甲基纖維素;d. 商品羧甲基纖維素
在SUTZ溶解度正交試驗中,硫脲與尿素的各水平質(zhì)量分數(shù)相同,水平間溶解度變化規(guī)律不同。通過水平間溶解度對比能夠確定在K時硫脲溶解度最大。但尿素是否在質(zhì)量分數(shù)比K小或比K大時溶解度繼續(xù)增大,還需進一步進行試驗驗證。兩者可能通過與NaOH作用或與纖維素形成氫鍵來促進纖維素的溶解。查純喜等研究認為硫脲、尿素與NaOH有著相互作用,并且硫脲與NaOH的作用更強烈[46]。而有研究認為在SUTZ中,硫脲和尿素促進纖維素溶解的原因在于分子能夠擴散到纖維素的結(jié)晶區(qū), 分子中的C=O、C=S、–NH2基團與纖維素形成氫鍵而拆散纖維素結(jié)晶,從而使纖維素溶解[39]。根據(jù)硫脲和尿素各水平溶解度在本研究中變化情況,質(zhì)量分數(shù)低時硫脲和尿素可能先與NaOH生成某種絡合物,包裹住纖維素大分子,阻止其分子間或分子內(nèi)形成氫鍵,保持纖維素溶液的穩(wěn)定。隨質(zhì)量分數(shù)升高時,消耗NaOH過多,降低了NaOH作用,溶解度下降。質(zhì)量分數(shù)繼續(xù)增大,過量的硫脲和尿素進入纖維素分子內(nèi)部,與纖維素形成氫鍵,促進纖維素溶解,溶解度增大。質(zhì)量分數(shù)繼續(xù)增大,由于硫脲與NaOH作用強烈,消耗過量NaOH,使NaOH作用下降,導致溶解度下降。而尿素與NaOH作用較硫脲低,因此在試驗質(zhì)量分數(shù)范圍內(nèi)溶解度先降低后升高,未出現(xiàn)再降低現(xiàn)象。
本研究發(fā)現(xiàn)隨氧化鋅的質(zhì)量分數(shù)的增加,氧化鋅在SUTZ中的溶解度下降。當其質(zhì)量分數(shù)過高時(大于0.2%),氧化鋅無法完全溶解在該體系中??赡茉蚴茄趸\的溶解與NaOH的質(zhì)量分數(shù)大小有關。氧化鋅在SUTZ中促進纖維素溶解的原因在于能夠與NaOH反應生成[Zn(OH)4]2-,0.05%ZnO在水和NaOH溶液中完全溶解,并以[Zn(OH)4]2-的形式存在,反應式為:ZnO+ 2NaOH+H2O→Na2[Zn(OH)4],[Zn(OH)4]2-離子可能起到了與Na+水合離子同樣的作用,即穩(wěn)定纖維素的羥基[47],從而促進纖維素的溶解。
1)在質(zhì)量分數(shù)為10%NaOH,固液比為1∶20 g/mL,反應溫度為85 ℃,回流3.5 h,以及質(zhì)量分數(shù)3%H2O2,固液比為1∶30 g/mL,反應溫度為85 ℃,回流3 h條件下提取小麥秸稈纖維素效果較好,達到84.61%,半纖維素和木質(zhì)素脫除率分別為84.44%和91.14%。
2)在堿/尿素/硫脲溶劑體系中加入氧化鋅能促進小麥秸稈纖維素的溶解,對該體系溶解能力的影響由大到小依次為氫氧化鈉、氧化鋅、硫脲、尿素。其最佳組成是:質(zhì)量分數(shù)分別為氫氧化鈉7%,硫脲11%,尿素5%,氧化鋅0.05%,最佳組成條件下,小麥秸稈纖維素的溶解度為2.880 1 g。
3)在SUTZ均相溶劑體系中,合成了CMC,其取代度隨氯乙酸鈉與纖維素AGU的摩爾比增加而提高,隨溫度的升高先增加后降低。
[1] 宋志偉,王晶,朱旭麗,等. 秸稈資源綜合利用現(xiàn)狀及展望[J]. 安徽農(nóng)業(yè)科學,2017,45(7):64-66,162.
Song Zhiwei, Wang Jing, Zhu Xuli, et al. Present research status and prospects of the comprehensive utilization of straw resources[J]. Journal of Anhui Agri Sci, 2017, 45(7): 64-66,162. (in Chinese with English abstract)
[2] 石祖梁,劉璐璐,王飛,等. 我國農(nóng)作物秸稈綜合利用發(fā)展模式及政策建議[J]. 中國農(nóng)業(yè)科技導報,2016,18(6):16-22.
Shi Zuliang, Liu Lulu, Wang Fei, et al. Development model and policy proposal for comprehensive utilization of crop straw in China[J]. Journal of Agricultural Science and Technology, 2016, 18(6): 16-22. (in Chinese with English abstract)
[3] 王金武,唐漢,王金峰. 東北地區(qū)作物秸稈資源綜合利用現(xiàn)狀與發(fā)展分析[J]. 農(nóng)業(yè)機械學報,2015,48(5):1-21.
Wang Jinwu, Tang Han, Wang Jinfeng. Comprehensive utilization status and development analysis of crop straw resource in Northeast China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 48(5): 1-21. (in Chinese with English abstract)
[4] 閆景鳳,劉立強,宋煒. 對北方玉米秸稈綜合利用現(xiàn)狀的思考[J]. 現(xiàn)代農(nóng)業(yè)科技,2015(8):219-220.
Yan Jingfeng, Liu Liqiang, Song Wei. Thinking on comprehensive utilization status of maize straws in Northern China[J]. Modern Agricultural Science and Technology, 2015(8): 219-220. (in Chinese with English abstract)
[5] 李外,趙雄虎,季一輝,等. 羧甲基纖維素制備方法及其生產(chǎn)工藝研究進展[J]. 石油化工,2013(6):693-702.Li Wai, Zhao Xionghu, Ji Yihui, et al. Progresses in preparation and production technology for carboxymethylcellulose[J]. Petrochemical Technology, 2013(6): 693-702. (in Chinese with English abstract)
[6] 譚鳳芝,叢日昕,李沅,等. 利用玉米秸稈制備羧甲基纖維素[J]. 大連工業(yè)大學學報,2011,30(2):137-200.
Tan Fengzhi, Cong Rixin, Li Yuan, et al. Preparation of carboxymethyl cellulose from corn straw[J]. Journal of Dalian Polytechnic University, 2011, 30(2): 137-200. (in Chinese with English abstract)
[7] 楊葉,陳洪章. 汽爆玉米秸稈羧甲基纖維素的制備[J]. 化工學報,2009,60(7):1843-1849.
Yang Ye, Chen Hongzhang. Reparation of carboxymethyl cellulose from steam exploded crop straw[J].CIESC Journal, 2009, 60(7): 1843-1849. (in Chinese with English abstract)
[8] 郝紅英,邵自強. 天然植物秸稈SE改性及其羧甲基化研究[J]. 華北工學院學報,2004,25(3):212-215.
Hao Hongying, Shao Ziqiang. Se-pretreatment of natural wheat-strawand synthesis of its carboxymetholcel[J]. Journal of North China Institute of Technology, 2004, 25(3): 212-215. (in Chinese with English abstract)
[9] 萬順,郝紅英,邵自強. 天然植物秸稈制備兩性纖維素PCGD的研究[J]. 高分子材料科學與工程,2004(5):190-193.
Wan Shun, Hao Hongying, Shao Ziqiang. Studies on preparation of amphoteric cellulose from nature plant straw[J]. Polymer Materials Science And Engineering, 2004(5): 190-193. (in Chinese with English abstract)
[10] 周婷婷,張宏喜,李楠,等. 棉桿基羧甲基纖維素的制備研究[J]. 安徽農(nóng)業(yè)科學,2014,42(30):10676-10678.
Zhou Tingting, Zhang Hongxi, Li Nan, et al. Preparation of carboxym ethyl cellulose with cotton straw[J]. Journal of Anhui Agri Sci, 2014, 42(30): 10676-10678. (in Chinese with English abstract)
[11] 鄧戊有,胡曉健. 稻草制羧甲基纖維素鈉的研究[J]. 衡陽師專學報:自然科學,1997(6):36-38.
Deng Wuyou, Hu Xiaojian. Research on the preparation of sodium carboxymethy cellulose using rice straw[J]. Journal of Hensvane Teachers’ College:Natural Science,1997(6): 36-38. (in Chinese with English abstract)
[12] 曹靜. 桑枝皮羧甲基纖維素鈉的制備及其表征[D]. 杭州:浙江理工大學,2011.
Cao Jing. Research on Peparation and Characterization of Mulberry Bark Sodium Carboxymethyl[D]. Hangzhou: Cellulose Zhejiang Sci-Tech University, 2011. (in Chinese with English abstract)
[13] 夏士朋. 用木屑制備羧甲基纖維素[J]. 淮陰師范學院學報:自然科學版,2004(3):236-239.
Xia Shipeng. Preparation of carboxymethyl cellulose from bits of wood[J]. Journal of Huai yin teachers College: Natural Science Edition, 2004(3): 236-239. (in Chinese with English abstract)
[14] 余小龍,劉健,甘禮惠,等. 竹屑制備高取代度羧甲基纖維素鈉的優(yōu)化及其表征[J]. 現(xiàn)代化工,2015(8):109-114.
Yu Xiaolong, Liu Jian, Gan Lihui, et al. Optimization and characterization of sodium carboxymethyl cellulose with a high degree of substitution prepared from bamboo shavings[J]. Modern Chemical Industry, 2015(8): 109-114. (in Chinese with English abstract)
[15] 楊海燕,賀昱. 甜菜羧甲基纖維素制備工藝[J]. 保鮮與加工,2005(3):21-23.
Yang Haiyan, He Yu. Optimization of preparing technology of edible fiber of sugar beet marboxyethylation[J]. Storage and Process, 2005(3): 21-23. (in Chinese with English abstract)
[16] Adinug raha M P, Marseno D W. Synthesis and characteriz ation of sodium carboxy methylcel lulose from cavendish banana pseudo stem (Musa caven dishiiL AM BERT)[J]. Carbohy drate Polymers 2005, 62(2): 164-169.
[17] Fevzi Yasar, Hasan Togrul, Nurhan Arslan. Flow propeities of cellulose and carboxymetliyl cellulose from orange peel[J]. Food Engineering, 2007, 81: 187-199.
[18] 劉洋洋,劉正芹,邱秀麗,等. 廢棉布制備高粘度羧甲基纖維素[J]. 青島大學學報:工程技術版,2010(1):50-53.
Liu Yangyang, Liu Zhengqin, Qiu Xiuli,et al.The preparation of high viscosity carboxymethylcellulose with waste cotton cloth[J]. Journal of Qingdao University (e&t), 2010(1): 50-53. (in Chinese with English abstract)
[19] 覃海錯,黃文榜,孫一峰,等. 甘蔗渣纖維制備羧甲基纖維素新工藝[J]. 廣西師范大學學報:自然科學版,1998(1):89-92.
Qin Haicuo, Huang Wenbang, Sun Yifeng, et al. A novel preparation of caboxymethyl celluloses from bagasse fiber[J]. Journal of Guangxi Normal University:Natural Science, 1998(1): 89-92. (in Chinese with English abstract)
[20] 柯子勤,李艷華. 用廢糖粕提取果膠和制備羧甲基纖維素的研究[J]. 新疆師范大學學報:自然科學版,2001(1):39-42.
Ke Ziqing, Li Yanhua. Study on extraction of pectin and preparation of carboxymethyl cellulose (cmc) with waste beet pulp[J]. Journal of Xinjiang Normal University: Natural Sciences Edition, 2001(1): 39-42. (in Chinese with English abstract)
[21] 賈福強,冷凱良,于躍芹. 利用海帶廢渣制備羧甲基纖維素[J]. 安徽農(nóng)業(yè)科學,2012,40(31):15431-15432,15520.
Jia Fuqiang, Leng Kailiang, Yu Yueqin. Preparation of carboxymethyl cellulose from kelp residue[J]. Journal of Anhui Agri, Sci, 2012, 40(31): 15431-15432, 15520. (in Chinese with English abstract)
[22] 白仲蘭,桂文君,石輝文. 馬鈴薯淀粉渣制備羧甲基纖維素和羧甲基淀粉混合物的研究[J]. 安徽農(nóng)業(yè)科學,2010,38(33):19063-19065.
Bai Zhonglan, Gui Wenjun, Shi Huiwen.Research on the preparation of the compound of carboxymethyl cellulose and carboxymethyl starch with the potato starch slag[J]. Journal of Anhui Agri, Sci, 2010, 38(33): 19063-19065. (in Chinese with English abstract)
[23] 周彩榮,徐敏強,王曉松,等. 由化纖廠廢堿液制備羧甲基纖維素[J]. 鄭州大學學報:工學,2015(1):33-36.
Zhou Cairong, Xu Minqiang, Wang Xiaosong, et al. Preparation of carboxymethyl cellulose (cmc) using the iste liquor of the viscose fiber industry[J]. Journal of Zhengzhou University: Engineering Science, 2015(1): 33-36. (in Chinese with English abstract)
[24] 陳淵,韋慶敏,楊家添,等. 機械活化甘蔗渣制備羧甲基纖維素及性能表征[J]. 農(nóng)業(yè)工程學報,2015,31(23):300-307.
Chen Yuan, Wen Qingmin, Yang Jiatian, et al.Preparation and characterization of carboxymethyl cellulose from mechanically activated bagasse cellulose[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(23): 300-307. (in Chinese with English abstract)
[25] Klemm D, Heublein B, Fink HP, et al. Cellulose: Fascinating biopolymer and sustainable raw material[J]. Angew Chem In Ed, 2005, 44: 3358-3393.
[26] 周金平,甘蔚萍,張俐娜. 均相體系中纖維素化學改性研究概述[J]. 中國科學:化學,2012,42(5):591-605.
Zhou Jinping, Gan Weiping, Zhang Lina. Progress on homogeneously chemical modification of cellulose[J]. Science China: Chimica, 2012, 42(5): 591-605. (in Chinese with English abstract)
[27] 呂昂,張俐娜.纖維素溶劑研究進展[J]. 高分子學報,2007(10):937-944
Lv Ang, Zhang Lina. Advance in solvents of cellulose[J]. Acta Polymerica Sinica, 2007(10): 937-944. (in Chinese with English abstract)
[28] 周琦,李明,張俐娜.新纖維素水溶液均相體系中合成羥乙基纖維素[C].武漢:全國高分子學術論文報告會,2001.
Zhou Qi, Li Ming, Zhang Lina. Hydroxyethylation Of Cellulosen Novel Media[C].Wuhan:National high polymer academic paper report, 2001. (in Chinese with English abstract)
[29] 何愛見. 在氫氧化鈉/尿素體系下均相一鍋法合成兩性纖維素醚[D]. 南京:南京林業(yè)大學,2013.
He AiJian. Homogenous Synthesis of Amphoteric Cellulose in One Pot Using NaOH/Urea Aqueous Solution as Solvent[D]. Nanjing: Nanjing Forestry University, 2013. (in Chinese with English abstract)
[30] 宋勇波.新型纖維素聚電解質(zhì)醚的均相合成、性質(zhì)及應用[D]. 武漢:武漢大學,2010.
Song Yongbo. Homogeneous Synthesis, ProPerties and APPlications of Novel Cellulose-Based Polvelectrolvte Ethers[D]. Wuhan: Wuhan University, 2010. (in Chinese with English abstract)
[31] 王水眾,張麗,吳池興,等. NaOH-尿素體系中纖維素季錢鹽衍生物的均相合成與表征[J]. 中國造紙,2015(6):35-40.
Wang Shuizhong, Zhang Li, Wu Chixing, et al. Homogeneous synthesis and characterization of quaternized cellulose derivative in sodium hydroxide-urea aqueous solution[J]. China Pupl & Paper, 2015(6): 35-40. (in Chinese with English abstract)
[32] Zhou J, Zhang L, Deng Q, Wu X. Synthesis and characterization of cellulose derivatives prepared in NaOH/urea aqueous solutions[J]. J Polym Sci Part A: Polym Chem, 2004, 42: 5911-5920.
[33] Haisong Qi, Tim Liebert, Frank Meister,et al. Homogenous carboxymethylation of cellulose in the NaOH/urea aqueous solution[J]. Reactive & Functional Polymers, 2009(69): 779-784.
[34] 李春光,王彥秋,李寧,等. 玉米秸稈纖維素提取及半纖維素與木質(zhì)素脫除工藝探討[J]. 中國農(nóng)學通報,2011,27(1):199-202.
Li Chunguang, Wang Yanqiu, Li Ning, et al. Study on extraction of cellulose and removal of hemicelluloses and lignin from corn stalk[J]. Chinese Agricultural Science Bulletin, 2011, 27(1): 199-202. (in Chinese with English abstract)
[35] 李春光,董令葉,吉洋洋,等. 花生殼纖維素提取及半纖維素與木質(zhì)素脫除工藝探討[J]. 中國農(nóng)學通報,2010,26(22):350-354.
Li Chunguang, Dong Lingye, Ji Yangyang, et al. Study on extraction of cellulose and removal of hemicelluloses and lignin from peanut hull[J]. Chinese Agricultural Science Bulletin, 2010, 26(22): 350-354. (in Chinese with English abstract)
[36] 毛微曦,趙曉勝,王立華,等. 高壓蒸煮法提取玉米秸稈纖維素的工藝研究[J]. 安徽農(nóng)業(yè)科學,2013,41(34):13387-13389.
Mao Weixi, Zhao Xiaosheng, Wang Liha, et al. Study on extraction of cellulose in corn straw with high pressure steaming method[J]. Journal of Anhui Agri Sci, 2013, 41(34): 13387-13389. (in Chinese with English abstract)
[37] 王立華,王永利,趙曉勝,等. 秸稈纖維素提取方法比較研究[J]. 中國農(nóng)學通報,2013,29(20):130-134.
Wang Lihua, Wang Yongli, Zhao Xiaosheng, et al. Comparative study on the method of extracting straw cellulose[J]. Chinese Agricultural Science Bulletin, 2013, 29(20): 130-134. (in Chinese with English abstract)
[38] 龐春生. 玉米秸稈的固體堿活性氧蒸煮機制及其漿料表面特性的研究[D]. 廣州:華南理工大學,2012.
Pang Chunsheng. Study of Mechanism of Cooking of Coin Stalk With a Solid Alkali and Active Oxygen and Characteristic af the Surface of its Pulp[D]. Guangzhou:Sauth China University of Technology, 2012. (in Chinese with English abstract)
[39] 王懷芳,朱平,張傳杰. 氫氧化鈉/尿素/硫脲溶劑體系對纖維素溶解性能研究[J]. 合成纖維,2008(7):28-32.
Wang Huaifang, Zhu Ping, Zhang Chuanjie. Dissolution of cellulose in NaOH/urea/thiourea aqueous solution[J]. Synthetic Fibre, 2008(7): 28-32. (in Chinese with English abstract)
[40] 劉洋洋,劉正芹,邱秀麗,等. 廢棉布制備高粘度羧甲基纖維素[J]. 青島大學學報:工程技術版,2010,25(1):50-53.
Liu Yangyang, Liu Zhengqin, Qiu Xiuli,et al. The preparation of high viscosity carboxymethyl cellulose with waste cotton cloth[J]. Journal of Qingdao University (E&T), 2010, 25(1): 50-53. (in Chinese with English abstract)
[41] 甘文君,張書華,王繼虎. 高分子化學實驗原理與技術[M].上海:上海交通大學出版社,2012:174-176.
[42] 劉羽,邵國強,許炯. 竹纖維與其它天然纖維素纖維的紅外光譜分析與比較[J]. 竹子研究匯刊,2010,29(3):42-46. Liu Yu, Shao Guoqiang, Xu Jiong. The IR spectroscopy analysis and comparison of bamboo fiber and other natural cellulose fiber[J]. Journal of Bamboo Research, 2010, 29(3): 42-46. (in Chinese with English abstract)
[43] 史晉輝,胡昕,吳淑茗,等. 生物質(zhì)基羧甲基纖維素鈉的合成與表征[J]. 河南化工,2013,30(18):35-38.
Shi Jinhui, Hu Xin, Wu Shuming, et al. Preparation and characterization of sodium carboxymethyl cellulose from biomass resource[J]. Henan Chemical Industry, 2013, 30(18): 35-38. (in Chinese with English abstract)
[44] 李贏,姜帥,靳璇,等. 稻殼基羧甲基纖維素的制備與其制膜性能研究[J]. 中國食品學報,2015,15(12):55-59.
Li Ying, Jiang Shuai, Jin Xuan, et al. Preparation of rice husk based carboxymethyl cellulose and its membrane performance[J]. Journal of Chinese Institute of Food Science and Technology, 2015, 15(12): 55-59. (in Chinese with English abstract)
[45] Klug E D. Sodium carboxymethylcellulose. In: Mank HF, Gaylond NG, Eds. Encyclopedia of Polymer Science and Technology[M]. New York: Interscience Publishers, 1965, 3: 520-539.
[46] 查純喜,金華進,顧利霞. 纖維素在氫氧化鈉/硫脲/尿素/水溶液中的溶解和溶液特性[J].東華大學學報:自然科學版,2008(2):20-43.
Zha Chunxi, Jin Huajin, Gulixia.Dissolution and solution properties of cellulosein NaOH /thiourea/urea aqueous solution[J]. Journal of Donghua University: Natural Science, 2008(2): 20-43. (in Chinese with English abstract)
[47] 熊碧. 纖維素在堿尿素體系中溶解機理的核磁共振研究[D]. 武漢:武漢大學,2014.
Xiong Bi. NMR Studies on the Mechanism of Cellulose Dissolution in Alkali/urea Solvent System[D]. Wuhan: Wuhan University, 2014. (in Chinese with English abstract)
Process optimization for preparation of carboxymethyl cellulose by homogeneous etherification of wheat straw
Yang Quangang, Zhuge Yuping※, Qu Yang, Liu Chunzeng
(,,271018,)
In this study, carboxymethyl cellulose (CMC) was synthesized from wheat straw cellulose by a homogeneous reaction. The main process was as follows: wheat straw was cut into 1–2 cm-long pieces, rinsed with water 3–5 times to remove dust and other impurities, and washed first with deionized water for a further 3–5 times and then with boiling distilled water. The wheat straw was then preliminarily treated for 1 h, and dried in an oven. Crushing was then performed using a high-speed grinder with a 40-mesh screen to obtain the wheat straw powder. Sodium hydroxide and hydrogen peroxide were used to treat the wheat straw powder to obtain cellulose. An alkali/urea/thiourea system was used to dissolve ZnO. The extracted wheat straw cellulose was dissolved by freezing and melt circulation, following which the cellulose was stored for 4 h at ?20°C, then thawed, and a clear cellulose solution was obtained by rapid stirring in an ice water bath. The optimal composition of the alkali/urea/thiourea aqueous solution was obtained through orthogonal experiments. The orthogonal design were four factors, five levels. The four factors with five levels were sodium hydroxide (5%, 6%, 7%, 8%, and 9%), thiourea (5%, 7%, 9%, 11%, and 13%), urea (5%, 7%, 9%, 11%, and 13%), and zinc oxide (0, 0.05%, 0.1%, 0.15%, and 0.2%). After dissolving wheat straw cellulose with the optimal dissolving system, CMC samples were prepared with sodium chloroacetate. The CMC samples were characterized by Fourier transform-infrared (FTIR) spectroscopy and the degree of substitution (DS). The results can be summarized as follows: first, the wheat straw powder was treated at a solid-liquid (10% NaOH solution) ratio of 1:20 g/mL, at a reaction temperature of 85 ℃, reflux time of 3.5 h, and with a 10% sodium hydroxide solution, followed by treatment with a 10% hydrogen peroxide solution. For the reaction conditions of a solid-liquid (the wheat straw powder treated with 10% NaOH and 3% H2O2) ratio of 1:30 g/mL, at a reaction temperature of 85 ℃, and a reflux time of 3 h, the highest proportion of cellulose that can be extracted from the wheat straw was 84.61 %. The removal rate of hemicellulose was 84.44%, while that of lignin was 91.14%. In the orthogonal experiment, we assessed the influence of thevalue of each factor on the experimental indicators, with a greatervalue indicating a greater impact. Thevalues for the dissolution system (NaOH, thiourea, urea, ZnO) were 1.190 7, 0.217 4, 0.170 8, and 0.219 9, respectively; thus, the most influential factor was NaOH, followed by ZnO, thiourea, and urea with minimal impact. Variance analysis also showed that NaOH was the most influential factor, followed by ZnO. After comparing NaOH, thiourea, urea, and ZnO at the level of solubility, a comprehensive consideration of the cost and environmental factors can be developed. The optimum values of the mass fraction for the solution components were 7%, 11%, 5%, and 0.05% for NaOH, thiourea, urea and ZnO, respectively, for a total solubility of 2.8801 g. The FTIR spectra of the cellulose straw and cellulose showed characteristic absorption peaks of pure cellulose. The etherification reaction of wheat straw cellulose results in the formation of CMC. The characteristic absorption peaks of wheat straw CMC and pure CMC were very similar. The DS of CMC was dependent on the cellulose dosage, temperature, and the molar ratio of sodium chloroacetate to cellulose AGU. Increased cellulose dosage, molar ratios of sodium chloroacetate to cellulose AGU, and temperature initially increased the DS and then caused it to decrease. For a temperature of 55 ℃, the amount of cellulose is 2.8 g, the molar ratio of sodium chloroacetate and cellulose AGU is 10.5:1, and the DS is the highest at 0.45.
straw; cellulose; optimization; solubility; carboxymethyl cellulose (CMC)
10.11975/j.issn.1002-6819.2017.20.038
S19
A
1002-6819(2017)-20-0307-08
2017-05-27
2017-10-15
國家科技支撐計劃子課題:水肥鹽相互作用關系與調(diào)控技術研究(2013BAD05B03);山東省自主創(chuàng)新及成果轉(zhuǎn)化專項:黃河三角洲鹽堿地快速改良技術研發(fā)集成與示范(2014ZZCX07402)
楊全剛,山東省泰安市人,博士生,主要從事秸稈利用與液體地膜方向研究。泰安 山東農(nóng)業(yè)大學資源與環(huán)境學院,271018。 Email:sttzzy@sdau.edu.cn
※通信作者:諸葛玉平,山東臨沂人,博士,教授,博士生導師,主要從事土壤生態(tài)環(huán)境和植物營養(yǎng)肥料方向研究。泰安 山東農(nóng)業(yè)大學資源與環(huán)境學院,271018。Email:zhugeyp@sdau.edu.cn
楊全剛,諸葛玉平,曲 揚,劉春增. 小麥秸稈纖維素均相醚化制備羧甲基纖維素工藝優(yōu)化[J]. 農(nóng)業(yè)工程學報,2017,33(20):307-314. doi:10.11975/j.issn.1002-6819.2017.20.038 http://www.tcsae.org
Yang Quangang, Zhuge Yuping, Qu Yang, Liu Chunzeng. Process optimization for preparation of carboxymethyl cellulose by homogeneous etherification of wheat straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 307-314. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.20.038 http://www.tcsae.org