• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      淮北平原旱澇急轉(zhuǎn)條件下水稻減產(chǎn)規(guī)律分析

      2017-11-20 06:58:03胡鐵松袁宏偉楊繼偉
      農(nóng)業(yè)工程學(xué)報 2017年21期
      關(guān)鍵詞:旱澇粒數(shù)結(jié)實率

      高 蕓,胡鐵松※,袁宏偉,楊繼偉

      ?

      淮北平原旱澇急轉(zhuǎn)條件下水稻減產(chǎn)規(guī)律分析

      高 蕓1,胡鐵松1※,袁宏偉2,楊繼偉2

      (1.武漢大學(xué)水資源與水電工程科學(xué)國家重點實驗室,武漢 430072;2.安徽省水利部淮河水利委員會水利科學(xué)研究院,蚌埠233000)

      為探究水稻旱澇急轉(zhuǎn)下先期旱脅迫與后期澇脅迫交互作用對產(chǎn)量造成的影響,于2016年在淮委水科院新馬橋試驗站開展了不同旱澇水平(受旱程度(50%~70%田持),受旱時間(5~15 d),受澇程度(50%~100%株高),受澇時間(5~9 d))的旱澇急轉(zhuǎn)組,單旱組,單澇組,正常組平行對比形式的測桶試驗。分析了不同旱澇組合形式下先旱與后澇互作效應(yīng)的減產(chǎn)規(guī)律,進一步探究了旱澇互作對產(chǎn)量構(gòu)成因素的影響。結(jié)果表明:通過旱澇急轉(zhuǎn)組與正常組對比,重旱重澇組合減產(chǎn)30.3%,對產(chǎn)量最為不利,長時間重旱使總粒數(shù)削減30%左右,千粒質(zhì)量與結(jié)實率均接近或高于正常組;旱澇急轉(zhuǎn)組與單旱組對比,旱澇急轉(zhuǎn)組(重澇)比單旱組產(chǎn)量削減程度增加30%以上,總粒數(shù)損失增加33.9%~35.2%,旱澇急轉(zhuǎn)組(短期輕澇)比單旱組(長期重旱)千粒質(zhì)量和結(jié)實率分別補償33.6%和37.6%;旱澇急轉(zhuǎn)組與單澇組對比,旱澇急轉(zhuǎn)組(長期輕旱)比單澇組(長期重澇)產(chǎn)量補償113.0%,旱澇急轉(zhuǎn)組(重旱)比單澇組(重澇或長期輕澇)總粒數(shù)削減31.9%~33.7%,旱澇急轉(zhuǎn)組(長期旱)比單澇組千粒質(zhì)量和結(jié)實率分別補償79.7%和118.4%。研究成果可為探究旱澇急轉(zhuǎn)致災(zāi)機理及減災(zāi)措施提供參考。

      脅迫;干旱;灌溉;水稻;減產(chǎn)規(guī)律;旱澇急轉(zhuǎn);補償

      0 引 言

      受亞熱帶季風(fēng)氣候影響,2011年以來淮北平原地區(qū)發(fā)生了多次嚴重的“旱澇急轉(zhuǎn)”自然災(zāi)害[1],該地區(qū)水稻生長期與雨季重合,易使前期處于干旱脅迫狀態(tài)的水稻快速轉(zhuǎn)入澇脅迫[2-3],因此探索旱澇急轉(zhuǎn)下水稻減產(chǎn)規(guī)律,對于制定合理減災(zāi)措施具有重要的現(xiàn)實意義。

      旱澇急轉(zhuǎn)對作物產(chǎn)量的影響不同于正常條件[4],與極端旱澇也有很大區(qū)別。周磊[5]等對作物適度缺水反彈補償節(jié)水的分子生理機制進行探索,提出作物缺水后復(fù)水會發(fā)生超補償、近等量補償、適當(dāng)恢復(fù)和無恢復(fù)4種虧缺閾值。郭相平[6]等對旱、澇及其交替脅迫的研究進展進行了綜述,認為交替脅迫的疊加效應(yīng),在不同的旱、澇脅迫組合條件下,既可能表現(xiàn)為聯(lián)合效應(yīng),也可能表現(xiàn)為補償效應(yīng)。為了探究旱澇互作對產(chǎn)量造成的影響,一些學(xué)者[7-10]設(shè)置不同旱澇水平的桶栽或盆栽試驗,研究在不同生育期發(fā)生旱澇急轉(zhuǎn)對產(chǎn)量及產(chǎn)量構(gòu)成造成的影響,但由于采用的是單因素試驗,旱澇水平設(shè)置過少,導(dǎo)致部分實驗結(jié)果存在差異[11-12],且得出的結(jié)論僅實驗組與正常組對比,對實際抗洪減災(zāi)的指導(dǎo)作用不強,未探究旱澇互作對產(chǎn)量造成的影響,因此也不能解釋旱澇急轉(zhuǎn)致災(zāi)機理與減產(chǎn)原因。

      本文旨在通過設(shè)置不同旱澇組合形式,分析旱澇急轉(zhuǎn)與極端旱澇減產(chǎn)規(guī)律的差異,量化先期旱與后期澇的補償、削減作用,明確旱澇急轉(zhuǎn)致災(zāi)機理,并從產(chǎn)量構(gòu)成角度進一步解釋減產(chǎn)原因。

      1 材料與方法

      1.1 試驗地概況

      試驗地點位于淮委水科院新馬橋試驗站(117°22¢E,33°09¢N),屬亞熱帶和熱帶過渡帶,氣候兼南北之長,四季分明,光照充足,年平均氣溫14.9℃,降雨量871 mm,日照2 170 h,平均海拔16.0~22.5 m。試驗土取自臨近稻田耕作層,土壤類型為砂姜黑土,土壤質(zhì)地為中壤土,剖面構(gòu)型自上而下依次為黑土層、脫潛層、砂姜層,土壤容重為1.24 g/cm3,土壤的田間持水量0.28 g/g,飽和含水量0.429 g/g。

      1.2 試驗設(shè)計

      通過分析研究區(qū)旱澇急轉(zhuǎn)事件歷史統(tǒng)計資料發(fā)現(xiàn),旱澇急轉(zhuǎn)多發(fā)生于7月中下旬至8月中下旬[13],與水稻拔節(jié)孕穗期重合,因此本試驗將旱澇急轉(zhuǎn)設(shè)置在水稻拔節(jié)孕穗期。在參考國家受旱等級與排澇標(biāo)準(zhǔn)劃分指標(biāo)的基礎(chǔ)上,參照崔遠來[14],李陽生[15]等的試驗研究,將旱、澇控制因素設(shè)置為:1)受旱程度:50%、60%、70%田間持水量;2)受旱歷時:5、10、15 d;3)受澇淹沒深度:50%、75%,100%株高;4)受澇歷時:5、7、9 d。試驗設(shè)置了9組不同旱澇急轉(zhuǎn)組合處理DFAA1~DFAA9和1個對照處理CK。安排其中6組旱澇急轉(zhuǎn)脅迫處理組(DFAA1~DFAA3,DFAA7~DFAA9)與旱、澇單一脅迫處理組(DC1~3,DC7~9和FC1~3,FC7~9)的對比方案,例如旱澇急轉(zhuǎn)組DFAA1對應(yīng)的單旱脅迫DC1和單澇脅迫FC1進行平行試驗,試驗設(shè)計方案見表1~表2。

      表1 2016年水稻旱澇急轉(zhuǎn)試驗設(shè)計

      Table 1 Experimental scheme fordrought-flood abrupt alternation of rice in 2016

      注:表中DFAA為旱澇急轉(zhuǎn)組;DC為單旱組;FC為單澇組;數(shù)字代表日期;實線表示受旱持續(xù)時間;虛線表示受澇持續(xù)時間。下同。

      Note: DFAA means drought-flood abrupt alternation, DC means drought control, FC means flood control, numbers represent the date, solid line indicates the duration of drought, dashed line indicates the duration of flood. The same below.

      表2 旱澇因素及水平設(shè)置

      注:表中受旱程度是指土壤含水率占田間持水率的百分比;受澇程度是指淹水深度占株高的比例。旱指標(biāo)(輕旱:70% 田持,中旱:60% 田持,重旱:50% 田持)與澇指標(biāo)(輕澇:淹深50% 株高,中澇:淹深75% 株高,重澇:淹深100% 株高)。旱持續(xù)時間(短期:5 d,中期:10 d,長期:15 d)與澇持續(xù)時間(短期:5 d,中期:10 d,長期:15 d)。

      Note: Drought degree means the ratio of soil moisture content to field water-holding rate, and flood degree means the ratio of flooding level to plant height; Drought index (light drought: 70% field water-holding rate,middle drought: 60% field water-holding rate, high drought: 50% field water-holding rate), flood index (light flood: 50% plant height,middle flood: 75% plant height,high flood: 100% plant height); Duration of drought (short-: 5 d, middle-: 10 d, long-: 15 d), duration of flood (short-: 5 d, middle-: 10 d, long-: 15 d).

      1.3 試驗材料

      水稻供試品種為II優(yōu)898。所有試驗均在內(nèi)徑40 cm,高70 cm的大型有底鐵桶中進行,在水稻全生育期內(nèi)進行正常的農(nóng)事管理。在無旱澇脅迫的生長時段,水稻進行正常淹灌,以保證水稻不受旱,利用遮雨棚使水稻不受雨澇。測桶內(nèi)土壤的基本理化性質(zhì):pH值7.79,速效鉀93.91 mg/kg,有效磷16.10 mg/kg,有機質(zhì)8.59 g/kg,全氮632 mg/kg,堿解氮92.11 mg/kg。經(jīng)曬干、打碎、過篩后,均勻施肥,底肥施用尿素3.0 g/筒,復(fù)合肥7.2 g/筒。旱澇急轉(zhuǎn)試驗條件見圖1,淹水池結(jié)構(gòu)見圖2,供試水稻生育期見表3。

      a. 受旱處理a. Drought treatmentb. 受澇處理b. Flood treatmentc. 正常組c. Natural condition

      圖2 淹水池結(jié)構(gòu)圖

      1.4 測定項目與方法

      1)控水方式

      每天上午8:00和下午6:00測定試驗組的每個測桶質(zhì)量,2次稱桶質(zhì)量的差值即是當(dāng)日白天的蒸發(fā)量。每天下午稱桶質(zhì)量和次日上午稱桶質(zhì)量之差則為當(dāng)日夜間蒸發(fā)量。早晚稱桶質(zhì)量時均需對已到達含水率要求的測桶進行灌水,以控制達到對應(yīng)的受旱程度。累計達到相應(yīng)受旱程度時間后,將對應(yīng)測桶移入淹水池中進行受澇試驗。

      每天上午9:00觀察淹水池的水層深度后,灌排一定的水量使得淹水池的水位能夠讓最外圍的測桶正常淹水。如遇陰雨天氣,根據(jù)降水大小適時放水,控制淹水池深度以滿足受澇試驗要求。

      表3 水稻各生育期起止日期及持續(xù)時間

      注:CK為正常組;FC為單澇組;DC為單旱組;DFAA為旱澇急轉(zhuǎn)組;D為持續(xù)時間。

      Note: CK means normal control, FC means flooding control, DC means drought control, DFAA means drought-flood abrupt alternation,Dmeans duration.

      2)產(chǎn)量及產(chǎn)量構(gòu)成因素的測定

      成熟后曬田一周,將每個處理的3個測桶進行收割,選取天氣晴朗的2 d晾曬后烘干,然后依次考查每個測桶的穗數(shù)、每穗粒數(shù)、實粒數(shù)、癟粒數(shù),千粒質(zhì)量以及產(chǎn)量。

      3)旱澇互作效應(yīng)的計算

      為了消除不同光照、溫度等外界因素的差異,本文采用水稻產(chǎn)量及產(chǎn)量構(gòu)成因素相對值進行計算,其值等于試驗組產(chǎn)量(產(chǎn)量構(gòu)成)與正常組產(chǎn)量(產(chǎn)量構(gòu)成)之比

      式中DC為旱脅迫相對值,%;DC¢為旱脅迫產(chǎn)量(產(chǎn)量構(gòu)成),g;FC為澇脅迫相對值,%;FC¢為澇脅迫產(chǎn)量(產(chǎn)量構(gòu)成),g;DFAA為旱澇急轉(zhuǎn)脅迫相對值,%;DFAA¢為旱澇急轉(zhuǎn)脅迫產(chǎn)量(產(chǎn)量構(gòu)成),g;CK¢為對照組產(chǎn)量(產(chǎn)量構(gòu)成),g。

      考慮先期旱對澇脅迫的影響,先期旱對澇脅迫的補償作用為

      考慮后期澇對旱脅迫的影響,后期澇對旱脅迫的補償作用為

      式中DC為先期旱對澇脅迫的補償作用,%;FC為后期澇對旱脅迫的補償作用,%。負值為聯(lián)合削減作用,其他符號意義同前,此2式可用于計算產(chǎn)量、千粒質(zhì)量、總粒數(shù)、結(jié)實率的旱澇脅迫補償值。

      2 結(jié)果與分析

      2.1 旱澇急轉(zhuǎn)下水稻減產(chǎn)規(guī)律分析

      經(jīng)計算,旱澇急轉(zhuǎn)脅迫下產(chǎn)量及產(chǎn)量構(gòu)成因素如圖3所示。從圖3a看出,旱澇急轉(zhuǎn)組產(chǎn)量除了DFAA6略高于正常組外,其余各處理組均發(fā)生減產(chǎn),說明在受旱程度:50%~70%田持;受旱時間:5~15 d;受澇程度:50%~100%株高;受澇時間:5~9 d范圍內(nèi)發(fā)生旱澇急轉(zhuǎn)很可能會對產(chǎn)量造成損失,減產(chǎn)范圍在30%以內(nèi),這可能是由于拔節(jié)期發(fā)生旱澇急轉(zhuǎn)對水稻生育期的影響與對照組相比,延長了拔節(jié)孕穗期的持續(xù)天數(shù),同時縮短了抽穗開花期的時間,而這一時期是水稻營養(yǎng)生長與生殖生長最旺盛的階段,這一階段由于水稻生長發(fā)育最快,所以對水、肥、光、熱的需求量最大[16],如果縮短這一時期的持續(xù)時間將會影響對投入物的獲取,減少水稻的粒數(shù)與粒質(zhì)量從而導(dǎo)致減產(chǎn)。DFAA7減產(chǎn)30.3%,說明重旱重澇組合對產(chǎn)量最為不利。DFAA7對應(yīng)總粒數(shù)削減30.6%,千粒質(zhì)量削減4.2%,結(jié)實率補償2.0%,在各處理中均處于下限值附近,花前總粒數(shù)減少,花后千粒質(zhì)量減少結(jié)實率補償不多可能是導(dǎo)致減產(chǎn)的主要原因。如圖3b所示,總粒數(shù)形成處于旱澇脅迫期間,受旱澇直接作用,各處理均減少。DFAA7~DFAA9減少幅度最大在30%左右,因此重旱易引起總粒數(shù)的減少。如圖3c~3d所示,千粒質(zhì)量與結(jié)實率形成期處于旱澇急轉(zhuǎn)排澇后復(fù)水期,未受到旱澇脅迫直接作用,各處理均接近或高于正常組,這可能與旱澇補償作用的后效性[17-19]有關(guān)。

      圖3 旱澇急轉(zhuǎn)組與正常組產(chǎn)量,總粒數(shù),千粒質(zhì)量及結(jié)實率的比較

      2.2 澇脅迫對水稻受旱減產(chǎn)規(guī)律的影響分析

      基于單一旱脅迫產(chǎn)量指標(biāo)DC與旱澇急轉(zhuǎn)產(chǎn)量指標(biāo)DFAA,計算澇對旱脅迫的影響,結(jié)果見圖4和表4??傻媒Y(jié)論:單旱組與旱澇急轉(zhuǎn)組對比,除了DFAA8、9高于單旱組處理,其余均低于單旱組,說明在受旱程度:50%~70% 田持;受旱時間:5~15 d;受澇程度:50%~100% 株高;受澇時間:5~9 d范圍內(nèi),旱澇急轉(zhuǎn)組很可能加重了單旱組減產(chǎn)損失。圖4表明DFAA1、2、3、7組產(chǎn)量補償作用FC分別為–25.8%、–28.0%、–30.8%、–33.9%,DFAA3和DFAA7聯(lián)合削減作用最為嚴重,減幅超過30%,說明旱澇急轉(zhuǎn)組(重澇)加重了旱脅迫減產(chǎn)損失,原因是重澇條件下水下光強不足,O2、CO2等氣體擴散率受阻,光合速率減小,營養(yǎng)生長與生殖生長受到抑制,細胞膜損傷,從而加劇了旱條件下細胞生理活性的降低[20]。DFAA3和DFAA7對應(yīng)總粒數(shù)削減作用分別為35.2%和33.9%,千粒質(zhì)量補償作用分別為3.2%和2.0%,結(jié)實率DFAA3補償作用21.1%,DFAA7削減作用4.6%,DFAA7花前總粒數(shù)減少,花后千粒質(zhì)量補償不多結(jié)實率減少導(dǎo)致減產(chǎn),DFAA3結(jié)實率雖有一定補償,但由于總粒數(shù)削減作用過于嚴重,限制了最終產(chǎn)量的形成。

      表4總粒數(shù)所有處理均發(fā)生旱澇削減現(xiàn)象,DFAA1、2、3、7、8、9組FC分別為–24.5%、–29.6%、–35.2%、–33.9%、–0.6%、–18.0%,DFAA3和DFAA7削減作用最強,說明旱澇急轉(zhuǎn)組(重澇)加重了旱脅迫下總粒數(shù)的損失。旱澇急轉(zhuǎn)組對于旱脅迫下千粒質(zhì)量的影響,除了DFAA2組,其余各處理均發(fā)生旱澇補償作用,DFAA1、3、7、8、9組FC分別為8.2%、3.2%、2.0%、2.7%、33.6%,DFAA9旱澇補償作用明顯,原因可能是長期重旱抑制了根系活力減少了吸水量,而短期輕澇誘導(dǎo)與補償相關(guān)的基因表達,激發(fā)體內(nèi)代謝合成酶的活性,使細胞膨壓得以恢復(fù),胞質(zhì)濃度降低,生長速率增加,代謝活動加快,最終減輕了先期旱脅迫對千粒質(zhì)量的影響[21]。結(jié)實率DFAA2、3、9發(fā)生旱澇補償作用,F(xiàn)C分別為11.0%、21.1%、37.6%,同樣DFAA9旱澇補償作用顯著,說明長期重旱和短期輕澇組合減輕了先期旱脅迫對結(jié)實率的影響。

      注:Group1為DC1和DFAA1,group2為DC2和DFAA2,…,group9為DC9和DFAA9,下同。

      2.3 旱脅迫對水稻淹澇減產(chǎn)規(guī)律的影響分析

      基于單一澇脅迫產(chǎn)量指標(biāo)FC與旱澇急轉(zhuǎn)產(chǎn)量指標(biāo)DFAA,計算先期旱對澇脅迫的影響,結(jié)果見表5和圖5??傻媒Y(jié)論:單澇組與旱澇急轉(zhuǎn)組對比,DFAA1、3、9高于單澇組處理,以上3種組合旱澇急轉(zhuǎn)組比單澇組產(chǎn)量補償分別為20.8%、113.0%和14.2%,其中DFAA3旱澇補償作用113.0%,說明在受旱程度:50%~70%田持;受旱時間:5~15 d;受澇程度:50%~100%株高;受澇時間:5~9 d范圍內(nèi),旱澇急轉(zhuǎn)組(長期輕旱)和單澇組(長期重澇)組合可以減少澇脅迫的減產(chǎn)損失,原因可能是長期輕旱促使水稻新生白根形成發(fā)達的通氣組織,通氣組織形成早可為后期澇脅迫產(chǎn)生有利影響[22]。DFAA3對應(yīng)總粒數(shù)補償11.7%,千粒質(zhì)量補償79.7%,結(jié)實率補償118.4%,在各處理中均處于補償上限,花前總粒數(shù),花后千粒質(zhì)量、結(jié)實率均有較大補償是導(dǎo)致產(chǎn)量補償作用顯著的主要原因。

      表4 澇脅迫對旱脅迫的補償效應(yīng)(AFC)

      圖5 旱澇急轉(zhuǎn)組與淹澇組產(chǎn)量的比較

      表5 旱脅迫對澇脅迫的補償效應(yīng)(ADC)

      表5總粒數(shù)除了DFAA1、3發(fā)生補償作用外,其余各處理均發(fā)生旱澇聯(lián)合削減,DFAA2、7、8、9組DC分別為–20.1%、–33.7%、–31.9%、–22.7%,DFAA7和DFAA8削減31.9%~33.7%,說明重旱重澇組合或重旱與長期輕澇組合加重了澇脅迫下總粒數(shù)的損失。千粒質(zhì)量和結(jié)實率所有處理均發(fā)生旱澇補償作用,千粒質(zhì)量DFAA1、2、3、7、8、9組DC分別為28.3%、2.0%、79.7%、14.0%、24.4%、61.4%,DFAA3和DFAA9補償作用最強,說明前期旱脅迫促進了根系對養(yǎng)分的吸收,積累的中間產(chǎn)物為澇脅迫有機物合成提供了原料,成為補償效應(yīng)發(fā)生的有利條件,旱脅迫不僅促進根系生長發(fā)育,而且使莖稈延伸生長延緩,基部粗壯抗倒伏[23],葉片開度減小,減少淹澇期生理干旱,提高氧傳遞效率,改善對缺氧的抵抗能力,最終減輕了千粒質(zhì)量在澇期的損失[24-25]。結(jié)實率DFAA1、2、3、7、8、9組DC分別為3.2%、20.1%、118.4%、5.5%、23.5%、54.3%,DFAA3和DFAA9補償作用最強,同樣說明長期旱脅迫減輕了結(jié)實率在澇期的損失。

      3 討 論

      3.1 旱澇急轉(zhuǎn)與極端旱澇減產(chǎn)規(guī)律差異性分析

      旱澇急轉(zhuǎn)下水稻受旱、澇同時作用,減產(chǎn)規(guī)律較正常淹灌條件不同[26-28]。彭世彰[29]等研究了不同生育階段水分虧缺后復(fù)水干物質(zhì)和產(chǎn)量的變化,得到分蘗后期較對照產(chǎn)量持平略有增加,拔節(jié)孕穗后期和抽穗開花期顯著下降低于對照的結(jié)論。汪妮娜[30]等研究了不同生育期水分脅迫后復(fù)水對水稻生長及產(chǎn)量的影響,得到分蘗盛期輕度水分處理的地上部干重和稻谷產(chǎn)量最高,而抽穗揚花期則以對照最高。郭相平[31]等研究了旱澇交替脅迫對水稻產(chǎn)量和品質(zhì)的影響,得到分蘗期有效穗數(shù)較對照組顯著降低,拔節(jié)期穗粒數(shù)較對照組顯著降低,水稻均有減產(chǎn)的結(jié)論。本試驗結(jié)果旱澇急轉(zhuǎn)較正常淹灌顯著降低了水稻產(chǎn)量,與上述研究一致。鄧艷[32]等在此基礎(chǔ)上探討了旱澇急轉(zhuǎn)與極端旱澇的減產(chǎn)差異,得到穗分化期干旱較淹澇對水稻產(chǎn)量負面影響更大,旱澇急轉(zhuǎn)存在疊加減產(chǎn)效應(yīng)的結(jié)論,由于試驗中旱澇組合僅有1組設(shè)置,因而試驗結(jié)論有待推敲。本研究設(shè)置了不同旱澇急轉(zhuǎn)組合處理,利用旱澇急轉(zhuǎn)組與極端旱澇組對比,得到DFAA1、2、3、7產(chǎn)量小于單旱組,F(xiàn)C在–25.7%~–33.9%之間,DFAA8、9產(chǎn)量大于單旱組,F(xiàn)C在2.7%~18.5%之間,因此,旱澇急轉(zhuǎn)組加重了旱脅迫(輕旱或短期重旱)減產(chǎn)作用,其中,DFAA3和DFAA7削減作用最強,所以在前期發(fā)生了輕旱或短期重旱的情景下,應(yīng)盡量避免后期重澇發(fā)生。DFAA1、3、9旱澇急轉(zhuǎn)組產(chǎn)量大于單澇組,DC在14.2%~113.0%之間,DFAA2、7、8旱澇急轉(zhuǎn)組產(chǎn)量小于單澇組,DC在–4.0%~–27.8%之間,先期旱明顯減輕了澇期減產(chǎn)損失,尤其是DFAA3旱澇急轉(zhuǎn)組產(chǎn)量顯著大于單澇組,DC為113.0%,說明在后期澇無法避免時,先期旱有效減輕了澇期減產(chǎn)損失。該研究成果可為探究旱澇急轉(zhuǎn)致災(zāi)機理及減災(zāi)措施提供參考,但仍需要從旱澇補償、削減作用的生理學(xué)機制得到證實。

      3.2 旱澇補償、削減作用對產(chǎn)量構(gòu)成的影響

      水稻籽粒用以貯存光合源,總粒數(shù)的多少限制最終產(chǎn)量的形成[33-34],而籽粒產(chǎn)量的80%來自于花后光合物質(zhì)的積累[35-36],千粒質(zhì)量及結(jié)實率決定時期為開花后,因此補償現(xiàn)象可能與千粒質(zhì)量和結(jié)實率有關(guān)。魏征[37]等研究了生育中期水分虧缺后復(fù)水對水稻產(chǎn)量及其構(gòu)成因子的影響,得到穗數(shù)減少,千粒質(zhì)量提高的結(jié)論。郭慧[38]等研究了水稻孕穗期水分脅迫后復(fù)水對產(chǎn)量及產(chǎn)量構(gòu)成的補償效應(yīng),得到穗數(shù)和穗粒數(shù)均有下降,輕度補償效應(yīng)高于重度甚至優(yōu)于對照的結(jié)論。以上研究成果,產(chǎn)量構(gòu)成沒有與旱澇脅迫期、復(fù)水期對應(yīng),因而無法解釋減產(chǎn)原因。蔡昆爭[39]等研究了水稻不同生育時期干旱后復(fù)水對產(chǎn)量的補償效應(yīng),得到分蘗期影響有效穗數(shù),穗分化期影響有效穗數(shù)、每穗粒數(shù)和結(jié)實率,抽穗期影響每穗粒數(shù)、結(jié)實率和千粒質(zhì)量,結(jié)實期影響結(jié)實率和千粒質(zhì)量的結(jié)論,由于旱后復(fù)水屬于淺水淹灌,澇水平設(shè)置過低且旱澇組合單一,因而所得結(jié)論無法指導(dǎo)旱澇災(zāi)害防治。本研究設(shè)置了不同旱澇組合試驗,按照旱澇急轉(zhuǎn)發(fā)生時期結(jié)合各產(chǎn)量構(gòu)成因素形成物理過程,將水稻產(chǎn)量構(gòu)成因素分為開花前總粒數(shù)與開花后千粒質(zhì)量、結(jié)實率2部分進行討論,采用產(chǎn)量構(gòu)成因素法分析旱澇補償、削減作用對產(chǎn)量的影響,得到DFAA3(沒頂淹沒9 d)和DFAA7(沒頂淹沒7 d)削減作用最強,F(xiàn)C分別為35.2%和33.9%,因此,DFAA3,7產(chǎn)量削減最強可能是由于澇期嚴重削減了總粒數(shù)所致。DFAA3(70%田持,受旱15 d,沒頂淹沒9 d)補償作用明顯,千粒質(zhì)量和結(jié)實率DC分別為80.0%和118.4%,進而解釋了DFAA3旱澇急轉(zhuǎn)組產(chǎn)量大于單澇組的原因。該研究從產(chǎn)量構(gòu)成的角度分析了旱澇急轉(zhuǎn)脅迫下的減產(chǎn)原因,為研究旱澇急轉(zhuǎn)下作物減產(chǎn)規(guī)律提供了1個新的視角,但還需結(jié)合作物葉片光合特性[40-42]做進一步探討,有待進一步的試驗資料對其進行驗證。

      4 結(jié) 論

      通過2016年開展的不同旱澇水平的測桶試驗,對比分析了在不同旱澇組合形式下旱澇急轉(zhuǎn)組與正常淹灌組、單一受旱組、單一受澇組的減產(chǎn)規(guī)律,量化旱澇互作效應(yīng),通過產(chǎn)量構(gòu)成的變化進一步解釋了減產(chǎn)的原因,得到如下結(jié)論:

      1)旱澇急轉(zhuǎn)較正常淹灌顯著降低了水稻產(chǎn)量,DFAA7(50%田持,受旱5 d,沒頂淹沒7 d)減產(chǎn)30.3%,說明重旱重澇組合對產(chǎn)量最為不利;DFAA7~DFAA9(50%田持,受旱5、10、15 d)減少幅度最大,長時間重旱使總粒數(shù)削減30%左右;各處理組千粒質(zhì)量與結(jié)實率同時受控于旱澇脅迫的影響,均接近或高于正常組。

      2)旱澇急轉(zhuǎn)組與極端旱澇組對比,得到DFAA1、2、3、7旱澇急轉(zhuǎn)組產(chǎn)量小于單旱組,DFAA3(沒頂淹沒9 d)和DFAA7(沒頂淹沒7 d)削減作用超過30%,因此,在前期發(fā)生了輕旱或短期重旱的情景下,應(yīng)盡量避免后期重澇發(fā)生。DFAA1、3、9旱澇急轉(zhuǎn)組產(chǎn)量大于單澇組,DFAA3(70%田持,受旱15 d,沒頂淹沒9 d)產(chǎn)量補償113.0%,旱澇急轉(zhuǎn)組產(chǎn)量顯著大于單澇組,說明在后期澇無法避免時,先期旱有效減輕了澇期減產(chǎn)損失。

      3)采用產(chǎn)量構(gòu)成因素法分析旱澇補償、削減作用對產(chǎn)量的影響,與單旱組對比,得到DFAA3(沒頂淹沒9天)和DFAA7(沒頂淹沒7 d)總粒數(shù)削減作用33.9%~35.2%,因此,DFAA3、7產(chǎn)量削減最強可能是由于澇期嚴重削減了總粒數(shù)所致,而DFAA9(50%田持,受旱15 d,淹深75%株高,淹澇5 d)相對于單旱組產(chǎn)量有所增加的原因可能是由于千粒質(zhì)量和結(jié)實率分別補償33.6%和37.6%,說明短期輕澇可以緩解長期重旱的不利影響。與單澇組對比,DFAA7(50% 田持,受旱5 d,沒頂淹沒7 d)和DFAA8(50%田持,受旱10 d,淹深50%株高,淹澇9 d)產(chǎn)量低于單澇組,原因可能是由于總粒數(shù)削減作用31.9~33.7%,說明前期重旱加重了重澇或長期輕澇下總粒數(shù)的損失。DFAA3(70%田持,受旱15 d,沒頂淹沒9 d)千粒質(zhì)量和結(jié)實率分別補償79.7%和118.4%,進而解釋了DFAA3產(chǎn)量大于單澇組的原因。

      [1] 沈柏竹,張世軒,楊涵洧,等. 2011年春夏季長江中下游地區(qū)旱澇急轉(zhuǎn)特征分析[J]. 物理學(xué)報,2012,61(10)109-202. Shen Bai zhu, Zhang Shi xuan, Yang Han wei, et al. Analysis of characteristics of a sharp turn from drought to flood in the middle and lower reaches of the Yangtze River in spring and summer in 2011[J]. Acta Phys Sin, 2012, 61(10): 109-202.(in Chinese with English abstract)

      [2] 鄧艷,陳小榮. “旱澇急轉(zhuǎn)”對水稻生長發(fā)育的影響及其有關(guān)問題的思考[J]. 生物災(zāi)害科學(xué),2013,36(2):217-222. Deng Yan, Chen Xiaorong. Effects of Drought-floods Abrupt Alternation on Growing Development of rice and consideration for Related Issues[J]. Biological Disaster Science, 2013, 36(2): 217-222. (in Chinese with English abstract)

      [3] Yu Shuang’ en, Miao Zimei, Shao Guangcheng, et al. The crop-water level response model of rice under alternate drought and waterlogging[J]. Journal of Food, Agriculture & Environment, 2012, 10(3&4): 1515-1519.

      [4] Yao F X, Huang J L, Peng S B, et al. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation[J]. Field Crops Research, 2012, 126: 16-22.

      [5] 周磊,甘毅,歐曉彬,等.作物缺水補償節(jié)水的分子生理機制研究進展[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2011, 19(1):217-225. Zhou Lei, Gan Yi, Ou Xiaobin, et al. Progress in molecular and physiological mechanisms of water-saving by compensation for water deficit of crop and how they relate to crop production[J]. Chinese Journal of Eco-Agriculture, 2011, 19(1): 217-225. (in Chinese with English abstract)

      [6] 郭相平,甄博,陸紅飛. 水稻旱澇交替脅迫疊加效應(yīng)研究進展[J]. 水利水電科技進展,2013,33(2):83-86. Guo Xiangping, Zhen Bo, Lu Hongfei. Research advances in pile-up effects of drought and waterlogging alternative stress on rice[J]. Advances in Science and Technology of Water Resources, 2013, 33(2): 83-86. (in Chinese with English abstract)

      [7] Cheng W, Zhang G, Zhao G, et al. Variation in rice quality of different cultivars and grain positions as affected by water management[J]. Field Crops Research, 2003, 80(3): 245-252.

      [8] 曹睿哲,俞雙恩,高世凱,等. 基于熵權(quán)TOPSIS模型水稻旱澇交替脅迫條件下排灌方案評價[J]. 中國農(nóng)村水利水電,2017,59(3):45-49. Cao Ruizhe, Yu Shuang’en, Gao Shikai, et al. Evaluation of rice under alternating stress of drought and waterlogging based on entropy weight TOPSIS method[J]. China Rural Water and Hydropower, 2017, 59(3): 45-49. (in Chinese with English abstract)

      [9] Suralta R R, Inukai Y, Yamauchi A. Dry matter production in relation to root plastic development, oxygen transport, and water uptake of rice under transient soil moisture stresses[J]. Plant and Soil, 2010, 332(1): 87-104.

      [10] 繆子梅,俞雙恩,盧斌,等. 基于結(jié)構(gòu)方程模型的控水稻“需水量-光合量-產(chǎn)量”關(guān)系研究[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(6):91-98. Miao Zimei, Yu Shuang’en, Lu Bin, et al. Relationships of ‘water requirement- photosynthesis- production’ for paddy rice using structural equation modeling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(6): 91-98. (in Chinese with English abstract)

      [11] 邵璽文,張瑞珍,齊春艷,等. 拔節(jié)孕穗期水分脅迫對水稻生長發(fā)育及產(chǎn)量的影響[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報,2004,26(3):237-241. Shao Xiwen, Zhang Ruizhen, Qi Chunyan, et al. Effects of water stress on growth and yield of rice in jointing-booting stage[J]. Journal of Jilin Agricultural University, 2004, 26(3): 237-241. (in Chinese with English abstract)

      [12] 王成璦,王伯倫,張文香,等. 土壤水分脅迫對水稻產(chǎn)量和品質(zhì)的影響[J]. 作物學(xué)報,2006,32(1):131-137. Wang Chengyuan, Wang Bolun, Zhang Wenxiang, et al. Effects of water stress of soil on rice yield and quality[J]. Acta Agronomica Sinica, 2006, 32(1): 131-137. (in Chinese with English abstract)

      [13] 程智,徐敏,羅連升,等.淮河流域旱澇急轉(zhuǎn)氣候特征研究[J]. 水文,2012,32(1):73-79. Cheng Zhi, Xu min, Luo Liansheng, et al. Climate Characteristics of Drought-flood Abrupt Change Events in Huaihe River Basin[J]. Hydrology, 2012, 32(1): 73-79. (in Chinese with English abstract)

      [14] 崔遠來,茆智,李遠華. 水稻水分生產(chǎn)函數(shù)時空變異規(guī)律研究[J]. 水科學(xué)進展,2002,13(4):484-491. Cui Yuanlai, Mao Zhi, Li Yuanhua. Study on temporal and spatial variation of rice water production function[J]. Advances in Water Science, 2002, 13(4): 484-491. (in Chinese with English abstract)

      [15] 李陽生,彭鳳英,李達模,等. 雜交水稻苗期耐淹特性及其與親本的關(guān)系[J]. 雜交水稻,2001,16(2):50-53. Li Yangsheng, Peng Fengying, Li damo, et al. Relationship between hybrids and their parents on submergence tolerance at seedling stage[J]. Hybrid Rice, 2001, 16(2): 50-53. (in Chinese with English abstract)

      [16] Zhang H, Tan Gll, Yang Lnn, et al. Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice.[J]. Plant Physiology & Biochemistry, 2009,47(3):195-204.

      [17] 郝樹榮,郭相平,王文娟. 旱后復(fù)水對水稻生長的后效影響[J]. 農(nóng)業(yè)機械學(xué)報,2010,41(7):76-79. Hao Shurong, Guo Xiangping, Wang Wenjuan. After effects of rewatering after water stress on the rice growth[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(7): 76-79. (in Chinese with English abstract)

      [18] Lin Xianqing, Zhou Weijun, Zhu Defeng, et al. Effect of SWD irrigation on photosynthesis and grain yield of rice ()[J]. Field Crop Research, 2005, 94 (1): 67-75.

      [19] Zhang Zichang, Zhang Shenfeng, Yang Jianchang, et al. Yield, grain quality and water use efficiency of rice under non-flooded mulching cultivation[J]. Field Crops Research, 2008, 108(1): 71-81.

      [20] Ji X. M., Raveendran M., Oane R., et al. Tissue-Specific Expression and Drought Responsiveness of Cell-Wall Invertase Genes of Rice at Flowering[J]. Plant Molecular Biology, 2005,59(6): 945-964.

      [21] Leandra L, Gustavo A P, Christine G, et al. Rewatering plants after a long water-deficit treatment reveals that leaf epidermal cells retain their ability to expand after the leaf has apparently reached its final size[J]. Annals of Botany, 2008, 101(7): 1007-1015.

      [22] 甄博,郭相平,陸紅飛. 旱澇交替脅迫對水稻分蘗期根解剖結(jié)構(gòu)的影響[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(9):107-113. Zhen Bo, Guo Xiangping, Lu Hongfei. Effects of alternative stress of drought and waterlogging at tillering stage on rice root anatomical structure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31 (9): 107-113. (in Chinese with English abstract)

      [23] 郭相平,甄博,王振昌. 旱澇交替脅迫增強水稻抗倒伏性能[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(12):130-135. Guo Xiangping, Zhen Bo, Wang Zhenchang. Increasing lodging resistance performance of rice by alternating drought and flooding stress[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(12): 130-135. (in Chinese with English abstract)

      [24] González A, Martín I, Ayerbe L. Yield and osmotic adjustment capacity of barley under terminal water-stress conditions[J]. Journal of Agronomy and Crop Science, 2008, 194(2): 81-91.

      [25] Moral L F G, Rharrabti Y, Elhani S, et al. Yield formation in Mediterranean durum wheats under two contrasting water regimes based on path-coefficient analysis[J]. Euphytica, 2005, 146(3): 203-212.

      [26] Iara Akhtar, Naveela Nazir. Effect of waterlogging and drought stress in plants[J]. International Journal of water resources and environmental sciences, 2013, 2(2): 34-40.

      [27] Gaydon D S, Probert M E, Buresh R J, et al. Rice in cropping systems-Modelling transitions between flooded and non- flooded soil environments[J]. European Journal of Agronomy, 2012, 39(3): 9-24.

      [28] Reddya A R, Chaitanyaa K, Vivekanandan M. Drought- induced responses of photosynthesis and antioxidant metabolism in higher plants[J]. Journal of Plant Physiology, 2004, 161(11): 1189-1202.

      [29] 彭世彰,蔡敏,孔偉麗等. 不同生育階段水分虧缺對水稻干物質(zhì)與產(chǎn)量的影響[J]. 水資源與水工程學(xué)報,2012,23(1):10-13. Peng Shizhang, Cai Min, Kong Weili, et al. Effects of water deficit in different growing stages on yield and dry matter of rice[J]. Journal of Water Resources & Water Engineering, 2012, 23(1): 10-13. (in Chinese with English abstract)

      [30] 汪妮娜,黃敏,陳德威等. 不同生育期水分脅迫對水稻根系生長及產(chǎn)量的影響[J]. 熱帶作物學(xué)報,2013,34(9):1650-1656. Wang Nina, Huang Min, Chen Dewei, et al. Effects of water stress on root and yield of rice at different growth stages[J]. Chinese Journal of Tropical Crops, 2013, 34(9): 1650-1656. (in Chinese with English abstract)

      [31] 郭相平,楊骕,王振昌等. 旱澇交替脅迫對水稻產(chǎn)量和品質(zhì)的影響[J]. 灌溉排水學(xué)報,2015,34(1):13-16. Guo Xiangping, Yang Su, Wang Zhenchang, et al. Effects of Alternative Stress of Drought and Waterlogging on Rice Yield and Quality[J]. Journal of Irrigation and Drainage, 2015, 34(1): 13-16. (in Chinese with English abstract)

      [32] 鄧艷,鐘蕾,陳小榮. 穗分化期旱澇急轉(zhuǎn)對超級雜交早稻產(chǎn)量和生理特性的影響[J]. 核農(nóng)學(xué)報, 2017, 31(4):0768-0776. Deng Yan, Zhong Lei, Chen Xiaorong, et al. Effects of drought-flood abrupt alternation on physiological and yield characteristics in super hybrid early rice during panicle differentiation stage[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(4): 0768-0776. (in Chinese with English abstract)

      [33] Nakaide Y, Katsura K. Analysis of yield determinant factors of rice under upland condition based on sink-source balance[J]. Abstracts of Meeting of the Cssj, 2010, 79(3): 28-29.

      [34] lida Y, Tsukaguchi T. Effects of high temperature on grain yield and quality of rice as affected by sink-source ratio[J]. Abstracts of Meeting of the Cssj, 2006, 221(3): 382-382.

      [35] Masnatta W J, Ravetta D A. Seed-yield and yield components response to source-sink ratio in annual and perennial species of Lesquerella ()[J]. Industrial Crops and Products, 2011, 34(2): 1393-1398.

      [36] Chen Yue, Yuan Longping, Wang Xuehua, et al. Relationship between grain yield and leaf photosynthetic rate in super hybrid rice[J]. Journal of Plant Physiology and Molecular Biology, 2007, 33(3): 235-243.

      [37] 魏征,彭世彰,孔偉麗,等. 生育中期水分虧缺復(fù)水對水稻根冠及水肥利用效率的補償影響[J]. 河海大學(xué)學(xué)報(自然科學(xué)版),2010,38(3):322-326. Wei Zheng, Peng Shizhang, Kong Weili, et al. Compensation effects of roots and shoots of rice and water and fertilizer utilization efficiency owing to rewatering of water deficit during intermediate period of bearing[J]. Journal of Hohai University (Natural Sciences), 2010, 38(3): 322-326. (in Chinese with English abstract)

      [38] 郭慧,馬均,李樹杏,等. 孕穗期水分脅迫對水稻部分生理特性與產(chǎn)量補償效應(yīng)的研究[J]. 南方農(nóng)業(yè)學(xué)報,2013,44(9):1448-1454. Guo Hui, Ma Jun, Li Shuxing, et al. Effects of water stress on partial physiological characteristics and yield compensation in rice at booting stage[J]. Journal of Southern Agriculture, 2013, 44(9): 1448-1454. (in Chinese with English abstract)

      [39] 蔡昆爭,吳學(xué)祝,駱世明. 不同生育時期土壤干旱后復(fù)水對水稻生長發(fā)育的補償效應(yīng)[J]. 灌溉排水學(xué)報,2008,27(5):34-36. Cai Kunzheng, Wu Xuezhu, Luo Shiming. Compensatory effects of re-watering after soil drying on rice growth and Ddevelopment[J]. Journal of Irrigation and Drainage, 2008, 27(5): 34-36. (in Chinese with English abstract)

      [40] 陸紅飛,郭相平,甄博,等. 旱澇交替脅迫條件下粳稻葉片光合特性[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(8):105-111. Lu Hongfei, Guo Xiangping, Zhen Bo, et al. Photosythetic characteristics of Japonica rice leave under alternative stress of drought and waterlogging[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(8): 105-111. (in Chinese with English abstract)

      [41] Smethurst CF, Shabala S. Screening methods for waterlogging tolerance in Lucerne: Comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content[J]. Functional Plant Biology, 2003, 30(3): 335-343.

      [42] Van D S D, Zhou Z, Prinsen E. A comparative molecular- physiological study of submergence response in lowland and deep water rice[J]. Plant Phys, 2001, 125(2): 955-968.

      高 蕓,胡鐵松,袁宏偉,楊繼偉.淮北平原旱澇急轉(zhuǎn)條件下水稻減產(chǎn)規(guī)律分析[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(21):128-136. doi:10.11975/j.issn.1002-6819.2017.21.015 http://www.tcsae.org

      Gao Yun, Hu Tiesong, Yuan Hongwei, Yang Jiwei. Analysis on yield reduced law ofrice inHuaibei plainunder drought-flood abrupt alternation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 128-136. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.21.015 http://www.tcsae.org

      Analysis on yield reduced law of rice in Huaibei plain under drought-flood abrupt alternation

      Gao Yun1, Hu Tiesong1※, Yuan Hongwei2, Yang Jiwei2

      (1.430072,233000,)

      Drought and flood are important abiotic stresses negatively affecting plant growth and development. In recent years, the frequent occurrence of drought-flood abrupt alternation (DFAA) has made crops often need to bear double stresses of drought and flood. In order to explore the response of rice yield to the double stresses of DFAA, a field experiment was conducted using a mid-season Indica hybrid rice cultivar of II U 898 which is cultivated widely in Huaibei plain with 22 treatments of different drought degrees (50%, 60%, 70% field water-holding rate), different drought time (5, 10, 15 d), different submergence depths (1/2, 3/4, whole plant height) and different flooded time (5, 7, 9 d) in 2016. Twenty-two treatments included 6 treatments with drought followed by no flood (DC), 6 treatments with flood followed by no drought (FC), 9 treatments with DFAA and 1 treatment without drought and flood (CK). At drought stage, the barrels are moved to the side of flooded pool, and their weights are measured at 7:00 am and 6:00 pm daily. The barrels are added with water to meet the requirements of drought stress control. In order to avoid the impact of rain, the shelter is used in advance according to the weather forecast. At flood stage, the barrels are moved to different ladders of flooded pool according to the requirements of different submergence depths. The water level of flooded pool is measured with a ruler at 9:00 every morning, and a certain amount of water is irrigated so that the barrels are able to maintain different submergence depths. In case of rainy days, the flooded pool was drained timely to meet the requirements of flood stress control. The barrels of normal treatment have been placed on the top ladder of flood pool, keeping 2-3 cm water level. The compensation effect of the interaction between drought stress and flood stress on rice yield is calculated. The reason of reduction in yield under the interaction between drought and flood is analyzed, and the effect of the interaction on yield components is explored. It’s shown from the results that, compared with the normal group, the yield of DFAA group of combination of heavy drought and heavy flood was reduced by 30.3%, and the total grain number was decreased above 30% under long-term heavy drought, while the 1000-grain weight and seed setting rate of each treatment group were close to or higher than the normal group. Besides, compared with the drought group, the yield and total grain number of DFAA group (heavy flood) were reduced above 30% and 33.9%-35.2%, and 1000-grain weight and seed setting rate of DFAA group (short-term light flood) could respectively compensate for 33.6% and 37.6% compared with the drought group (long-term heavy drought). At last, compared with the flood group, the yield of DFAA group (long-term light drought) could compensate for 113.0% compared with the flood group (long-term heavy flood), the total grain number of DFAA group (heavy drought) was reduced by 31.9%-33.7% compared with the flood group (heavy flood or long-term light flood), and the 1000-grain weight and seed setting rate of DFAA group (long-term drought) could compensate for 79.7%-118.4% respectively compared with the flood group. The research results can provide a reference for exploring the mechanism of DFAA and disaster mitigation measures.

      stresses; drought; irrigation; rice; yield reduction reason; drought-flood abrupt alternation; compensation

      10.11975/j.issn.1002-6819.2017.21.015

      S275.6

      A

      1002-6819(2017)-21-0128-09

      2017-05-18

      2017-09-12

      國家自然科學(xué)基金資助項目:旱澇急轉(zhuǎn)發(fā)生機理與減災(zāi)方法研究(51339004)

      高 蕓,博士生,主要從事農(nóng)田排水等方面的研究工作。 Email:gaoyun130@whu.edu.cn

      ※通信作者:胡鐵松,教授,主要從事水庫調(diào)度與農(nóng)田排水等方面的研究工作。Email:tshu@whu.edu.cn

      猜你喜歡
      旱澇粒數(shù)結(jié)實率
      抽吸參數(shù)對電加熱卷煙氣溶膠粒數(shù)和粒徑的影響
      煙草科技(2022年9期)2022-09-24 08:58:58
      小麥穗頂部和基部小穗結(jié)實粒數(shù)的全基因組關(guān)聯(lián)分析
      四川省1960-2017年旱澇時空變化特征分析
      秈稻兩用核不育系異交結(jié)實率與花器官性狀的相關(guān)性分析
      甘藍型高角粒油菜不同部位角粒數(shù)差異研究
      利用野栽雜交分離群體定位水稻結(jié)實率QTLs
      不同品種油用型牡丹的光合與生理特性及其與結(jié)實率的相關(guān)性分析
      氣候變化背景下西北干旱區(qū)旱澇的變化規(guī)律
      北方農(nóng)牧交錯帶氣候變化與旱澇響應(yīng)特征
      寧夏旱澇災(zāi)害對氣候變化的響應(yīng)
      洞口县| 蓝田县| 安平县| 顺义区| 纳雍县| 正宁县| 明星| 舒城县| 新丰县| 大厂| 尖扎县| 屏东县| 涿州市| 华安县| 丹江口市| 景泰县| 淮安市| 宁津县| 贡嘎县| 连平县| 依安县| 峡江县| 中方县| 镇康县| 陆丰市| 谷城县| 郸城县| 衡阳县| 伊川县| 章丘市| 信阳市| 阳江市| 华亭县| 双峰县| 涪陵区| 伊金霍洛旗| 海门市| 南和县| 托克托县| 屯门区| 灌南县|