王京偉,牛文全,郭麗麗,梁博惠,李 元
?
適宜的毛管埋深提高溫室番茄品質(zhì)及產(chǎn)量
王京偉1,2,牛文全1,3※,郭麗麗4,梁博惠4,李 元1
(1. 西北農(nóng)林科技大學(xué)水土保持研究所,楊凌 712100;2. 山西省水土保持生態(tài)環(huán)境建設(shè)中心,太原 030002; 3. 中國(guó)科學(xué)院、水利部水土保持研究所,楊凌 712100;4. 西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,楊凌 712100)
為探索地下滴灌條件下,毛管埋深對(duì)作物“地上部分-地下部分-產(chǎn)量和品質(zhì)”相互作用的影響,合理配置滴灌措施,提高水分管理能力,該文研究了4種不同毛管埋深0、10、20和30 cm(CK、S10、S20和S30)對(duì)番茄植株生長(zhǎng)、根系生長(zhǎng)、光合產(chǎn)物分配、果實(shí)產(chǎn)量、品質(zhì)和水分利用效率的影響,結(jié)果表明:與地面滴灌(CK)相比,毛管埋深為10 cm的番茄根系分叉數(shù)顯著增加85.16%,但根長(zhǎng)、根面積、番茄產(chǎn)量未顯著提高,且番茄紅素顯著降低18.85%(<0.05);毛管埋深為20 cm,盛果期I番茄葉面積指數(shù)顯著增加23.37%,根長(zhǎng)、根面積、根系分叉數(shù)分別顯著提高43.22%、20.82%、176.61%,番茄產(chǎn)量提高22.35%,番茄果實(shí)品質(zhì)顯著改善,如可溶性固形物、可溶性蛋白、維生素C、番茄紅素含量和糖酸比分別提高10.86%、32.34%、35.66%、33.97%和53.01%,水分利用效率顯著提高35.91%(<0.05);毛管埋深為30 cm,番茄根長(zhǎng)、根系分叉數(shù)顯著提高46.10%、122.37%,番茄產(chǎn)量顯著提高19.53%,水分利用效率顯著36.93%,但番茄紅素顯著降低34.02%。綜合考慮番茄品質(zhì)和產(chǎn)量,地下滴灌毛管埋深20 cm是較為適宜的布設(shè)方式。
灌溉;水分;土壤;地下滴灌;埋深;番茄;品質(zhì);產(chǎn)量
番茄果實(shí)富含維生素、類(lèi)胡蘿卜素及各種糖類(lèi)物質(zhì),營(yíng)養(yǎng)價(jià)值豐富[1],是人們喜歡食用的重要蔬菜,在中國(guó)西北地區(qū)廣泛種植[2]。番茄生長(zhǎng)需水量大[3],而中國(guó)西北地區(qū)屬干旱、半干旱氣候區(qū)[4],水資源缺乏是限制番茄生產(chǎn)的主要因素[5]。
地下滴灌通過(guò)地埋毛管將水分直接、緩慢滲流到作物根區(qū)土壤[6-7],能減少土壤水分蒸發(fā)[8-9]、疏松土壤[10-12]、高效節(jié)水[13],廣泛用于果蔬種植中[14]。Rui等[15]研究表明,地下滴灌能促進(jìn)根系生長(zhǎng),提高滴灌濕潤(rùn)區(qū)的根長(zhǎng)密度,有利于水肥管理,增加番茄產(chǎn)量。有研究表明適度的毛管埋深能顯著優(yōu)化根系分布、提高根系活力[16-17],這將促進(jìn)土壤養(yǎng)分吸收[18],提高產(chǎn)量和水分利用效率[19]。地下滴灌特殊的水分運(yùn)移方式,提高了根區(qū)土壤濕潤(rùn)區(qū)持水性[20-21],促進(jìn)土壤養(yǎng)分和微生物活化[22],增強(qiáng)根系對(duì)養(yǎng)分的吸收,促進(jìn)番茄單果生長(zhǎng)[23],進(jìn)而提高了產(chǎn)量和水分利用效率,但這些機(jī)制內(nèi)在機(jī)理還不清楚。另外,作物生長(zhǎng)過(guò)程中,植株各部分物質(zhì)交換、分配和能量流動(dòng)相互影響、相互制約。有關(guān)地下滴灌對(duì)番茄生長(zhǎng)影響的研究,更多關(guān)注水、肥對(duì)番茄根系生長(zhǎng)、產(chǎn)量和水分利用效率的影響,而對(duì)毛管埋深,毛管布置方式對(duì)產(chǎn)量、品質(zhì)影響的研究還較少。
因此,本文重點(diǎn)研究了不同毛管埋深地下滴灌對(duì)番茄根系生長(zhǎng)、植株生長(zhǎng)、產(chǎn)量和品質(zhì)等的影響,分析地下滴灌條件下“土壤-作物-產(chǎn)量及品質(zhì)”相互作用對(duì)光合產(chǎn)物累積和分配的影響,探討地下滴灌節(jié)水增產(chǎn)優(yōu)勢(shì)的內(nèi)在機(jī)制,以期為合理配置滴灌措施,完善灌溉制度,提高水土資源利用效率等提供參考。
試驗(yàn)地位于108°08′E,34°16′N(xiāo),海拔521 m,屬于暖溫帶半濕潤(rùn)季風(fēng)區(qū),年均氣溫約16.3 ℃,多年平均降水量約535.6 mm,年均日照時(shí)數(shù)約2163 h,年均無(wú)霜期約210 d。試驗(yàn)于2014年10月-2015年5月在陜西楊凌區(qū)大寨鄉(xiāng)大寨村菜農(nóng)的生產(chǎn)用日光溫室內(nèi)進(jìn)行。溫室內(nèi)無(wú)加溫設(shè)施,在越冬季(2014年12月-2015年3月),白天通過(guò)透光塑料膜增溫,夜間在溫室表面加蓋草被和棉被進(jìn)行保溫;試驗(yàn)載植耐冷型番茄品種“海地”。越冬季溫室內(nèi)平均氣溫維持在20 ℃,能基本滿(mǎn)足番茄生長(zhǎng)對(duì)溫度的要求。試驗(yàn)溫室東西長(zhǎng)108 m,南北寬8 m。供試土壤容重為1.35 g/cm3,田間持水量為28.17%(質(zhì)量含水率),土壤孔隙度為49.38%。土壤組成為砂礫(>0.02~2 mm)占25.4%,粉粒(>0.002~0.02 mm)占44.1%,黏粒(<0.002 mm)占30.5%。在溫室內(nèi)從西向東劃分種植小區(qū),種植小區(qū)起雙壟,小區(qū)面積為3.4 m2(長(zhǎng)6.0 m,壟面寬0.6 m,高0.2 m,溝寬0.3 m)。每個(gè)小區(qū)定植34株,采用雙行種植,植株間距0.35 m。試驗(yàn)地兩端均設(shè)保護(hù)行。
試驗(yàn)以地面滴灌為對(duì)照(CK),其毛管位于番茄行距中間,灌水上、下限分別為75% FC(FC為田間持水量)、70% FC。設(shè)3個(gè)地下滴灌處理,毛管位于番茄行距中間,埋深分別為10 cm (S10)、20 cm (S20)和30 cm (S30),考慮到地下滴灌比地上滴灌更節(jié)水,地下滴灌的灌水上、下限分別為65% FC、60% FC。
每個(gè)處理設(shè)3個(gè)重復(fù),共12個(gè)試驗(yàn)小區(qū)。試驗(yàn)鋪設(shè)地膜(江蘇靖江市新豐塑料廠(chǎng))為白色透光高壓低密度聚乙烯地膜,膜厚度0.014 mm,滴灌管(甘肅大禹節(jié)水集團(tuán)股份有限公司)為內(nèi)鑲式扁平滴灌管,直徑16 mm,壁厚0.3 mm,滴頭間距30 cm,工作壓力為0.1 MPa,滴頭流量為1.2 L/h。
在每個(gè)試驗(yàn)小區(qū)中間安裝1 根深度為100 cm探管,采用Field TDR 200測(cè)試土壤含水率(美國(guó)Spectrum公司),進(jìn)行水分控制,按10 cm的等間隔測(cè)試土壤含水率,深度測(cè)至60 cm,并用打鉆取土烘干法校正。當(dāng)土壤含水量達(dá)到土壤水分下限時(shí),按照濕潤(rùn)層40 cm進(jìn)行計(jì)算補(bǔ)充水分。灌水量計(jì)算式為
式中為灌水量,m3;為計(jì)劃濕潤(rùn)面積,根據(jù)種植小區(qū)面積及生產(chǎn)實(shí)踐取值4.6 m2;b為土壤容重,試驗(yàn)地土壤容重為1.35 g/cm3;為濕潤(rùn)比,為水分利用系數(shù),根據(jù)當(dāng)?shù)胤逊N植水分消耗,取值0.8,取值0.95;為濕潤(rùn)層深度,當(dāng)?shù)毓喔热≈?.4 m;1、2分別為灌水上限、土壤實(shí)測(cè)含水率,%。
次灌水量的理論值為5% FC,由于無(wú)法實(shí)現(xiàn)對(duì)土壤水分的連續(xù)監(jiān)控,實(shí)測(cè)土壤水分含量略低或略高于控制灌水下限,因此,實(shí)際灌水量約為10 mm。根據(jù)番茄生長(zhǎng)情況,在開(kāi)花坐果期(番茄定植后0~50 d)每隔4 d灌水1次,盛果期(番茄定植后50~140 d)每隔3 d灌水1次,成熟期(番茄定植后140~180 d)每隔4 d灌水1次。試驗(yàn)沒(méi)有測(cè)得ET,根據(jù)水量平衡公式進(jìn)行估算:
式中ET為實(shí)際作物需水量,mm;Pr為有效降雨量,mm;為灌水量,mm;為地下水補(bǔ)給量,mm;為徑流量,mm;為深層滲漏量,mm;Δ為試驗(yàn)初期和末期土壤儲(chǔ)水量差值,mm。由于試驗(yàn)地的地下水位較深(一般在5.0 m以下),作物無(wú)法吸收利用,故地下水補(bǔ)給量忽略不計(jì),即=0;由于溫室內(nèi)沒(méi)有降雨,Pr=0,試驗(yàn)采用滴灌,每次灌水量較少,故和可以忽略不計(jì)。估算得到4個(gè)處理CK、S10、S20和S30的EI值分別為283.17、264.05、256.48和247.92 mm,低于實(shí)際灌水量,實(shí)際灌水滿(mǎn)足了番茄的水分需求。
1.2.1 株高與莖粗
番茄定植后,于每個(gè)試驗(yàn)小區(qū)標(biāo)記3株植株,排除邊際效應(yīng)的植株。開(kāi)始試驗(yàn)處理后,觀(guān)測(cè)株高和莖粗,使用精度1 mm的直尺測(cè)量植株株高,打頂后停止測(cè)量。采用十字交叉法,使用游標(biāo)卡尺,選取植株基部的第3處節(jié)間測(cè)量植株直徑,每10 d觀(guān)測(cè)一次。
1.2.2 凈光合速率、葉面積指數(shù)、光合色素
番茄植株葉片的光合速率分別于開(kāi)花坐期(FP,番茄定植后0~50 d)、盛果期Ⅰ(FF1,番茄定植后50~100 d)、盛果期 II(FF2,番茄定植后100~140 d)、果實(shí)成熟期(MP,番茄定植后140~180 d),即2015年1月2日、2月4日、3月18日、4月15日的上午09:00-11:00分別進(jìn)行了測(cè)定。用LI-6400便攜式光合儀(美國(guó)LI-COR公司)測(cè)定番茄植株主莖葉凈光合速率,儀器使用開(kāi)放式氣路,內(nèi)置光源,光照度為800mol/(m2·s)。測(cè)定時(shí)每個(gè)處理每個(gè)試驗(yàn)小區(qū)隨機(jī)選擇3株植株,每株選擇3張葉位一致、充分受光的葉片,每張葉片測(cè)定3次,取平均值。同時(shí),采用手持式LI-3100C葉面積儀(美國(guó)LI-COR)測(cè)定各處理葉面積指數(shù)。每次光合速率測(cè)定完成后,在當(dāng)天下午采集葉片,帶回實(shí)驗(yàn)室采用丙酮浸提液提取色素,用分光光度計(jì)比色法分別于665、649、470 nm處測(cè)定葉片葉綠素a、葉綠素b、類(lèi)胡蘿卜素的吸光值,每個(gè)處理重復(fù)3次,取平均值,單位為mg/g???cè)~綠素=葉綠素a+葉綠素b,葉綠素a/b=葉綠素a/葉綠素b。
1.2.3 植株干物質(zhì)及根系分析
番茄果實(shí)開(kāi)始成熟時(shí),在每個(gè)處理對(duì)應(yīng)的每個(gè)試驗(yàn)小區(qū)(4個(gè)處理,共12個(gè)試驗(yàn)小區(qū)),隨機(jī)選取3株番茄植株,并編號(hào)標(biāo)記。自2015年3月18日至5月3日進(jìn)行果實(shí)采摘,果實(shí)采摘結(jié)束后,將提前標(biāo)記好的番茄植株割掉地上植株部分,收集編號(hào)。植株樣本帶回實(shí)驗(yàn)室,稱(chēng)量鮮質(zhì)量后,在鼓風(fēng)干燥箱中烘干(105 ℃殺青30 min后在75 ℃條件下烘干36 h至恒質(zhì)量)后稱(chēng)量干質(zhì)量。
在對(duì)標(biāo)記好的番茄植株進(jìn)行地面樣品采集后,采用整根挖掘法采集根樣。以相鄰植株間中線(xiàn)為界,以40 cm×30 cm矩形區(qū)域挖掘,深度與實(shí)際根深(約50 cm)一致。整體取出根樣,將根系樣品帶回,在實(shí)驗(yàn)室用水浸泡,然后用水沖洗使土壤與根分離,沖洗時(shí)在沖洗池中鋪三層細(xì)紗布收集微細(xì)根,用鑷子將洗凈的根樣裝入自封袋,稱(chēng)質(zhì)量。用雙面掃描儀(Epson Expression 1600 pro, Model EU-35,Japan)掃描根系,用WinRHIZO圖像分析系統(tǒng)(WinRHIZO Pro2004b,5.0,Canada)分析總根長(zhǎng)(cm),根表面積(cm2)等。根樣隨后烘干、稱(chēng)質(zhì)量。
1.2.4 根系活力
分別于2014年12月21日(開(kāi)花坐果期),2015年1月23日(盛果期)、4月23日(成熟期)采用1.2.3節(jié)中的整根挖掘法采集根樣,取部分根樣,用TTC法進(jìn)行根系活力的測(cè)定。
1.2.5 產(chǎn)量和品質(zhì)
果實(shí)成熟后分區(qū)采摘,對(duì)各種植小區(qū)進(jìn)行測(cè)產(chǎn),各小區(qū)單株產(chǎn)量總和計(jì)為該小區(qū)產(chǎn)量(t/hm2)。番茄果實(shí)可溶性糖含量、可溶性蛋白用、有機(jī)酸、維生素C、分別采用蒽酮比色法、考馬斯-G250染色法、酸堿滴定法、鉬藍(lán)比色法測(cè)定,可溶性固形物含量用手持折光測(cè)糖儀測(cè)定,番茄紅素采用EV300PC型紫外-可見(jiàn)分光光度計(jì)(Thermo Fisher,美國(guó))測(cè)定。果實(shí)全氮采用半微量凱氏定氮法測(cè)定,全磷采用硫酸-高氯酸鉬銻抗比色法測(cè)定,有機(jī)質(zhì)采用重鉻酸鉀滴定法測(cè)定。
1.2.6 土壤孔隙度
試驗(yàn)對(duì)番茄種植土壤的孔隙度進(jìn)行了測(cè)定,果實(shí)收獲完畢后,在每個(gè)處理種植小區(qū)種植溝內(nèi)按S型設(shè)置3個(gè)采樣點(diǎn),在土壤剖面0~40 cm深度,每隔10 cm,用容積為100 cm3的環(huán)刀取土樣,帶回實(shí)驗(yàn)室內(nèi)烘干測(cè)定土壤容重。容重計(jì)算公式為
式中為土壤容重,g/cm3;1為環(huán)刀與自然結(jié)構(gòu)土壤總質(zhì)量,g;0為環(huán)刀質(zhì)量,g;W為水分與新鮮土壤的質(zhì)量分?jǐn)?shù);為環(huán)刀容積,cm3。
根據(jù)土壤容重,進(jìn)行土壤孔隙度計(jì)算,孔隙度計(jì)算公式為
式中為土壤孔隙度,%;為土壤密度即單位體積土壤(不含孔隙)的烘干質(zhì)量,試驗(yàn)地土壤密度為2.65 g/cm3。
用SPSS22軟件進(jìn)行Duncan多重比較、方差、相關(guān)性分析,采用Excel軟件作表圖和表格。
2.1.1 株高、莖粗和葉面積指數(shù)
番茄植株打頂(定植后第80天)前,S20番茄株高最高,但各處理的平均株高經(jīng)分析并無(wú)顯著差異(>0.05);CK、S10、S20、S30的株高生長(zhǎng)速率(是指把前一次測(cè)量值看作100%,相鄰2次測(cè)量之間的凈生長(zhǎng)量與前一次測(cè)量值的比值)隨番茄生長(zhǎng)整體上呈降低趨勢(shì)。CK、S10、S20、S30的株高生長(zhǎng)速率定植20~40 d時(shí),分別為72.67%、71.00%、84.33%、70.67%,定植60~80 d時(shí)分別下降到23.67%、36.67%、20.33%、23.00%(圖1a)。CK、S10、S20、S30的莖粗生長(zhǎng)率定植20~40 d時(shí)分別為38%、23%、32.33%、43.67%,定植60~80 d時(shí)分別為2.67%、5.33%、6%、12.67%,也隨番茄生長(zhǎng)整體呈降低趨勢(shì)(圖1b)。說(shuō)明毛管埋深對(duì)番茄株高和莖粗生長(zhǎng)速率無(wú)明顯影響。
各處理番茄植株的葉面積指數(shù)由開(kāi)花坐果期至成熟期呈先增后減趨勢(shì),盛果期I(FF1)時(shí)最大;開(kāi)花坐果期(FP)、盛果期II(FF2)、成熟期(MP)時(shí),各處理葉面積指數(shù)無(wú)顯著性差異;盛果期I時(shí),S20葉面積指數(shù)分別比CK、S10顯著提高23.37%、28.25%,S30葉面積指數(shù)分別比CK、S10顯著提高30.98%、36.16%(圖2)。
注:CK、S10、S20和S30分別表示毛管埋深為0、10、20、30 cm,下同。
注:不同字母表示不同處理在同一生育階段的差異顯著(P<0.05),F(xiàn)P、FF1、FF2和MP分別是開(kāi)花坐果期、盛果期I、盛果期II和成熟期,下同。
2.1.2 葉綠素和光合作用相關(guān)指標(biāo)
各處理番茄葉片的葉綠素a、葉綠素b、總?cè)~綠素及類(lèi)胡蘿卜素含量隨生育階段的發(fā)展,總體上呈先增后減趨勢(shì),盛果期II時(shí)最大(圖3)。
圖3 地下滴灌番茄不同生育階段光合色素
CK番茄葉片的葉綠素a、葉綠素b、總?cè)~綠素含量在盛果期I顯著高于其他處理,但葉綠素a/b值卻分別比S10、S20、S30低16.96%、17.70%和21.19%(<0.05),盛果期II的葉綠素a/b值比S20顯著低17.73%(<0.05)(圖3)。
葉片葉綠素組分的變化可能會(huì)影響葉片的光合特性。從不同處理的光合特性(表1)可以看出,S10番茄葉片凈光合速率在盛果期Ⅰ和成熟期比CK顯著低16.87%和24.43%;氣孔導(dǎo)度在盛果期Ⅰ比CK顯著低24.24%,盛果期II時(shí)則顯著高122.22%;胞間CO2濃度在盛果期II比CK顯著低6.89%;蒸騰速率在盛果期Ⅰ比CK顯著低21.62%,盛果期II比CK顯著高112.87%。
S20番茄葉片凈光合速率在盛果期Ⅰ和成熟期比CK顯著低24.51%和13.36%;氣孔導(dǎo)度在開(kāi)花坐果期和盛果期II比CK顯著高35%和122.22%;胞間CO2濃度在開(kāi)花坐果期和盛果期Ⅰ比CK顯著高14.10%和4.46%,盛果期II和成熟期則顯著低9.55%和5.57%;蒸騰速率在盛果期Ⅰ比CK顯著低10.81%,盛果期II比則顯著高121.45%。
S30番茄葉片凈光合速率在開(kāi)花坐果期比CK顯著高19.82%,盛果期Ⅰ、盛果期II、成熟期則顯著低22.76%、6.46%、13.36%;氣孔導(dǎo)度在開(kāi)花坐果期比CK顯著高40%,盛果期Ⅰ和成熟期時(shí)顯著低18.18%、29.41%;胞間CO2濃度在開(kāi)花坐果期和盛果期Ⅰ比CK顯著高25.65%和6.51%,成熟期時(shí)顯著低28.88%;蒸騰速率在盛果期Ⅰ和成熟期比CK顯著低17.03%和30.36%。
總體而言,不同毛管埋深的番茄葉面積指數(shù)和葉片葉綠素組份不同,進(jìn)而使不同生育階段番茄的光合特性有一定的差異,CK、S10在番茄FF2階段的凈光合速率最大。
表1 番茄不同生育階段光合特性
2.1.3 根系生長(zhǎng)
番茄根系生長(zhǎng)的測(cè)定結(jié)果(表2)發(fā)現(xiàn),S10根系分叉數(shù)比CK提高85.16%(<0.05);S20根長(zhǎng)、根面積、根系分叉數(shù)分別比CK提高43.22%、20.82%、176.61%(<0.05);S30根長(zhǎng)、根分叉數(shù)分別比CK提高46.10%、 122.37%(<0.05)。
表2 番茄根系生長(zhǎng)特征
根系活力是衡量植物根系吸收水分、養(yǎng)分能力的重要指標(biāo)。S10開(kāi)花坐果期的根系活力比CK提高17.13%(<0.05),盛果期和成熟期顯著降低32.03%和44.86%(<0.05);S20根系活力在開(kāi)花坐果期和成熟期比CK提高116.92%和12.43%(<0.05);S30根系活力開(kāi)花坐果期和成熟期比CK分別提高46.04%和49.37%(<0.05),成熟期降低22.87%(<0.05)(圖4)。說(shuō)明S20處理根系生長(zhǎng)能力最強(qiáng)。
2.1.4 干物質(zhì)累積
S10、S20番茄植株干物質(zhì)量與CK無(wú)顯著差異,S30番茄植株干物質(zhì)量分別比CK、S10、S20顯著提高50.73%、36.97%、42.60%(圖5)。分別對(duì)各處理番茄植株的根、莖、葉干物質(zhì)量進(jìn)行分析,結(jié)果發(fā)現(xiàn)各處理的根干質(zhì)量無(wú)顯著差異,S30莖干質(zhì)量和葉干質(zhì)量比CK分別提高92.67%和57.54%(<0.05),而CK、S10、S20等處理之間差異不顯著。
圖4 地下滴灌番茄不同生育階段根系活力
注:a(b,c),表示不同處理根干質(zhì)量差異達(dá)顯著水平(P<0.05);a′(b′,c′),表示不同處理莖干質(zhì)量差異達(dá)顯著水平(P<0.05);A′(B′,C′),表示不同處理葉干質(zhì)量差異達(dá)顯著水平(P<0.05);A(B,C),表示植株干物質(zhì)量差異達(dá)顯著水平(P<0.05)。
根、莖、葉干物質(zhì)量占植株干物質(zhì)量的比例可以表征光合產(chǎn)物的分配,因此進(jìn)一步分析各處理番茄植株的根、莖、葉干物質(zhì)量占植株干物質(zhì)量的比例,結(jié)果表明各處理根干質(zhì)量占植株干質(zhì)量的比例無(wú)顯著差異,S10、S20莖干質(zhì)量占植株干質(zhì)量比例分別比CK提高11.9% 和11.13%(<0.05)、分別比S30提高13.17%和12.39%(<0.05)。CK、S30葉干質(zhì)量占植株干質(zhì)量比例分別比S10提高18.32%和24.3%(<0.05)、分別比S20提高20.34% 和26.42%(<0.05)。說(shuō)明毛管埋深主要影響地上部分干物質(zhì)質(zhì)量,改變了地上部分與地下部分干物質(zhì)質(zhì)量比。
由表3可知,S10番茄果實(shí)可溶性糖、可溶性固形物、維生素C、有機(jī)酸含量及糖酸比與CK無(wú)顯著差異,可溶性蛋白比CK顯著高14.5%,番茄紅素比CK顯著低18.85%;S20番茄果實(shí)可溶性糖、有機(jī)酸含量與CK無(wú)顯著差異,可溶性固形物、可溶性蛋白、維生素C、番茄紅素含量及糖酸比分別比CK顯著高10.86%、32.34%、35.66%、33.97%、53.01%;S30番茄果實(shí)可溶性固形物、可溶性蛋白、維生素C、有機(jī)酸含量與CK無(wú)顯著差異,可溶性糖、糖酸比比CK顯著高26.54%、44.4%,番茄紅素比CK顯著低34.02%。說(shuō)明毛管埋深顯著影響番茄的品質(zhì),S20處理的番茄品質(zhì)最好。
由表4可知,S10番茄產(chǎn)量與CK和S30差異不顯著,灌水量比CK顯著低6.84%,水分利用效率比CK顯著高14.83%;S20番茄產(chǎn)量比CK顯著高22.35%但與S30差異不顯著,灌水量比CK顯著低10%但與S30差異不顯著,水分利用效率比CK顯著高35.91%但與S30差異不顯著;S30番茄產(chǎn)量比CK顯著高19.53%,灌水量比CK顯著低12.72%,水分利用效率比CK顯著高36.93%。說(shuō)明毛管埋深可以顯著影響番茄產(chǎn)量,其中S20、S30處理的產(chǎn)量較高。
表3 地下滴灌番茄果實(shí)品質(zhì)
表4 地下滴灌番茄產(chǎn)量、灌水量及水分利用效率
有研究表明地下滴灌可顯著提高番茄葉片葉綠素含量[24],但本試驗(yàn)地下滴灌并未顯著提高番茄葉片光合色素含量,主要原因是前述研究水中Ca2+、K+、Mg2+等離子含量較高,促進(jìn)了葉綠素的合成[25]。植物光合作用及生物量累積與植物葉片葉綠素、光合效率、葉面積指數(shù)顯著相關(guān)[26],葉面積指數(shù)顯著增加有利于提高作物冠層光線(xiàn)有效輻射的截獲,促進(jìn)番茄植株整體的光合作用[27],葉綠素a/b值的顯著增加有利于增強(qiáng)植株對(duì)光能的轉(zhuǎn)化利用[28],增加生物累積量[29]。本試驗(yàn)毛管埋深為10、20和30 cm地下滴灌番茄植株盛果期I的葉綠素a/b值顯著高于地面滴灌(CK),其中毛管埋深20和30 cm處理番茄植株盛果期I的葉面積指數(shù)分別比CK顯著提高23.37%、30.98%。因此,本試驗(yàn)中地下滴灌促進(jìn)了盛果期番茄的光合作用,有利于光合產(chǎn)物累積和產(chǎn)量提高。
另外,光合作用是植物葉片利用二氧化碳和水,在可見(jiàn)光照射下,生成有機(jī)物并釋放出氧氣的過(guò)程,而根系是植物吸收利用水分的主要器官,因此植物光合作用還受制于根系生長(zhǎng)狀況的影響。有研究發(fā)現(xiàn)毛管埋深20和40 cm時(shí),能促進(jìn)根系生長(zhǎng)[30]。本試驗(yàn)中毛管埋深10 cm的番茄根系分叉數(shù)比地面滴灌顯著增加85.16%,毛管埋深20和30 cm的根長(zhǎng)比地面滴灌顯著增加43.22%,46.10%,根系分叉數(shù)則顯著增加176.61%、122.37%,盛果期葉面積指數(shù)與根長(zhǎng)、根面積顯著相關(guān),盛果期葉綠素a/b值與根長(zhǎng)和根系活力顯著相關(guān)(<0.01)。較長(zhǎng)的根和較大的根面積能促進(jìn)作物吸收更大、更深土壤范圍的水分和養(yǎng)分,更多的根分叉數(shù)有利于作物吸收更多的水分和養(yǎng)分[31-33],進(jìn)而提高葉面積指數(shù)和葉片葉綠素a/b值,提高植株光合作用[26-28],因此,地下滴灌可以顯著提高番茄的光合作用,促進(jìn)干物質(zhì)快速積累。
地下滴灌對(duì)番茄植株和根系生長(zhǎng)的影響,將集中體現(xiàn)在生物量累積和產(chǎn)量上[34],試驗(yàn)發(fā)現(xiàn),毛管埋深30 cm番茄干物質(zhì)量、莖干質(zhì)量、葉干質(zhì)量分別比地面滴灌提高50.73%、92.67%、57.54%,番茄產(chǎn)量提高了19.53%。毛管埋深20 cm番茄干物質(zhì)量(不包括果實(shí))雖然與地面滴灌無(wú)顯著差異,但產(chǎn)量卻顯著提高了22.35%。試驗(yàn)發(fā)現(xiàn)番茄產(chǎn)量與根干質(zhì)量顯著相關(guān)(<0.05),與根面積、根系分叉數(shù)、根體積極顯著相關(guān)(<0.01),毛管埋深20 cm的根面積、根系分叉數(shù)顯著大于地面滴灌,這有利于促進(jìn)番茄對(duì)土壤水分和養(yǎng)分的吸收。因此,毛管埋深20 cm優(yōu)化了植株光合產(chǎn)物分配,顯著提高了番茄產(chǎn)量。
毛管埋深20 cm地下滴灌番茄根面積、根系分叉數(shù)的增加可能與土壤孔隙度有關(guān),本試驗(yàn)發(fā)現(xiàn)土壤孔隙度與根系分叉數(shù)、根系活力顯著相關(guān)(<0.05)。毛管埋深不同,土壤水分分布不同,進(jìn)而影響土壤孔隙度,本試驗(yàn)發(fā)現(xiàn)地下滴灌根區(qū)土壤孔隙度整體優(yōu)于地面滴灌(表5)。毛管埋深較淺時(shí)(埋深10 cm),土壤水分向上遷移距離短,土壤孔隙度與地面滴灌接近;適當(dāng)增大毛管埋深(埋深20和30 cm),毛管上方土層擴(kuò)大,土壤水分向四周上下遷移基本均衡,毛管四周土壤的孔隙在土壤水分支撐下不易破壞,有利于增加毛管周?chē)寥赖目紫抖?,因此,毛管埋深增大?~10 cm土壤孔隙度顯著增加。
表5 地下滴灌土壤孔隙度
注:SP0-10表示0-10cm土壤孔隙度,依此類(lèi)推。
Note: SP0-10means soil porosity of 0-10cm below ground, and so on.
毛管埋深不但影響番茄植株生長(zhǎng)和產(chǎn)量,還對(duì)番茄果實(shí)品質(zhì)產(chǎn)生了不同程度的影響。試驗(yàn)發(fā)現(xiàn)毛管埋深10 cm的番茄果實(shí)可溶性蛋白比地面滴灌顯著提高14.5%,但番茄紅素顯著降低18.85%;埋深20 cm番茄果實(shí)可溶性固形物、可溶性蛋白、維生素C、番茄紅素含量及糖酸比分別比地面滴灌顯著提高10.86%、32.34%、35.66%、33.97%、53.01%;埋深30 cm番茄果實(shí)可溶性糖、糖酸比比地面滴灌顯著提高26.54%、44.4%,但番茄紅素顯著降低34.02%。有研究發(fā)現(xiàn),地下滴灌能顯著提高蘋(píng)果中可溶性固形物和維生素C[35],這與本文結(jié)果相似。
本試驗(yàn)發(fā)現(xiàn)土壤孔隙度與番茄果實(shí)品質(zhì)顯著相關(guān),原因可能是毛管埋深影響根系生長(zhǎng),增強(qiáng)番茄對(duì)土壤養(yǎng)分吸收,改善了番茄品質(zhì)[36-37]。毛管埋深20 cm地下滴灌能顯著改善根區(qū)土壤孔隙度(表5),其番茄果實(shí)中有機(jī)碳、全氮的含量顯著高于地面滴灌(表6),果實(shí)氮含量的提高有利于品質(zhì)的改善[38],因此其果實(shí)品質(zhì)顯著高于地面滴灌。毛管埋深30 cm處理根系吸收的養(yǎng)分和光合產(chǎn)物更多向植株體分配,這可能造成了果實(shí)中氮營(yíng)養(yǎng)物質(zhì)比例的相對(duì)降低(表6),影響果肉中氨基酸等物質(zhì)的合成[38],因此,番茄果實(shí)品質(zhì)差于滴灌帶埋深20 cm處理。
表6 番茄果實(shí)養(yǎng)分含量
地下滴灌在促進(jìn)番茄生長(zhǎng)、提高產(chǎn)量的同時(shí),也提高了水分利用效率。本試驗(yàn)中,地下滴灌3個(gè)處理的灌水下限比對(duì)照地面滴灌低10%,但地下滴灌3個(gè)處理的產(chǎn)量都不低于或顯著高于地面滴灌。滴灌管埋深10 cm處理的灌水量比地面滴灌顯著低6.84%(表4),水分利用效率比地面滴灌顯著高14.83%;滴灌毛埋深20和30 cm處理灌水量比地面覆膜滴灌顯著低10%、12.72%,水分利用效率顯著高35.91%、36.93%。因此,即使是在灌水下限顯著降低的情況下,地下滴灌依然顯著促進(jìn)了番茄的生長(zhǎng)發(fā)育且提高了水分利用效率。綜合考慮,在日光溫室番茄的栽植中,地下滴灌帶埋深20 cm是較為適宜的灌水布設(shè)方式。
毛管埋深20 cm地下滴灌顯著促進(jìn)番茄植株整體光合作用,顯著促進(jìn)根系生長(zhǎng),番茄根長(zhǎng)、根面積、根系分叉分別比地面滴灌顯著提高43.22%、20.82%、176.61%,番茄產(chǎn)量比地面滴灌顯著高22.35%,并顯著提高了番茄果實(shí)可溶性固形物、可溶性蛋白、維生素C、番茄紅素含量及糖酸比,水分利用效率比地面滴灌顯著高35.91%,是日光溫室番茄的栽植中較為適宜的灌水布設(shè)方式。毛管埋深30 cm地下滴灌番茄產(chǎn)量和水分利用效率與毛管埋深20 cm處理無(wú)顯著差異,但其番茄果實(shí)品質(zhì)不如毛管埋深20 cm處理,是灌水布設(shè)方式的次優(yōu)選擇。
[1] Hallmann E. The influence of organic and conventional cultivation systems on the nutritional value and content of bioactive compounds in selected tomato types[J]. Journal of the Science of Food and Agriculture, 2012, 92(14): 2840-2848.
[2] 李紅崢,曹紅霞,郭莉杰,等. 溝灌方式和灌水量對(duì)溫室番茄綜合品質(zhì)與產(chǎn)量的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2016,49(21):4179-4191.
Li Hongzheng, Cao Hongxia, Guo Lijie, et al.Effect of furrow irrigation pattern and irrigation amount on comprehensive quality and yield of greenhouse tomato[J]. Scientia Agricultura Sinica, 2016, 49(21): 4179-4191.(in Chinese with English abstract)
[3] Ngouajio M, Wang G, Goldy R. Withholding of drip irrigation between transplanting and flowering increases the yield of field-grown tomato under plastic mulch[J]. Agricultural Water Management, 2007, 87(3): 285-291.
[4] Zheng J, Huang G, Wang J, et al. Effects of water deficits on growth, yield and water productivity of drip-irrigated onion (L.) in an arid region of Northwest China[J]. Irrigation Science, 2013, 31(5): 995-1008.
[5] Wang J, Huang G, Li J, et al. Effect of soil moisture-based furrow irrigation scheduling on melon (L.) yield and quality in an arid region of Northwest China[J]. Agricultural Water Management, 2017, 179: 167-176.
[6] Wang Dan, Kang Yaohu, Wan Shuqin. Effect of soil matric potential on tomato yield and water use under drip irrigation condition[J]. Agricultural Water Mangement, 2007, 87: 180-186.
[7] Lubana P P S, Narda N K. Modelling soil water dynamics under trickle emitters-a review[J]. Journal of Agricultural Engineering Research, 2001, 78(3): 217-232.
[8] Lamm F R, Trooien T P. Subsurface drip irrigation for corn production: areview of 10 years of research in Kansas[J]. Irrig Sci, 2003, 22: 195-200.
[9] Lamm F R, Kheira A A A, Trooien T P. Sunflower soybean, and grainsorghum crop production as affected by dripline depth[J]. Applied Engineering in Agriculture, 2010, 26: 873-882.
[10] Bordovsky J P, Colaizzi P D, Evett S R, et al. Investigating strategies to improve crop germination when using SDI[J]. Geoflow Com, 2012: 117-132.
[11] Mo Y, Li G, Wang D. A sowing method for subsurface drip irrigation that increases the emergence rate, yield, and water use efficiency in spring corn[J]. Agricultural Water Management, 2017, 179:288-295.
[12] Nasr S, Najafi P. Effects of raw wastewater injection by sdi system on soil physical properties[J]. Research on Crops, 2010, 11(3): 712-715.
[13] Payero J O, Tarkalson D D, Irmak S, et al. Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate[J]. Agricultural Water Management, 2008, 95(8): 895-908.
[14] Singh D K, Singh R M, Rao K V R. Subsurface drip irrigation system for enhanced productivity of vegetables[J]. Environment Ecology, 2010, 28(3): 1639-1642.
[15] Rui M A M, Rosário M D, Oliveira G, et al. Tomato root distribution, yield and fruit quality under subsurface drip irrigation[J]. Plant and Soil, 2003, 255(1): 333-341.
[16] Kong Q, Li G, Wang Y, et al. Bell pepper response to surface and subsurface drip irrigation under different fertigation levels[J]. Irrigation Science, 2012, 30(3): 233-245.
[17] Zhuge Y, Zhang X, Zhang Y, et al. Tomato root response to subsurface drip irrigation[J]. Pedosphere, 2003, 14(2): 205-121.
[18] Rogers E D, Benfey P N. Regulation of plant root system architecture: Implications for crop advancement[J]. Current Opinion in Biotechnology, 2015, 32: 93-98.
[19] Bidondo D, Andreau R, Martinez S, et al. Comparison of the effect of surface and subsurface drip irrigation on water use, growth and production of a greenhouse tomato crop[J]. Acta Horticulturae, 2012, 927(927): 309-314.
[20] Shen Z, Ren J, Wang Z, et al. Effects of initial water content and irrigation frequency on soil-water dynamics under subsurface drip irrigation[J]. Journal of Food, Agriculture and Environment, 2011, 9(2): 666-671.
[21] Schiavon M, Serena M, Leinauer B, et al. Seeding Date and Irrigation System Effects on Establishment of Warm-Season Turfgrasses[J]. Agronomy Journal, 2015, 107(3): 880-886.
[22] Dodd I C, Puértolas J, Huber K, et al. The importance of soil drying and re-wetting in crop phytohormonal and nutritional responses to deficit irrigation[J]. Journal of Experimental Botany, 2015, 66(8): 2239-2252.
[23] Al-Ghobari H M, Mohammad F S, El Marazky M S A. Assessment of smart irrigation controllers under subsurface and drip-irrigation systems for tomato yield in arid regions[J]. Crop and Pasture Science, 2015, 66(10): 1086-1095.
[24] Kahlaoui B, Hachicha M, Rejeb S, et al. Effects of saline water on tomato under subsurface drip irrigation: Nutritional and foliar aspects[J]. Journal of Soil Science and Plant Nutrition, 2011, 11(1): 643-656.
[25] Kumar V, Chopra A K, Srivastava S. Distribution, enrichment
and accumulation of heavy metals in soil and Vigna mungo L. Heaper (Black gram) after irrigation with distillery wastewater[J]. Journal of Environment and Health Sciences, 2014, 1: 1-8.
[26] 李磊,李向義,林麗莎,等. 兩種生境條件下6種牧草葉綠素含量及熒光參數(shù)的比較[J]. 植物生態(tài)學(xué)報(bào),2011,35(6):672-680.
Li Lei, Li Xiangyi, Lin Lisha, et al. Comparison of chlorophyll content and fluorescence parameters of six pasture species in two habitats in China[J]. Chinese Journal of Plant Ecology, 2011, 35(6): 672-680. (in Chinese with English abstract)
[27] 趙娟,黃文江,張耀鴻,等. 冬小麥不同生育時(shí)期葉面積指數(shù)反演方法[J]. 光譜學(xué)與光譜分析,2013,33(9):2546-2552.
Zhao Juan, Huang Wenjiang, Zhang Yaohong, et al. Inversion of leaf area index during different growth stages in winter wheat[J]. Spectroscopy and Spectral Analysis, 2013, 33(9): 2546-2552. (in Chinese with English abstract)
[28] Marschall M, Proctor M C. Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids[J]. Annals of Botany, 2004, 94(4): 593-603.
[29] Kitajima K, Hogan K P. Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light[J]. Plant Cell and Environment, 2003, 26(6): 857-865.
[30] Santos L N S D, Matsura E E, Gon?alves I Z, et al. Water storage in the soil profile under subsurface drip irrigation: Evaluating two installation depths of emitters and two water qualities[J]. Agricultural Water Management, 2016, 170: 91-98.
[31] 徐國(guó)偉,王賀正,翟志華,等. 不同水氮耦合對(duì)水稻根系形態(tài)生理、產(chǎn)量與氮素利用的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015, 31(10):132-141.
Xu Guowei, Wang Hezheng, Zhai Zhihua,et al. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 132-141. (in Chinese with English abstract)
[32] Waddell H A, Simpson R J, Ryan M H, et al. Root morphology and its contribution to a large root system for phosphorus uptake by Rytidosperma species (wallaby grass)[J]. Plant and Soil, 2016: 1-13.
[33] Hochholdinger F. Untapping root system architecture for crop improvement[J]. Journal of Experimental Botany, 2016, 67(15): 4431-4433.
[34] Fernández M J, Barro R, Pérez J, et al. Influence of the agricultural management practices on the yield and quality of poplar biomass (a 9-year study)[J]. Biomass and Bioenergy, 2016, 93: 87-96.
[35] Chenafi A, Monney P, Arrigoni E, et al. Influence of irrigation strategies on productivity, fruit quality and soil-plant water status of subsurface drip-irrigated apple trees[J]. Fruits, 2016, 71(2): 69-78.
[36] Watanabe M, Ohta Y, Licang S, et al. Profiling contents of water-soluble metabolites and mineral nutrients to evaluate the effects of pesticides and organic and chemical fertilizers on tomato fruit quality[J]. Food Chemistry, 2015, 169: 387-395.
[37] Usman A R A, Al-Wabel M I, Abdulaziz A L H, et al. Conocarpus biochar induces changes in soil nutrient availability and tomato growth under saline irrigation[J]. Pedosphere, 2016, 26(1): 27-38.
[38] 袁麗萍,米國(guó)全,趙靈芝,等.水氮耦合供應(yīng)對(duì)日光溫室番茄產(chǎn)量和品質(zhì)的影響[J]. 中國(guó)土壤與肥料,2008,26(2):69-73.
Yuan Liping, Mi Guoquan, ZhaoLingzhi, et al. Concurrent influences of different water and nitrogen supplement on yields and quality of tomato in solar-greenhouse[J]. Soil and Fertilizer Sciences in China, 2008, 26(2): 69-73.(in Chinese with English abstract)
Suitable buried depth of drip irrigation improving yield and quality of tomato in greenhouse
Wang Jingwei1,2, Niu Wenquan1,3※, Guo Lili4, Liang Bohui4, Li Yuan1
(1.712100,; 2.030002,; 3.712100,; 4.712100,)
Studies of the impact of subsurface drip irrigation on tomato growth paid more attention to the effects of subsurface drip irrigation and integration of water and fertilizer on root growth, yield and water use efficiency, but the responses of yield and fruit quality to root growth, plant growth and photosynthate allocation were rare. To understand the interaction between “ground part - underground part - yield and quality” in the process of crop growth, explore the inner mechanism of the subsurface drip irrigation, reasonably allocate drip irrigation measures, and further refine water management measures, this paper performed field experiments to investigate tomato plant growth, root growth, photosynthate allocation, fruit yield and quality, and water use efficiency response to different buried pipe depth in subsurface drip irrigation with conventional ground drip irrigation as reference (CK), and analyzed the effects of plant growth, root growth, and photosynthate allocation on fruit yield and quality. The field experiment was conducted in the sunlight greenhouse of Dazhai Village, Dazhai Township, Yangling District, Shaanxi Province from October, 2014 to May, 2015. The greenhouse was 108 m in length (in the east-west direction) and 8 m in width (in the south-north direction). The soil compositions in experiment were as follows: 25.4% gravel (>0.02-2 mm), 44.1% silt (0.02-0.002 mm), and 30.5% clay (<0.002 mm). The physical properties of the soil were as follows: bulk density, 1.35 g/cm3; field moisture capacity, 28.17% (mass fraction of water in soil); and soil porosity, 49.38%. The test crop was tomato, and the cultivar was “Haiti”, which was cold resistant variety. Test plots were built from west to east in the greenhouse, 2 ridges per plot; and the ridge was 6.0 m in length, 0.6 m in width and 0.2 m in height, divided by a ditch with the width of 0.3 m. The area of each plot was 3.4 m2. Thirty-four plants were planted in 2 rows, with a plant-spacing of 0.35 m in each plot and protection rows at each end of the plot. The experiment had 4 treatments: 1) Surface drip irrigation with plastic film mulching (control, CK) - the drip irrigation pipe was installed in the middle of the tomato rows, with an irrigation lower limit of 70% of field capacity and an irrigation upper limit of 75% of field capacity; 2) and 3 subsurface drip irrigation treatments with plastic film mulching - the drip irrigation pipe was installed in the middle of the tomato rows at a depth of 10 cm (S10), 20 cm (S20) or 30 cm (S30); given that subsurface drip irrigation is more water-saving than surface drip irrigation, the irrigation lower limit was set at 60% of field capacity, and the irrigation upper limit was set at 65% of field capacity. Each treatment had 3 replicates, with a total of 12 experimental plots. In the experiment, the tomato growth rate of plant height and stem diameter, root growth characteristics, and leaf area index (LAI) were measured. And, the evaluation indices of photosynthesis, such as the chlorophyll and photosynthetic rate, were also determined. Additionally, the plant biomass, the tomato yield, irrigation amount and IWUE (irrigation water use efficiency) were also measured. The correlation of these indicators was used to explore internal interaction and to determine the best agronomic measures in greenhouse. The results showed that subsurface drip irrigation with drip pipes in 20 cm burial depth significantly increased the overall photosynthesis of tomato plant, promoted tomato root length, root area, and number of root branching, enhanced tomato yields by 22.35% compared with the CK, and had no significant difference on fruit soluble sugar and organic acid content with the CK, but significantly increased total soluble solids, soluble protein, VC (vitamin C), lycopene content, and sugar acid ratio by 10.86%, 32.34%, 35.66%, 33.97%, and 53.01% respectively compared with the CK, and improved water use efficiency that was 35.91% higher than CK (<0.05). Subsurface drip irrigation with drip pipes in 30 cm burial depth significantly increased tomato dry matter, stem dry weight, leaf dry weight and tomato yields by 50.73%, 92.67%, 57.54% and 19.53% compared with the CK respectively, and had no significant difference on water use efficiency with subsurface drip irrigation with drip lines in 20 cm burial depth, however lowered tomato fruit quality. Therefore, subsurface drip irrigation with 20 cm burial depth is recommended to increase production, enhance fruits quality and improve water use efficiency to tomato production in a greenhouse.
irrigation; moisture; soils; subsurface drip irrigation; buried depth; tomato; quality; yield
10.11975/j.issn.1002-6819.2017.20.012
S607; S641.2; S627
A
1002-6819(2017)-20-0090-08
2017-05-08
2017-09-21
“十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃資助項(xiàng)目(2016YFC0400202),國(guó)家自然科學(xué)基金項(xiàng)目(No.51679205)
王京偉,博士,主要從事節(jié)水灌溉與農(nóng)業(yè)生物環(huán)境研究。 Email:lssks@qq.com
※通信作者:牛文全,研究員,博導(dǎo),主要從事灌溉理論與節(jié)水技術(shù)研究。Email:nwq@nwsuaf.edu.cn,中國(guó)農(nóng)業(yè)工程學(xué)會(huì)會(huì)員:牛文全(E041200504S)
王京偉,牛文全,郭麗麗,梁博惠,李 元. 適宜的毛管埋深提高溫室番茄品質(zhì)及產(chǎn)量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(20):90-97. doi:10.11975/j.issn.1002-6819.2017.20.012 http://www.tcsae.org
Wang Jingwei, Niu Wenquan, Guo Lili, Liang Bohui, Li Yuan. Suitable buried depth of drip irrigation improving yield and quality of tomato in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 90-97. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.20.012 http://www.tcsae.org