鄧媛方 邱 凌 王雅君 戴本林 徐繼明
(1.西北農(nóng)林科技大學(xué)機械與電子工程學(xué)院,陜西楊凌 712100;2.淮陰師范學(xué)院江蘇省生物質(zhì)能與酶技術(shù)重點實驗室, 淮安 223300;3.西北農(nóng)林科技大學(xué)農(nóng)業(yè)部農(nóng)村可再生能源開發(fā)利用西北科學(xué)觀測實驗站,陜西楊凌 712100;4.淮陰師范學(xué)院江蘇省區(qū)域現(xiàn)代農(nóng)業(yè)與環(huán)境保護協(xié)同創(chuàng)新中心, 淮安 223300)
低溫凍融-酶解預(yù)處理對稻稈厭氧發(fā)酵產(chǎn)氣特性的影響
鄧媛方1,2邱 凌1,3王雅君1,3戴本林2,4徐繼明2,4
(1.西北農(nóng)林科技大學(xué)機械與電子工程學(xué)院,陜西楊凌 712100;2.淮陰師范學(xué)院江蘇省生物質(zhì)能與酶技術(shù)重點實驗室, 淮安 223300;3.西北農(nóng)林科技大學(xué)農(nóng)業(yè)部農(nóng)村可再生能源開發(fā)利用西北科學(xué)觀測實驗站,陜西楊凌 712100;4.淮陰師范學(xué)院江蘇省區(qū)域現(xiàn)代農(nóng)業(yè)與環(huán)境保護協(xié)同創(chuàng)新中心, 淮安 223300)
為利用我國寒冷地區(qū)天然冷資源,在實驗室模擬低溫環(huán)境(Z組:-4℃,S組:-20℃),探索低溫凍融及纖維素酶液預(yù)處理對水稻秸稈中溫厭氧發(fā)酵產(chǎn)氣特性的影響。結(jié)果表明,浸泡溫度30℃、浸泡時間4 h、液固比15 mL/g條件下水稻秸稈持水力最佳。冷凍后解凍液中木糖質(zhì)量(Z3組:6.5 g,S2組:7.2 g)大幅增加,半纖維素轉(zhuǎn)化率(Z3組: 24.1%,S2組:26.6%)增幅顯著(p<0.05)。經(jīng)纖維素酶解后其水解液中葡萄糖質(zhì)量(Z3組: 13.5 g,S2組:14.5 g)大幅增加,纖維素轉(zhuǎn)化率(Z3組: 30.9%,S2組:33.2%)增幅顯著(p<0.05)。對預(yù)處理后的原料進行厭氧發(fā)酵,累計產(chǎn)氣量最高543 mL,較CK提升73.5%(S4組),平均甲烷體積分數(shù)最高提升160.4%(S2組),且隨著冷凍時間的延長(Z組48 h以上,S組24 h以上)厭氧發(fā)酵周期縮短(共19 d),產(chǎn)氣高峰提早到來且峰值較高。過酸化現(xiàn)象得到有效緩解,能夠更快地進入到甲烷化階段。
水稻秸稈; 低溫凍融; 酶解; 厭氧發(fā)酵; 產(chǎn)氣特性
生物質(zhì)沼氣化利用主要是指農(nóng)、林有機廢棄物在厭氧環(huán)境中利用微生物作用將生物質(zhì)能轉(zhuǎn)換成為沼氣的過程。生物質(zhì)主要由纖維素(40%~50 %)、半纖維素(20%~30%)及木質(zhì)素(5%~30%)組成[1],其化學(xué)性質(zhì)穩(wěn)定,難以降解,直接作為厭氧發(fā)酵原料產(chǎn)氣率低且厭氧發(fā)酵周期長[2]。通常情況下,需要對這類原料進行有效的預(yù)處理,目的在于打破纖維素的晶體結(jié)構(gòu),從而提高厭氧發(fā)酵的消化效率[3]。
目前,針對纖維素類秸稈常規(guī)的預(yù)處理方法包括物理法[4-5]、化學(xué)法[6-7]、生物法[8-9]。物理法通過機械外力破壞植物細胞壁和纖維素的晶體結(jié)構(gòu),使原料更易于微生物的侵入及分解。化學(xué)法利用化學(xué)試劑的腐蝕性和氧化性,水解纖維素原料,但同時也易造成二次污染及容器的腐蝕。生物法利用好氧微生物,分解纖維木質(zhì)素,與物理法和化學(xué)法相比較具有反應(yīng)溫和、能耗小,設(shè)備簡單,低污染等諸多優(yōu)點[10]。
低溫凍融技術(shù)最早在細胞物質(zhì)的提取[11-12]、食品保鮮[13-14]及對寒冷地區(qū)隧道圍巖的凍脹破壞機制方面[15-16]有較為廣泛的應(yīng)用和研究。依據(jù)GB50176—93《民用建筑熱工設(shè)計規(guī)范》對氣候劃分,我國東北、華北地區(qū)天然冷資源豐富,其中東北地區(qū)最冷月平均溫度在-10℃以下,全年145 d日平均溫度5℃以下[17]。
本文利用我國寒冷地區(qū)豐富的天然冷資源,實驗室內(nèi)模擬室外低溫環(huán)境,采用低溫凍融技術(shù)對水稻秸稈進行凍融處理,利用低溫使秸稈表面空隙中游離水冷凍結(jié)冰體積膨脹,從而破壞秸稈晶體結(jié)構(gòu),增加后續(xù)酶解時酶的可及度,旨在厭氧發(fā)酵產(chǎn)沼氣時能夠更好地降解底物。
1.1 原料
水稻秸稈取自江蘇省淮陰區(qū)郊區(qū)農(nóng)田,自然風(fēng)干,粉磨機粉碎過篩(篩分粒度10目)。接種物取自實驗室自行馴化的厭氧發(fā)酵污泥,pH值 7.1。原料理化性質(zhì)如表1所示。
表1 發(fā)酵原料及接種物理化特性Tab.1 Physicochemical properties of raw material and inoculum
1.2 低溫凍融及酶解處理
低溫凍融試驗是在實驗室內(nèi)模擬寒冷地區(qū)低溫環(huán)境。為證明低溫凍融對水稻秸稈內(nèi)部結(jié)構(gòu)的破壞作用及對纖維素酶解的影響,選取浸泡溫度、浸泡時間、液固比及冷凍溫度、冷凍時間作為試驗因素,考察浸泡溫度(5、30、50、70℃)、浸泡時間(2、4、16 h)、液固比(1、5、15、20 mL/g)、冷凍溫度(-4℃、-20℃)、冷凍時間(12、24、48、72 h)及酶水解對水稻秸稈纖維素、半纖維素轉(zhuǎn)換率和水解液中還原糖含量的影響。對凍融稻稈進行酶水解處理,纖維素酶液培養(yǎng)依據(jù)文獻[18]提供的方法進行。里氏木霉孢子(T.reeseiRUT C30)培養(yǎng)自江蘇省生物質(zhì)能與酶重點實驗室,菌體濃度1×106CFU/mL。按照冷凍溫度不同,設(shè)置-4℃低溫凍融組(Z組,Z1~Z4分別表示冷凍時間12、24、48、72 h)和-20℃低溫凍融組(S組,S1~S4分別表示冷凍時間12、24、48、72 h),每組2次重復(fù),同時設(shè)置對照組CK(秸稈篩分粒度小于10目,不經(jīng)低溫凍融及酶處理)。
1.3 厭氧發(fā)酵試驗
采用批式單相厭氧發(fā)酵工藝對預(yù)處理Z組、S組及CK進行厭氧發(fā)酵產(chǎn)沼氣試驗,發(fā)酵罐為2 L密閉容器,恒溫水浴保溫(301)℃,每組發(fā)酵原料100 g,接種物質(zhì)量分數(shù)20%,料液質(zhì)量分數(shù)12%,初始pH值7.0~7.2。采用排水法收集產(chǎn)生氣體,隔天取樣測量發(fā)酵液pH值及揮發(fā)性脂肪酸(VFA)含量。
1.4 檢測方法
纖維素、半纖維素測量依據(jù)SOEST[19]的粗纖維測定法;還原性糖測定依據(jù)DNS法[20];氣體成分測定利用Geotech沼氣氣體分析儀(Biogas 5000型);總固體測定方法為(105±1)℃的干燥箱中干燥至質(zhì)量恒定;pH值測定利用pH計(PHS-3C型,上海精密科學(xué)儀器有限公司);揮發(fā)性脂肪酸(VFA)測定利用氣相色譜儀(GC-2014型, 日本島津)[21]??偺?TOC)測定利用總有機碳分析儀(日本島津);總氮(TN)測定依據(jù)凱氏定氮法;產(chǎn)氣量測定方法為排水法收集氣體,量筒測定其體積。
1.5 計算公式
圖1 浸泡條件對纖維素、半纖維素降解的影響Fig.1 Effect of soaking temperature, time and solid-liquid ratio on degradation of cellulose and hemicellulose
試驗中水稻秸稈持水力及纖維素、半纖維素轉(zhuǎn)化率計算公式為[22-23]
(1)
(2)
式中H——持水力,%
mw——吸飽水稻稈質(zhì)量,g
md——初始稻稈質(zhì)量,g
Tcel conv.——纖維素轉(zhuǎn)化率,%
mglu——葡萄糖質(zhì)量,g
mcel——纖維素質(zhì)量,g
(3)
式中Thcel conv.——半纖維素轉(zhuǎn)化率,%
mxyl——木糖質(zhì)量,g
mhcel——半纖維素質(zhì)量,g
2.1 浸泡試驗
由浸泡溫度和浸泡時間對水稻秸稈持水能力的影響可知,在一定范圍內(nèi)隨著浸泡溫度的升高和浸泡時間的延長,水稻秸稈持水力有增大趨勢,但增勢明顯減緩。浸泡溫度分別為50℃和70℃條件下,持水力僅由430%增至433%。浸泡時間由4 h延長至16 h,持水力僅由423%增至428%。本試驗使用的水稻秸稈含水率低,總固體質(zhì)量分數(shù)為95%。采用低溫凍融的方式對水稻秸稈進行處理的實質(zhì)是利用水分結(jié)冰膨脹從而破壞木質(zhì)纖維晶體結(jié)構(gòu)。秸稈作為木質(zhì)纖維素原料,其纖維素的游離羥基與水分子的結(jié)合僅發(fā)生在無定形區(qū)[24],通過延長浸泡時間和適當增加浸泡溫度的方式可使纖維素分子與水分子間以氫鍵方式結(jié)合,溶液吸入生物質(zhì)內(nèi)部,從而提高纖維素原料本身的吸水及持水能力[25]。
浸泡溫度、浸泡時間、液固比對稻稈原料纖維素轉(zhuǎn)化率和浸泡液中還原糖含量的影響如圖1所示??芍?,通過提高浸泡溫度、延長浸泡時間等外部條件的改變,可以增加纖維素?zé)o定形區(qū)游離羥基對水溶液的吸附,提升秸稈原料本身吸水及持水能力,同時秸稈內(nèi)部因內(nèi)聚力減少而容積增大,纖維素結(jié)晶區(qū)內(nèi)發(fā)生潤脹,破壞其晶體結(jié)構(gòu)。由圖1可知,隨著浸泡溫度及浸泡時間的增加,浸泡液中葡萄糖和木糖質(zhì)量都有所增加,半纖維素轉(zhuǎn)化率(3.0%~6.3%)明顯高于纖維素轉(zhuǎn)化率(0.2%~1.4%)。當液固比為15 mL/g時,半纖維素轉(zhuǎn)化率最高5.6%,纖維素轉(zhuǎn)化率最高0.9%。半纖維素具有親水性能,適當?shù)卦黾咏輹r間及溫度,有利于造成細胞壁的潤脹及纖維素和半纖維素的水解。綜合考慮能耗及效率產(chǎn)出選取浸泡時間4 h、浸泡溫度30℃、液固比15 mL/g作為水稻秸稈低溫凍融前的浸泡條件。
2.2 低溫凍融試驗
對浸泡后的水稻秸稈進行低溫凍融試驗,在實驗室內(nèi)模擬寒冷地區(qū)低溫環(huán)境,分別選取-4℃和-20℃作為冷凍溫度,室溫(20℃)下自然解凍??疾觳煌鋬鰰r間對稻稈原料纖維素、半纖維素轉(zhuǎn)化率及解凍液中還原性糖含量的影響,如圖2所示。由圖2 可知,通過降低冷凍溫度可縮短冷凍時間。經(jīng)低溫凍融后,100 g秸稈原料解凍液中葡萄糖質(zhì)量(0.8~1.9 g)和木糖質(zhì)量(2.5~7.4 g)均明顯增加,半纖維素轉(zhuǎn)化率(9.3%~27.4%)高于纖維素轉(zhuǎn)化率(1.8%~4.3%)。由圖2可知,-4℃凍融條件下,稻稈原料半纖維素轉(zhuǎn)化率隨冷凍時間的延長呈遞增趨勢,Z3組解凍液中木糖質(zhì)量達6.5 g,半纖維素轉(zhuǎn)化率為24.1%,距上一水平梯度(Z2組)環(huán)比增長103.1%,增幅顯著(p<0.05)。由圖2可知,-20℃凍融條件下,S2組解凍液中木糖質(zhì)量達7.2 g,半纖維素轉(zhuǎn)化率26.6%, 環(huán)比增長105.7%,增幅顯著(p<0.05)。隨著冷凍溫度的降低,更有利于短時間內(nèi)半纖維素的水解。通過有效的浸泡增加了木質(zhì)纖維素的微孔結(jié)構(gòu)中含水率,低溫結(jié)冰體積膨脹,膨脹一方面破壞了纖維素的晶體結(jié)構(gòu),另一方面破壞了纖維素、半纖維素及木質(zhì)素之間的氫鍵連接,使結(jié)構(gòu)變得松散,有利于下一步對木質(zhì)纖維素進行降解。
圖2 冷凍時間對纖維素、半纖維素降解的影響Fig.2 Effect of freezing time on degradation of cellulose and hemicellulose
2.3 纖維素酶解試驗
對解凍后的秸稈原料進行纖維素酶液處理。酶解后的秸稈原料中纖維素、半纖維素轉(zhuǎn)化率及還原糖含量變化如圖3所示。由圖3可知,酶解后的原料水解液中葡萄糖質(zhì)量(7.2~14.5 g)大幅度提升,纖維素轉(zhuǎn)化率(16.5%~33.2%)高于半纖維素轉(zhuǎn)化率(1.5%~2.6%)。其中Z3組酶解液中葡萄糖質(zhì)量達13.5 g,纖維素轉(zhuǎn)化率為30.9%,距上一水平梯度(Z2組)環(huán)比增長58.8%;S2組酶解液中葡萄糖質(zhì)量達14.5 g,纖維素轉(zhuǎn)化率達33.2%,環(huán)比增長70.6%。通過低溫凍融處理改變秸稈結(jié)構(gòu)形態(tài),增加了秸稈原料的孔隙體積和纖維素內(nèi)部可及面的區(qū)域,將酶解過程與低溫凍融處理相結(jié)合,促進了酶與生物質(zhì)的接觸,經(jīng)過低溫凍融處理后酶解的作用空間進一步加大,從而提高了纖維素的轉(zhuǎn)化率[26-27]。
圖3 纖維素酶水解對纖維素、半纖維素降解的影響Fig.3 Effect of enzymatic hydrolysis on degradation of cellulose and hemicellulose
2.4 厭氧發(fā)酵試驗
預(yù)處理的目的是將水稻秸稈中纖維素和半纖維素分解為含六碳糖和五碳糖的混合溶液。當這些溶解性糖類作為主要基質(zhì)進行厭氧發(fā)酵反應(yīng)時,因糖類有機物代謝速度快,產(chǎn)酸過程迅速,從而使得產(chǎn)甲烷階段成為厭氧發(fā)酵反應(yīng)的限速步驟。
2.4.1水稻秸稈厭氧發(fā)酵產(chǎn)氣特性
對完成預(yù)處理的水稻秸稈原料進行厭氧發(fā)酵產(chǎn)沼氣試驗,沼氣產(chǎn)量和甲烷體積分數(shù)是衡量其生物質(zhì)轉(zhuǎn)化效率的主要指標,其產(chǎn)氣特性如圖4所示。由圖4可知,經(jīng)低溫凍融與酶解相結(jié)合處理后的稻稈原料,其產(chǎn)氣能力較對照(CK)組明顯提升,最高累計產(chǎn)氣量543 mL(S4組)較CK組增加73.5%,且產(chǎn)氣高峰期明顯提前,Z3、Z4、S2、S3、S4組沼氣產(chǎn)量在第5天達到峰值(峰值范圍100~118 mL/d),發(fā)酵周期共19 d,Z1、 Z2、 S1組產(chǎn)氣高峰出現(xiàn)在第7 天(峰值范圍80~93 mL/d),發(fā)酵周期共23 d。隨著冷凍時間的延長(Z組48 h以上,S組24 h以上)厭氧發(fā)酵周期縮短17.4%,產(chǎn)氣高峰提前2 d,且峰值范圍高于其他組20.0%~21.2%。
圖4 預(yù)處理水稻秸稈厭氧發(fā)酵產(chǎn)氣特性Fig.4 Biogas volumes and methane contents in percentage during anaerobic digestion of pretreatment rice straw
由圖4可知,除CK組外,其余組甲烷體積分數(shù)快速增加,5 d后均穩(wěn)定在40%以上,進入正常產(chǎn)甲烷階段。該階段各試驗組甲烷體積分數(shù)與預(yù)處理階段水解液中葡萄糖質(zhì)量呈正相關(guān),葡萄糖易被厭氧微生物分解利用,發(fā)酵液中葡萄糖質(zhì)量的增加,可滿足厭氧發(fā)酵初期厭氧微生物快速繁殖對易分解有機物的需要,提高厭氧微生物活性,短時間內(nèi)使系統(tǒng)內(nèi)厭氧微生物種群數(shù)量達到較高水平,從而促進秸稈的分解轉(zhuǎn)化。試驗結(jié)束時,平均甲烷體積分數(shù)Z1~Z4組(42.7%~49.2%),S1~S4組(44.1%~51.3%),較CK組(19.7%)最高增加160.4%(S2組)。研究表明低溫凍融及酶解相結(jié)合的預(yù)處理方法對水稻秸稈厭氧發(fā)酵沼氣中甲烷體積分數(shù)的提高有顯著的促進作用。
2.4.2水稻秸稈厭氧發(fā)酵料液特性
目前,以富含纖維素的秸稈作為制取沼氣的原料已成為農(nóng)村地區(qū)獲取能源的熱點,其中纖維素原料水解緩慢造成厭氧發(fā)酵周期過長,原料周轉(zhuǎn)率低。通過低溫凍融和酶解相結(jié)合的預(yù)處理方式,使得秸稈原料水解酸化速率加快,能夠快速進入產(chǎn)甲烷階段,甲烷菌能否適應(yīng)環(huán)境大量繁殖,充分利用水解酸化產(chǎn)物產(chǎn)甲烷成為厭氧反應(yīng)的限速步驟。厭氧發(fā)酵過程中發(fā)酵液中總揮發(fā)性脂肪酸(VFA)及pH值變化情況如圖5所示。由圖5(柱狀圖,總揮發(fā)性脂肪酸質(zhì)量濃度;曲線圖,pH值變化趨勢)可知,經(jīng)預(yù)處理后的料液其水解酸化進程較CK組明顯加快,第3天pH值即降至最低(6.2~6.6),VFA積累達到峰值(5 320~7 400 mg/L),發(fā)酵液中以丁酸、乙酸代謝為主。隨后的幾天,在產(chǎn)氫、產(chǎn)乙酸菌作用下丁酸被轉(zhuǎn)變?yōu)橛欣诩淄榫L代謝的乙酸,此階段甲烷菌快速繁殖,大量有機酸被分解利用,VFA含量逐漸下降,直至產(chǎn)氣結(jié)束,pH值恢復(fù)中性水平。說明厭氧發(fā)酵啟動后不久,產(chǎn)甲烷菌活性即開始逐漸增強,生長繁殖及代謝能力加快,進入產(chǎn)甲烷階段,沼氣產(chǎn)量及甲烷體積分數(shù)開始增加,VFA變化趨勢與圖4描述產(chǎn)沼特性相一致。而CK啟動后第7天才進入酸化階段,第11天pH值一度降至5.5,期間VFA不斷積累但消耗很慢,酸化嚴重,說明甲烷菌一直處于生長受抑制狀態(tài),直至厭氧發(fā)酵結(jié)束料液pH值仍處于6.7左右。經(jīng)低溫凍融及酶解相結(jié)合預(yù)處理后的水稻秸稈厭氧發(fā)酵能夠快速進入產(chǎn)甲烷階段,且保持pH值有較小的波動,使水解酸化階段快速順利進行。
圖5 預(yù)處理水稻秸稈厭氧發(fā)酵料液特性Fig.5 Properties of pretreatment rice straw obtained during anaerobic digestion
(1)水稻秸稈在30℃水溫下浸泡4 h,液固比15 mL/g條件下具有較高持水力。冷凍溫度越低,獲得一定濃度解凍液中的木糖所需時間越短。-4℃、48 h (Z3組)和-20℃、24 h (S2組),解凍液中木糖質(zhì)量大幅增加(Z3組:6.5 g,S2組:7.2 g),半纖維素轉(zhuǎn)化率為24.1%(Z3組)、26.6%(S2組),環(huán)比增長103.1%(Z3組)、105.7%(S2組)。
(2)對解凍后的水稻秸稈原料進行纖維素酶液處理,水解液中葡萄糖質(zhì)量大幅增加(Z3組:13.5 g,S2組:14.5 g),纖維素轉(zhuǎn)化率30.9%(Z3組)、33.2%(S2組),環(huán)比增長58.8%(Z3組)、70.6%(S2組)。
(3)隨著冷凍時間的延長(Z組48 h以上,S組24 h以上),厭氧發(fā)酵周期縮短17.4%,產(chǎn)氣高峰提前2 d,且峰值范圍高于其他組20.0%~21.2%。
(4)預(yù)處理后的發(fā)酵料液水解酸化進程加快,過酸化現(xiàn)象得到有效緩解,能夠更快地進入到甲烷化階段,產(chǎn)沼能力最高提升73.5%(S4組),平均甲烷體積分數(shù)最高提升160.4%(S2組)。
1 PEREZ J, MUNOZ-DORADO T D L, RUBIA J, et al.Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview[J].International Microbiology, 2002, 5(2): 53-63.
2 鄧媛方, 邱凌, 孫權(quán)平, 等.蘑菇廢棄菌棒及其與豬糞混合發(fā)酵對沼氣產(chǎn)量及質(zhì)量的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2012,31(3): 613-619.
DENG Y F, QIU L, SUN Q P, et al.Influence of anaerobic co-digestion of mushroom cultivation wastes and pig manure on the biogas production and its quality [J].Journal of Agro-Environment Science, 2012, 31(3): 613-619.(in Chinese)
3 MICHALSKA K, BIZUKOJC M, LEDAKOWICZ S.Pretreatment of energy crops with sodium hydroxide and cellulolytic enzymes to increase biogas production[J].Biomass and Bioenergy, 2015, 80: 213-221.
4 SAPCI Z.The effect of microwave pretreatment on biogas production from agricultural straws [J].Bioresource Technology, 2013, 128: 487-494.
5 BERNAT K, ZIELINSKA M, CYDZIK-KWIATKOWSKA A, et al.Biogas production from different size fractions separated from solid waste and the accompanying changes in the community structure ofMethanogenicarchaea[J].Biochemical Engineering Journal, 2015, 100: 30-40.
6 ZHU J Y, WAN C X, LI Y B.Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment[J].Bioresource Technology, 2010, 101(19): 7523-7528.
7 孫辰, 劉榮厚, 覃國棟.蘆筍秸稈預(yù)處理與厭氧發(fā)酵制取沼氣試驗[J].農(nóng)業(yè)機械學(xué)報, 2010,41(8): 94-99.
SUN C, LIU R H, QIN G D.Experiments on pretreatment and anaerobic digestion of asparagus stalk for biogas production[J].Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(8): 94-99.(in Chinese)
8 ZHONG W Z, ZHANG Z Z, LUO Y J, et al.Effect of biological pretreatments in enhancing corn straw biogas production[J].Bioresource Technology, 2011, 102(24): 11177-11182.
9 LALAK J, KASPRZYCKA A, MARTYNIAK D, et al.Effect of biological pretreatment ofagropyronelongatum‘BAMAR’ on biogas production by anaerobic digestion[J].Bioresource Technology, 2016, 200: 194-200.
10 焦翔翔, 勒紅燕, 王明明.我國秸稈沼氣預(yù)處理技術(shù)的研究及應(yīng)用進展[J].中國沼氣, 2011,29(1):29-33.
JIAO X X, LE H Y, WANG M M.Research progress of straw pretreatment for anaerobic fermentation producing [J].China Biogas, 2011, 29(1): 29-33.(in Chinese)
11 李敏康, 錢冬明.凍融法提取豬血纖維素蛋白原[J].分析試驗室, 2007,26(4): 65-68.
LI M K, QIAN D M.Extraction of fibrinogen from pig blood by freeze-thawing [J].Chinese Journal of Analysis Laboratory, 2007, 26(4): 65-68.(in Chinese)
12 趙穎, 劉靜, 戴夢, 等.絲狀真菌產(chǎn)黃青霉DNA提取方法的改進[J].河北大學(xué)學(xué)報:自然科學(xué)版, 2010,30(4):419-423.
ZHAO Y, LIU J, DAI M, et al.An improved method of extracting genomic DNA from filamentous fungusPenicilliumchrysogenum[J].Journal of Hebei University: Natural Science Edition, 2010, 30(4): 419-423.(in Chinese)
13 HONG H, LUO Y, ZHOU Z, et al.Effects of different freezing treatments on the biogenic amine and quality changes of bighead carp (Aristichthysnobilis) heads during ice storage[J].Food Chemistry, 2013, 138(2): 1476-1482.
14 TUANKRIANGKRAI S, BENJAKUL S.Effect of modified tapioca starch on the stability of fish mince gels subjected to multiple freeze-thawing [J].Journal of Muscle Foods, 2010, 21(3): 399-416.
15 MATSUOKA N.Mechanisms of rock breakdown by frost action: an experimental approach [J].Cold Regions Science and Technology, 1990, 17(3): 253-270.
16 YAMABE T, NEAUPANE K M.Determination of some thermo-mechanical properties of Sirahama sandstone under subzero temperature conditions [J].International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 1029-1034.
17 任國玉, 初子瑩, 周雅清, 等.中國氣溫變化研究最新進展[J].氣候與環(huán)境研究, 2005,10(4): 701-714.
REN G Y, CHU Z Y, ZHOU Y Q, et al.Recent progresses in studies of regional temperature changes in China[J].Climatic and Environmental Research, 2005, 10(4): 701-714.(in Chinese)
18 鄧媛方, 邱凌, 黃輝, 等.酶預(yù)處理對秸稈類原料厭氧發(fā)酵特性的影響[J/OL].農(nóng)業(yè)機械學(xué)報, 2015,46(6): 201-206.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20150628&flag=1.DOI:10.6041/j.issn.1000-1298.2015.06.028.
DENG Y F, QIU L, HUANG H, et al.Effects of enzymatic pretreatment straw wastes on its characteristics of anaerobic digestion for biogas production [J/OL].Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6): 201-206.(in Chinese)
19 SOEST P J V.Use of detergents in the analysis of fibrous feeds.2.A rapid method for the determination of fiber and lignin [J].Journal of Association of Official Agricultural Chemists, 1963, 49: 546-551.
20 趙凱, 徐鵬舉, 谷廣燁.3,5-二硝基水楊酸比色法測定還原糖含量的研究[J].食品科學(xué), 2008, 29(8): 534-536.
ZHAO K, XU P J, GU G Y.Study on determination of reducing sugar content using 3, 5-dinitrosalicylic acid method[J].Food Science, 2008, 29(8): 534-536.(in Chinese)
21 GILROYED B H, REUTER T, CHU A, et al.Anaerobic digestion of specified risk materials with cattle manure for biogas production [J].Bioresource Technology, 2010, 101(15): 5780-5785.
22 于猛.凍融-酶法相結(jié)合的生物質(zhì)預(yù)處理研究[D].西安:陜西科技大學(xué), 2013: 14.
YU M.The study on combination of freeze-thaw and enzymatic method for biomass pretreatment [D].Xi’an: Shaanxi University of Science & Technology, 2013: 14.(in Chinese)
23 董曉宇, 段仰凱, 周桂雄, 等.稀酸和氨相結(jié)合預(yù)處理柳枝稷[J].太陽能學(xué)報, 2009,30(8): 1150-1153.
DONG X Y, DUAN Y K, ZHOU G X, et al.Study on switchgrass by the combination of dilute acid and ammonia [J].Acta Energiae Solaris Sinica, 2009, 30(8): 1150-1153.(in Chinese)
24 陳洪章.纖維素生物技術(shù)[M].北京:化學(xué)工業(yè)出版社, 2011:73.
25 GOULD J M, JASBERG B K, COTE G L.Structure-function relationships of alkaline peroxide-treated lignocellulose from wheat straw[J].Cereal Chemistry, 1989, 66(3):213-217.
26 OUAJAI S, SHANKS R A.Solvent and enzyme induced recrystallization of mechanically degraded hemp cellulose [J].Cellulose, 2006, 13(1):31-44.
27 YE S, CHENG J Y.Hydrosis of lignocellosic materials for ethanol production areview[J].Bioresource Technology, 2002, 83(1):1-11.
EffectofFreeze-thawandEnzymaticPretreatmentofRiceStrawonBiogasProductionbyAnaerobicDigestion
DENG Yuanfang1,2QIU Ling1,3WANG Yajun1,3DAI Benlin2,4XU Jiming2,4
(1.CollegeofMechanicalandElectronicEngineering,NorthwestA&FUniversity,Yangling,Shaanxi712100,China2.JiangsuKeyLaboratoryforBiomass-basedEnergyandEnzymeTechnology,HuaiyinNormalUniversity,Huaian223300,China3.WesternScientificObservingandExperimentalStationforDevelopmentandUtilizationofRualRenewableEnergy,MinistryofAgriculture,NorthwestA&FUniversity,Yangling,Shaanxi712100,China4.JiangsuCollaborativeInnovationCenterofRegionalModernAgricultureandEnvironmentalProtection,HuaiyinNormalUniversity,Huaian223300,China)
In order to use of the outdoor cold climate resources as the low-temperature reaction condition, the objective of this research was to investigate the effect of freeze-thaw treatment (Z groups: -4℃, S groups: -20℃) on the efficiency of hemicellulose degradation and enzymatic hydrolysis pretreatment of rice straw to improve its biodegradability and anaerobic biogas production.A new low temperature freeze-thaw pretreatment development pathway was created for the pre-processing research and development.The results showed that water holding capacity was optimal when soaking temperature was 30℃, time was 4 h, and liquid-solid ratio was 15 mL/g.Under low temperature freeze-thaw condition, the contents of xylose in the liquid hydrolysates were increased (Z3: 6.5 g, S2: 7.2 g), hemicellulose conversion rate reached 24.1% (Z3) and 26.6% (S2), which were improved significantly(p<0.05).Glucose yield were increased (Z3: 13.5 g,S2:14.5 g) after enzymatic hydrolysis, cellulose conversion rate reached 30.9% (Z3) and 33.2% (S2), which were improved significantly (p<0.05).These treatments conditions resulted in the highest total biogas yield (543 mL, S4), compared with the CK, the total biogas yield from S4 was improved by 73.5%.The highest average methane concentrations level was 51.3% (S2), compared with CK, it was improved by 160.4%(S2).Extension of time for freeze was apt to shorten the anaerobic fermentation period in the next anaerobic digestion.The digestion time for pretreatment rice straw (Z groups freeze-thaw treatment time was above 48 h,S groups freeze-thaw treatment time was above 24 h) was calculated as 19 d, and the peak values of gas production came earlier than those of other groups.The significant reduction in digestion time indicated that the straw had become more accessible and more readily biodegradable after biological pretreatment.Freeze-thaw and enzymatic pretreatment could be an effective method for improving biodegradability and enhancing the highly efficient biological conversion of rice straw into bioenergy.
rice straw; low-temperature freeze-thaw; enzymatic hydrolysis; anaerobic digestion; biogas
10.6041/j.issn.1000-1298.2017.10.032
X712
A
1000-1298(2017)10-0260-06
2016-10-24
2016-11-23
國家自然科學(xué)基金項目(51576167)和淮安市重點研發(fā)(社會發(fā)展)計劃項目(HAS201601、HAS201601-3、HAS201601-4)
鄧媛方(1985—),女,博士生,淮陰師范學(xué)院講師,主要從事生物質(zhì)能源方面的研究,E-mail: dengyf@hytc.edu.cn
邱凌(1957—),男,教授,博士生導(dǎo)師,主要從事生物能源與生態(tài)環(huán)境方面的研究,E-mail: ql2871@126.com