楊曦光,于 穎
?
基于試驗(yàn)反射光譜數(shù)據(jù)的土壤含水率遙感反演
楊曦光1,于 穎2※
(1.東北鹽堿植被恢復(fù)與重建教育部重點(diǎn)實(shí)驗(yàn)室,東北林業(yè)大學(xué)鹽堿地生物資源環(huán)境研究中心,哈爾濱 150040; 2. 東北林業(yè)大學(xué)林學(xué)院,哈爾濱 150040)
土壤含水率是土壤水循環(huán)研究中不可或缺的參數(shù),已廣泛應(yīng)用于土壤水分的監(jiān)測(cè)。土壤光譜特性的研究是土壤含水率光學(xué)遙感定量反演的基礎(chǔ)。該研究首先通過(guò)野外調(diào)查收集土樣;然后,在實(shí)驗(yàn)室條件下制備不同水分梯度的土壤樣品,并利用便攜式地物光譜儀采集不同水分梯度土壤樣品的反射光譜;最后,通過(guò)試驗(yàn)光譜數(shù)據(jù)分析建立一個(gè)基于指數(shù)函數(shù)的土壤含水率遙感反演模型,并對(duì)結(jié)果進(jìn)行精度評(píng)價(jià)。結(jié)果表明,基于指數(shù)函數(shù)的土壤含水率反演模型可以較好的反演土壤水分特征,在640 nm處土壤含水率的估計(jì)值與真實(shí)值之間的決定系數(shù)為0.7062,RMSE為3.49%。相關(guān)研究為表層土壤含水量的遙感監(jiān)測(cè)提供新方法和新思路。
土壤含水率;遙感;模型;指數(shù)函數(shù);反演模型;高光譜遙感
土壤含水率是一個(gè)重要的土壤物理參數(shù),它是生態(tài)系統(tǒng)水循環(huán)、植物生長(zhǎng)、土壤承載能力等研究領(lǐng)域中必不可少的基本參數(shù)[1]。首先,地表土壤含水率影響著地表與大氣的水分和能量交換[2]。另外,水是農(nóng)作物生長(zhǎng)發(fā)育的基本條件,是保證植被健康生長(zhǎng)的重要因素[3],因此,土壤含水率是評(píng)價(jià)土地資源的重要指標(biāo),是精準(zhǔn)農(nóng)業(yè)中極為關(guān)鍵的參數(shù),土壤含水率的監(jiān)測(cè)有著十分重要的意義[4-5]。土壤含水率的監(jiān)測(cè)方法和手段也成為人們一直關(guān)注的熱點(diǎn)問(wèn)題之一[6]。
目前,常用的區(qū)域土壤含水率直接監(jiān)測(cè)方法主要有:取土烘干稱質(zhì)量法、中子儀法、張力計(jì)法、頻域反射儀法和時(shí)域反射儀法等[7]。這些方法比較準(zhǔn)確的獲得土體剖面含水率,可測(cè)定土層較多,但一般都依賴于密集的野外采樣[8]。但是這些方法采樣成本偏高、調(diào)查周期較長(zhǎng)、且容易受制于采樣時(shí)間和采樣范圍[9]。另外,這些方法以點(diǎn)測(cè)量為基礎(chǔ),代表性差,體現(xiàn)區(qū)域土壤含水率空間變異性尤為困難[10],難以實(shí)現(xiàn)大尺度土壤含水率變化的實(shí)時(shí)監(jiān)測(cè)和快速更新[11]。
遙感技術(shù)以其高效、快速的優(yōu)勢(shì)已經(jīng)應(yīng)用到土壤屬性監(jiān)測(cè)的應(yīng)用中[12]。利用遙感技術(shù)進(jìn)行大面積、實(shí)時(shí)的土壤信息提取,實(shí)現(xiàn)對(duì)區(qū)域尺度土壤狀況的時(shí)空動(dòng)態(tài)監(jiān)測(cè)成為現(xiàn)實(shí)[13-17]。而高光譜遙感能夠更加精細(xì)地反映地物光譜的細(xì)微特征,捕捉土壤屬性差異引起的反射光譜變化信息,使得土壤屬性特別是土壤含水率的定量反演成為可能[18]。研究表明,在小于田間持水量的條件下,土壤反射光譜隨著土壤含水率的增加而減小[19],并且這種變化趨勢(shì)是非線性的[20]。Rijal等[21]利用水分敏感波段與植被指數(shù)相結(jié)合來(lái)獲取土壤含水率信息。Zhang等[22]利用偏最小二乘方法建立反射光譜與土壤含水率相關(guān)性模型,模型誤差為10%。刁萬(wàn)英等[23]利用神經(jīng)網(wǎng)絡(luò)方法進(jìn)行土壤含水率的估算,結(jié)果表明基于神經(jīng)網(wǎng)絡(luò)的土壤含水率預(yù)測(cè)精度較高。
土壤是含多種成分的復(fù)雜綜合體,土壤反射光譜受土壤母質(zhì)、有機(jī)質(zhì)、地表覆被物、耕作和人類(lèi)活動(dòng)等多種因素影響[24-25],降低了土壤含水率遙感估算模型的精度。統(tǒng)計(jì)建模方法本身是基于樣本數(shù)據(jù)的建模方法,存在可移植性差和區(qū)域局限性等缺點(diǎn),這些因素限制了遙感技術(shù)在土壤水分信息估算方面的應(yīng)用[26]。本研究以能量在土壤中輻射傳輸?shù)倪^(guò)程為出發(fā)點(diǎn),研究土壤水分變化對(duì)反射光譜的響應(yīng)特性,建立基于輻射傳輸理論的土壤含水率光譜反演模型,以期為利用遙感技術(shù)進(jìn)行表層土壤含水量的監(jiān)測(cè)提供新方法和新思路。
研究區(qū)位于黑龍江省安達(dá)市。在研究區(qū)內(nèi)隨機(jī)設(shè)置了20個(gè)野外采樣點(diǎn),收集表層(<10cm)的土壤樣品,并用GPS記錄采樣點(diǎn)坐標(biāo)。收集樣品的土壤類(lèi)型分別為鹽堿土、草甸土、黑鈣土、風(fēng)沙土、沼澤土和水稻土。土壤樣品質(zhì)地為壤質(zhì)黏土至砂質(zhì)黏壤土,含黏粒為10%~35%。將不同采樣點(diǎn)收集的樣品經(jīng)研磨、風(fēng)干并過(guò)2 mm篩子后混合,然后將混合樣品均分成16個(gè)獨(dú)立樣品,裝入直徑為5 cm的土壤盒中。目的是獲得土壤結(jié)構(gòu)和屬性近似相同的樣品,以降低其他土壤因素對(duì)反射光譜的影響。再對(duì)樣品滴淋不同質(zhì)量的蒸餾水,以獲得不同含水率的土壤樣品[12,19]。利用烘干法獲得樣品的含水率數(shù)據(jù),測(cè)量條件及烘干法操作流程見(jiàn)文獻(xiàn)[27]。
利用SVC-1024i便攜式光譜儀進(jìn)行樣品反射光譜的測(cè)量。實(shí)驗(yàn)室光源(Lowel Light Pro., JCV 14.5 V–50 WC)以45°入射角在距樣品20 cm的位置照射在樣品上,便攜式光譜儀在距樣品3 cm處測(cè)量天頂方向的土壤反射光譜,每個(gè)樣品測(cè)量10次并取平均,以降低儀器和環(huán)境噪聲[12]。整個(gè)測(cè)量過(guò)程在暗光實(shí)驗(yàn)室進(jìn)行,以避免環(huán)境散射光對(duì)測(cè)量結(jié)果的影響[19]。
土壤水分對(duì)其反射光譜的影響可以通過(guò)指數(shù)模型式 (1)來(lái)描述[19]。
式中()為濕土壤反射率,R()為干土壤反射率,()為純水的吸收系數(shù),cm-1,為光程長(zhǎng)度,cm。由于這個(gè)理論模型不能反應(yīng)土壤含水率與反射光譜的相互關(guān)系,因此,本研究將公式(1)改寫(xiě)為如下形式,以體現(xiàn)土壤含水率與反射光譜的相互關(guān)系
式中()表示土壤水分引起的衰減系數(shù),是與波段相關(guān)的無(wú)量綱變量,表示土壤質(zhì)量含水率,%。
將公式(2)表達(dá)成土壤含水率的函數(shù)為
若已知衰減系數(shù)(),給定土壤的反射光譜,則可以求解出土壤含水率。
為了求解(),公式(3)可進(jìn)一步描述為
土壤水分作為土壤的重要組成部分,對(duì)土壤的整體反射光譜產(chǎn)生明顯的影響。從圖1中,可以看出,土壤的反射光譜會(huì)隨著土壤含水量的不同呈現(xiàn)出明顯的差異。由于水分對(duì)光譜的吸收,使得土壤反射光譜會(huì)隨著土壤含水量的增加而降低。而在1 400、1 900和2 200 nm等特定的水分吸收帶處,土壤反射率下降尤為明顯。這種變化主要是由于土壤中水中羥基集團(tuán)震動(dòng)形式?jīng)Q定的[24]。Baumgardner等[28]發(fā)現(xiàn),當(dāng)土壤含水量增加時(shí),土壤的反照率將會(huì)降低,在1 400和1 900 nm處的吸收峰面積會(huì)增加。含水量高的土壤反射光譜在1 400和1 900 nm附近吸收峰的深度及面積都要大于含水量低的樣品在這2個(gè)吸收峰對(duì)應(yīng)的值[29]。但當(dāng)土壤含水率達(dá)到田間持水率之后,反射光譜就不會(huì)再隨著土壤水分增加而降低了。Muller等[30]研究表明,如果土壤含水率持續(xù)增加直至達(dá)到田間持水量后,土壤顆粒表面會(huì)形成水膜并發(fā)生鏡面反射,使得土壤反射光譜隨著含水量的增加不但不持續(xù)降低,反而有所上升。而土壤濕度從干燥態(tài)演變到風(fēng)干態(tài)時(shí),土壤發(fā)射光譜變化不顯著[12]。
圖1 不同含水率對(duì)應(yīng)的土壤反射光譜
利用實(shí)際測(cè)量的不同含水率土壤光譜數(shù)據(jù)()、土壤含水率數(shù)據(jù)()以及烘干土壤樣品光譜數(shù)據(jù)(R),根據(jù)式(3)和式(4)求解出衰減系數(shù)()的值。衰減系數(shù)反映了土壤水分對(duì)反射光譜的影響,衰減系數(shù)越大,說(shuō)明土壤水分對(duì)光輻射能量的吸收作用越強(qiáng)。圖2為估計(jì)的衰減系數(shù)與純水吸收系數(shù)的比較。
注明:純水吸收系數(shù)是基于Hale and Querry數(shù)據(jù)繪制[31]。
圖2虛線部分為利用擬合數(shù)據(jù)計(jì)算的350至2 500 nm的衰減系數(shù)()。從圖2可以看出,土壤含水率對(duì)1 300 nm之前各波段土壤反射光譜的影響近似相同且吸收很小。此后,隨著波長(zhǎng)的增加,土壤水分對(duì)土壤反射光譜的影響增強(qiáng)。在1 300至1 600 nm和1 800至2 100 nm之間有2個(gè)明顯的吸收峰,吸收峰的中心分別位于1 450和1 930 nm,且1 930 nm處的吸收峰的吸收強(qiáng)度要強(qiáng)于1 450 nm的吸收峰。在2 200 nm之后,土壤水分對(duì)土壤反射光譜的影響呈現(xiàn)趨勢(shì)增加。隨著含水量的增加,其對(duì)土壤反射光譜的吸收增強(qiáng)。
利用純水的吸收系數(shù)作為指標(biāo)與擬合的衰減系數(shù)()進(jìn)行比較。從純水的吸收系數(shù)曲線中可以看出,在1 300 nm之前純水對(duì)輻射能量的吸收在各波段近乎相同;在1 300 nm之后,純水對(duì)輻射能量的吸收隨著波長(zhǎng)的增加而增加;在1 450和1 930 nm有2個(gè)明顯的吸收峰,并且1 930 nm的吸收峰強(qiáng)于1 450 nm的吸收峰;2 200 nm之后,純水對(duì)輻射能量的吸收呈現(xiàn)趨勢(shì)增加(圖2實(shí)線)。通過(guò)比較,衰減系數(shù)()與純水的吸收系數(shù)隨波長(zhǎng)的變化曲線形狀相似,描述的水分對(duì)輻射能量的吸收規(guī)律相似,特別是在1 450和1 930 nm的強(qiáng)吸收峰的位置擬合結(jié)果吻合較好,說(shuō)明衰減系數(shù)()可以很好的描述出土壤水分對(duì)輻射能量的吸收特征。
當(dāng)衰減系數(shù)()求解之后,給定不同含水率的土壤反射光譜()之后,就可以利用公式(3)求出土壤反射光譜()對(duì)應(yīng)的土壤含水率。只要給定一個(gè)特定波段的反射率,利用對(duì)應(yīng)的值都可以計(jì)算出土壤的含水率。因此,對(duì)于一個(gè)土壤樣品的一條光譜曲線從350~2 500 nm可以計(jì)算出若干個(gè)土壤濕度的估計(jì)值,而實(shí)際需要的只是與樣品真實(shí)值最接近的一個(gè)值。因此,利用本文的模型計(jì)算了16個(gè)土壤樣品在不同波段處的濕度值,并與真實(shí)值進(jìn)行比較,用平均誤差和均方根誤差評(píng)價(jià)不同樣品在350~2 500 nm不同波段處的預(yù)測(cè)精度。
表1是不同波段處的土壤含水率估算精度統(tǒng)計(jì)結(jié)果。從表中可以看出,對(duì)于土壤含水率較大的樣品,其含水率估算精度較低。當(dāng)含水率為32.75%時(shí),估算的最大絕對(duì)誤差為134.89%,最小絕對(duì)誤差位25.44%,平均絕對(duì)誤差為46.49%。相比土壤含水率為32.75%,5.52%<含水率<32.75%時(shí),估算的精度有所提高,統(tǒng)計(jì)顯示其平均絕對(duì)誤差不超過(guò)30%,最大的絕對(duì)誤差為83.81%。但當(dāng)含水率≤5.52%時(shí),估算的誤差又呈現(xiàn)增大的趨勢(shì),估算的誤差最大值甚至超過(guò)了200%,而平均絕對(duì)誤差也增加到近100%。
圖3是利用不同波段處土壤含水率的估計(jì)值與真實(shí)值計(jì)算的均方根誤差(RMSE)結(jié)果圖。統(tǒng)計(jì)表明,RMSE的最大值為12.65%,最小值為3.49%,平均值為5.48%。從圖中可以看出,RMSE的值從350~2 500 nm呈現(xiàn)不規(guī)則變化。在350 nm處,RMSE的值為7.41%,而后隨著波長(zhǎng)的增加,RMSE降低。500~1 250 nm之間,RMSE的值比較穩(wěn)定,介于3.49%~4.13%之間。1 250 nm之后RMSE的值呈現(xiàn)增加的趨勢(shì),在1 450 nm處RMSE有一峰值為7.57%,之后RMSE有小范圍的降低,在1700nm之后呈現(xiàn)波動(dòng)性的增加,在2050nm處RMSE有一峰值為8.04%。圖4為波長(zhǎng)640 nm處估算的土壤含水率與真實(shí)值之間的散點(diǎn)圖。640 nm處估計(jì)值與真實(shí)值之間的決定系數(shù)為0.7062,RMSE為3.49%。
表1 土壤含水率估算精度統(tǒng)計(jì)結(jié)果
圖3 RMSE計(jì)算結(jié)果
圖4 640 nm處土壤含水率估計(jì)值與真實(shí)值之間的擬合曲線
本文介紹了一種基于輻射傳輸理論的土壤含水率遙感估算方法,并得到以下結(jié)論:
1)土壤水分會(huì)增加其對(duì)輻射能量的吸收,使土壤反射光譜整體降低,并且在1 400和1 900 nm呈現(xiàn)2個(gè)明顯的吸收峰,吸收峰的深度與土壤含水量高度相關(guān)。試驗(yàn)控制的光譜測(cè)量數(shù)據(jù)可以較好的描述土壤水分對(duì)土壤反射光譜的影響,同時(shí)盡可能的降低其他土壤因素對(duì)反射光譜的影響,降低分析難度。
2)通過(guò)試驗(yàn)數(shù)據(jù)擬合得到指數(shù)模型參數(shù)()可以描述土壤水分對(duì)輻射能量的逐波段衰減特征,并且()與純水的吸收系數(shù)具有高度的一致性。
3)利用本文光譜分析法的土壤含水率遙感估算模型可以實(shí)現(xiàn)土壤含水率的定量監(jiān)測(cè)。在640 nm處土壤含水率的估計(jì)值與真實(shí)值之間的決定系數(shù)為0.706 2,RMSE為3.49%。
本研究?jī)H考慮了土壤水分對(duì)反射光譜的影響,至于土壤有機(jī)質(zhì)、土壤團(tuán)粒結(jié)構(gòu)、以及土壤覆蓋物對(duì)光譜的影響有待進(jìn)一步研究。此外,本文所用數(shù)據(jù)都是基于室內(nèi)試驗(yàn)獲得,構(gòu)建模型尚停留在實(shí)驗(yàn)室階段,結(jié)合野外的光譜影像的土壤含水率反演研究有待進(jìn)一步展開(kāi)。
[1] 李笑吟,畢華興,刁銳民,等. TRIME-TDR土壤水分測(cè)定系統(tǒng)的原理及其在黃土高原土壤水分監(jiān)測(cè)中的應(yīng)用[J]. 中國(guó)水土保持科學(xué),2005,3(1):112-115.
Li Xiaoyin, Bi Huaxing, Diao Ruimin, et al. The measurement principles of TRIME-TDR system and its application in Caijiachuan watershed of Loess Plateau China[J]. Science of Soil and Water Conservation, 2005, 3(1): 112-115. (in Chinese with English abstract)
[2] 李明澤,高元科,邸雪穎,等. 基于微波遙感技術(shù)探測(cè)森林地表土壤含水率[J]. 應(yīng)用生態(tài)學(xué)報(bào),2016,27(3):785-793.
Li Mingze, Gao Yuanke, Di Xueying, et al. Detecting the moisture content of forest surface soil based on the microwave remote sensing technology[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 785-793. (in Chinese with English abstract)
[3] 劉偉東, Frédéric Baret,張兵,等. 高光譜遙感土壤濕度信息提取研究[J]. 土壤學(xué)報(bào),2004,41(5):700-706.
Liu Weidong, Frédéric Baret, Zhang Bing, et al. Extraction of soil moisture information by hyper-spectral remote sensing[J]. Acta Pedologica Sinica, 2004, 41(5): 700-706. (in Chinese with English abstract)
[4] 裴承忠,彭翔,曾文治,等. 鹽漬條件下土壤含水率高光譜反演研究[J]. 中國(guó)農(nóng)村水利水電,2016(8):73-75.
Pei Chengzhong, Peng Xiang, Zeng Wenzhi, et al. Estimation of soil moisture from hyper-spectral in saline soil[J]. China Rural Water and Hydropower, 2016(8): 73-75. (in Chinese with English abstract)
[5] 王全九,王文焰. 鹽堿地膜下滴灌技術(shù)參數(shù)的確定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2001,17(2):47-50.
Wang Quanjiu, Wang Wenyan. Determination of technique parameters for saline-alkali soil through drip irrigation under film[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of CSAE), 2001, 17(2): 47-50. (in Chinese with English abstract)
[6] 劉云,宇振榮,孫丹峰,等. 冬小麥冠層表面溫度裂窗算法的篩選與土壤含水率監(jiān)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(11):16-21.
Liu Yun, Yu Zhenrong, Sun Danfeng, et al. Selecting split-window algorithm for retrieving canopy surface temperature of winter wheat and monitoring soil water content[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of CSAE), 2006, 22(11): 16-21. (in Chinese with English abstract)
[7] 張學(xué)禮,胡振琪,初士立. 土壤含水量測(cè)定方法研究進(jìn)展[J]. 土壤通報(bào),2005,36(1):118-123.
Zhang Xueli, Hu Zhenqi, Chu Shili. Methods for measuring soil water content: A review[J]. Chinese Journal of Soil Science, 2005, 36(1): 118-123. (in Chinese with English abstract)
[8] 郝改瑞,李智錄,李抗彬. 區(qū)域土壤含水率遙感監(jiān)測(cè)分析方法研究進(jìn)展[J]. 水利與建筑工程學(xué)報(bào),2012,10(4):139-144.
Hao Gairui, Li Zhilu , Li Kangbin. Progress of monitoring and analysis for regional soil water content through remote sensing[J]. Journal of Water Resources and Architectural Engineering, 2012, 10(4): 139-144. (in Chinese with English abstract)
[9] Nanni M R, Demattê J. Spectral reflectance methodology in comparison to traditional soil analysis[J]. Soil Science Society of America Journal, 2006, 70(2): 393-407.
[10] D'Urso G, Minacapilli M. A semi-empirical approach for surface soil water content estimation from radar data without a-priori information on surface roughness[J]. Journal of Hydrology, 2006, 321(1/2/3/4): 297-310.
[11] Wang Q, Li P, Pu Z, et al. Calibration and validation of salt-resistant hyper-spectral indices for estimating soil moisture in arid land[J]. Journal of Hydrology, 2011, 408(3/4): 276-285.
[12] Yang X, Yu Y. Estimating soil salinity under various moisture conditions: An experimental study[J]. IEEE Transactions on Geoscience & Remote Sensing, 2017, 55(5): 2525-2533.
[13] Hassan-Esfahani L, Torres-Rua A, Jensen A, et al. Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks[J]. Remote Sensing, 2015, 7(3): 2627-2646.
[14] Mirzaee S, Ghorbani-Dashtaki S, Mohammadi J, et al. Spatial variability of soil organic matter using remote sensing data[J]. Catena, 2016, 145: 118-127.
[15] Yang Hongfei, Qian Yurong, Yang Feng, et al. Using wavelet transform of hyperspectral reflectance data for extracting spectral features of soil organic carbon and nitrogen[J]. Soil Science, 2012, 177(11): 674-681.
[16] Nocita M, Stevens A, Noon C, et al. Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy[J]. Geoderma, 2013, 199: 37-42.
[17] Guo Q. Correlation between soil apparent electro- conductivity and plant hyper-spectral reflectance in a managed wetland[J]. International Journal of Remote Sensing, 2011, 32(9): 2563-2579.
[18] Yin Z, Lei T, Yan Q, et al. A near-infrared reflectance sensor for soil surface moisture measurement[J]. Computers & Electronics in Agriculture, 2013, 99: 101-107.
[19] Nolet C, Poortinga A, Roosjen P, et al. Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand[J]. Plos One, 2014, 9(11): e112151.
[20] Liu W D, Baret F, Gu X F, et al. Relating soil surface moisture to reflectance[J]. Remote Sensing of Environment, 2002, 81(2): 238-246.
[21] Rijal S, Zhang X, Jia X. Estimating surface soil water content in the red river valley of the north using Landsat 5 TM data[J]. Soil Science Society of America Journal, 2013, 77(4): 1133.
[22] Zhang T. Estimation of agricultural soil properties with imaging and laboratory spectroscopy[J]. Journal of Applied Remote Sensing, 2013, 7(1): 073587-073587.
[23] 刁萬(wàn)英,劉剛,胡克林. 基于高光譜特征與人工神經(jīng)網(wǎng)絡(luò)模型對(duì)土壤含水量估算[J]. 光譜學(xué)與光譜分析,2017,37(3):841-846.
Diao Wanying, Liu Gang, Hu Kelin. Estimation of soil water content based on hyper-spectral features and the ANN model[J]. Spectroscopy and Spectral Analysis, 2017, 37(3): 841-846. (in Chinese with English abstract)
[24] 史舟. 土壤地面高光譜遙感原理與方法[M]. 北京:科學(xué)出版社,2014.
[25] Demattê J A M, Nanni M R, da Silva A P, et al. Soil density evaluated by spectral reflectance as an evidence of compaction effects[J]. International Journal of Remote Sensing, 2010, 31(2): 403-422.
[26] Leng P, Song X, Li Z L, et al. Toward the estimation of surface soil moisture content using geostationary satellite data over sparsely vegetated area[J]. Remote Sensing, 2015, 7(4): 4112-4138.
[27] 陳立新. 土壤實(shí)驗(yàn)實(shí)習(xí)教程[M]. 哈爾濱:東北林業(yè)大學(xué)出版社,2005.
[28] Baumgardner M F, Silva L R F, Biehl L L, et al. Reflectance properties of soils[J]. Advances in Agronomy, 1985, 38: 1-44.
[29] 程街亮,紀(jì)文君,周銀,等. 土壤二向反射特性及水分含量對(duì)其影響研究[J]. 土壤學(xué)報(bào),2011,48(2):255-262.
Cheng Jieliang, Ji Wenjun, Zhou yin, et al. Soil Bidirectional reflectance characteristics as affected by soil moisture[J]. Acta Pedologica Sinica, 2011, 48(2): 255-262. (in Chinese with English abstract)
[30] Muller E, Décamps H. Modeling soil moisture-reflectance[J]. Remote Sensing of Environment, 2001, 76(2): 173-180.
[31] Hale G M, Querry M R. Optical constants of water in the 200-nm to 200-μm wavelength region[J]. Applied Optics, 1973, 12(3): 555.
楊曦光,于 穎. 基于試驗(yàn)反射光譜數(shù)據(jù)的土壤含水率遙感反演[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(22):195-199. doi:10.11975/j.issn.1002-6819.2017.22.025 http://www.tcsae.org
Yang Xiguang, Yu Ying. Remote sensing inversion of soil moisture based on laboratory spectral reflectance data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 195-199. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.22.025 http://www.tcsae.org
Remote sensing inversion of soil moisture based on laboratory reflectance spectral data
Yang Xiguang1, Yu Ying2※
(1.()(),150040,; 2.,,150040,)
Soil moisture is one of the important components of soil and plays an important role in the material and vegetative nutrient transport process in the soil system. Soil moisture is also an essential soil physical parameter in the study on water cycle in ecological system, and a key variable of drought monitoring, soil erosion and surface evaporation studying. Therefore, soil moisture monitoring is very important. Remote sensing technology has been applied to soil moisture monitoring with its advantage of high efficiency and rapidness. The soil hyper-spectral ground experiment and the soil hyper-spectral characteristics are the basis for the inversion of soil moisture. In this paper, soil samples collected in field were mixed to achieve the purpose of keeping approximately constant soil properties. Then mixed soil sample was divided into 16 independent samples in order to ensure that the effects of soil properties on reflectance of each soil sample were at the same level, such as soil organic matter, soil texture, and soil salinity. After that, the samples were slowly irrigated with distilled water to get different levels of moisture. And the spectral data of each sample were measured at the same time under laboratory conditions. Based on this dataset, a remote sensing inversion model of soil moisture content based on exponential function was established and the parameters of model were fitted by using the experimental spectrum data. Fitted parameters illustrated the effects of soil moisture on soil reflected energy at each single band from 350 to 2 500 nm. A larger value of the fitted parameter indicated that more energy was absorbed by water and less energy was reflected. Result showed that there were 2 peaks near 1 400 and 1 900 nm after a steady trend less than 1 300 nm. And this fitted result was consistent with the absorption coefficients of pure water. It indicates that the exponential model with physically definable parameters can be used to describe the characteristics of soil reflectance changing with soil moisture conditions. Then this inversion model was used to estimate the soil moisture based on laboratory spectral data. The accuracy varied with soil moisture level, and it was lower for samples with soil moisture larger than 32.75% and lower than 5.52%. When soil moisture was 32.75%, the maximum absolute error and the minimum absolute error were 134.89% and 25.44%, respectively. When soil moisture was equal and lower than 5.52%, the maximum absolute error was larger than 200%. The estimation accuracy was better when the soil moisture was between 5.52% and 32.75%. The mean absolute error was less than 30% and the maximum absolute error was 83.81%. The determination coefficient and RMSE (root mean square error) between estimated and measured soil moisture content at 640 nm were 0.706 2 and 3.49%, respectively. The results indicate that the inversion model based on the exponential function can be used for soil moisture content estimation with good accuracy. This work provides new methods and ideas for monitoring topsoil moisture content by using remote sensing technology.
soil moisture; remote sensing; models; exponential function; inversion model; hyperspectral remote sensing
10.11975/j.issn.1002-6819.2017.22.025
TP79; S15
A
1002-6819(2017)-22-0195-05
2017-06-05
2017-11-07
國(guó)家自然科學(xué)基金(31500519,31500518);中央高?;究蒲袠I(yè)務(wù)費(fèi)(2572017BA06)。
楊曦光,男,黑龍江省哈爾濱人,博士,講師,主要從事高光譜遙感原理及反演方法研究。Email:yangxiguang21@163.com
于 穎,女,遼寧省大連人,博士,副教授,主要從事定量遙感及GIS研究。Email:yuying4458@163.com