徐笑鋒,章學來,Jotham Muthoka Munyalo,李玉洋,陳 躍,陳啟楊,劉 升
?
十水硫酸鈉相變蓄冷保溫箱保冷特性的試驗研究
徐笑鋒1,章學來1※,Jotham Muthoka Munyalo1,李玉洋1,陳 躍1,陳啟楊1,劉 升2
(1. 上海海事大學蓄冷技術研究所,上海 201306; 2. 北京市農(nóng)林科學院蔬菜研究中心,北京 100097)
針對果蔬保鮮冷鏈物流中2~8 ℃的運輸溫區(qū)要求,為了保證運輸中果蔬等農(nóng)產(chǎn)品的品質(zhì),研發(fā)一種經(jīng)濟性較高,相變溫度為6.4 ℃,相變潛熱為141 J/g的硫酸鈉水合鹽體系,其成分為(75.5%Na2SO4·10H2O+3%硼砂+1.25%聚丙烯酸鈉+16%NH4Cl+4%KCl+0.25%去離子水)。相變材料封裝于聚乙烯蓄冷板中,應用于發(fā)泡聚丙烯(expanded polypropylene)保溫箱和真空絕熱板(vacuum insulation panel)保溫箱中,組成蓄冷式冷鏈運輸裝備。利用產(chǎn)品供應規(guī)范(good supply practice GSP)驗證設備建立保溫箱溫度測試系統(tǒng),得到箱內(nèi)各點的升溫曲線,通過平均保冷時間來評價保溫箱的保冷效果,對比了保溫箱載貨與空載情況下箱內(nèi)各點的溫度變化。綜合考慮保溫箱內(nèi)側(cè)面布置、頂層布置等不同的擺放方式,聚丙烯發(fā)泡與真空絕熱板不同保溫箱體材質(zhì)對保冷性能的影響。研究表明真空絕熱板的保溫效果優(yōu)于發(fā)泡聚丙烯,可提高保冷時間13.31%;蓄冷劑在側(cè)布形式下的保冷時間較側(cè)布加頂布方式延長4.7%;在真空絕熱板保溫箱中分析了載貨情況下的保冷性能較空載保冷時間減少0.77 h。研究結(jié)果為蓄冷保溫箱在冷鏈物流中的進一步設計和優(yōu)化提供支持,以及蓄冷技術在果蔬冷鏈物流中的應用提供參考。
水果;冷藏;相變材料;冷鏈物流;十水硫酸鈉;蓄冷保溫箱;蓄冷板
冷鏈物流要求食品在生產(chǎn)加工、儲存運輸以及銷售消費的各個環(huán)節(jié)中必須處于食品所要求的溫度區(qū)間內(nèi),以保證食品的質(zhì)量[1-4]。中國每年有大量食品在沒有冷鏈保障下運輸銷售,造成食品變質(zhì)腐爛,損失率高達20%以上[5-8]。蓄冷技術在食品低溫加工、低溫貯藏、低溫運輸配送、低溫銷售等食品冷鏈的各環(huán)節(jié)中都具有廣泛的應用背景和節(jié)能潛力[9-12]。相變蓄冷材料需要相變溫區(qū)符合冷藏保鮮要求,潛熱較高,導熱性能較好,穩(wěn)定性較強[13-14]。利用相變蓄冷原理[13-15],按冷鏈運輸不同的溫度需求將不同相變溫度的蓄冷材料填充至蓄冷保溫箱中,利用相變溫度對果蔬精確控溫[16],進行合理配置可達到食品冷鏈物流的要求[17-18]。
蓄冷保溫箱是20世紀80年代初期從發(fā)達國家發(fā)展起來的一種高效物流技術[18-20],其耐冷耐熱耐用,環(huán)保密封,尺寸靈活,保溫性能優(yōu)良以及配載形式靈活成為疫苗運輸?shù)囊粋€優(yōu)質(zhì)的運輸設備,是短途運送和保鮮果蔬的有效工具。蓄冷保溫箱是一種絕熱密封箱體,配備冰袋或冰盒等蓄冷材料來維持箱內(nèi)的低溫,無需制冷就能實現(xiàn)長時間保冷,完成果蔬的冷鏈配送[17]。張靜榮等[21]針對韭黃的保鮮,對比研究3種運輸箱體保冷效果,發(fā)現(xiàn)蓄冷保溫箱抑制了韭黃變質(zhì),有效延長了保冷時間。宋海燕等[22]研究填充不同質(zhì)量蓄冷材料時,蓄冷保溫箱的保冷特性,驗證了蓄冷保溫箱能達到果蔬運輸2~8 ℃的溫區(qū)要求。
傳統(tǒng)的蓄冷保溫箱材質(zhì)多為聚氨酯,其保溫性能一般且污染較大[21]。劉翠娜等[23]利用真空絕熱板與聚氨酯發(fā)泡組成復合保溫材料,使蓄冷保溫箱在保證有效體積的情況下冷負荷降低15.7%。闞安康等[24-26]研制了開孔聚氨酯為真空絕熱板芯材,有效將導熱系數(shù)降低到10 mW/(m·K)以下。保溫箱中溫度場分布不均勻也是一個不可忽視的問題。張哲等[27-28]研究了蓄冷式冷藏車中碼貨方式對車廂溫度場的影響及溫度場分布,發(fā)現(xiàn)空載與碼貨等不同工況下,車內(nèi)溫度場均勻性差異較大。武小娟等[29]研究了蓄冷板不同布置方式的冷藏車內(nèi)溫度場分布情況,發(fā)現(xiàn)不同冷板布置方式影響車廂內(nèi)溫度場的均勻性。陳文樸等[30]研制了一種甲酸鈉低溫蓄冷劑,并應用于聚氨酯和復合材料2種蓄冷箱中,發(fā)現(xiàn)蓄冷劑用量與保溫材料對保冷特性影響較大。
本研究在前人研究的基礎上,以果蔬保鮮溫區(qū)2~8 ℃為標準,保證果蔬等農(nóng)產(chǎn)品在運輸中的品質(zhì)為目的,自主研發(fā)一種低成本,高潛熱,熱穩(wěn)定性高的相變蓄冷材料—硫酸鈉水合鹽體系。以硫酸鈉水合鹽體系為蓄冷劑,應用于發(fā)泡聚丙烯(expanded polypropylene,EPP)保溫箱和真空絕熱板(vacuum insulation panel,VIP)保溫箱中,組成蓄冷式冷鏈運輸裝備并對其進行優(yōu)化設計與試驗研究。利用產(chǎn)品供應規(guī)范驗證設備(good supply practice,GSP)建立保溫箱溫度測試系統(tǒng),得到箱內(nèi)各點的升溫曲線,通過平均保冷時間來評價保溫箱的保冷效果。綜合考慮側(cè)面布置與頂層布置等不同冷板擺放方式及聚丙烯發(fā)泡和真空絕熱板不同保溫箱體材質(zhì)對保冷性能的影響,分析對比了保溫箱載貨與空載不同情況下箱內(nèi)各點的溫度變化。研究成果解決了在果蔬保鮮溫區(qū)2~8 ℃內(nèi)的保溫運輸問題,降低成本并精確控溫,保證果蔬品質(zhì),為蓄冷保溫箱的進一步優(yōu)化和設計,以及蓄冷技術在果蔬冷鏈物流中的深入研究和應用提供參考。
利用相變蓄冷技術,達到精確控溫的目的。采用自主研發(fā)硫酸鈉水合鹽為蓄冷劑,成分為75.5%Na2SO4·10H2O+3%硼砂+1.25%PAAS+16%NH4Cl+ 4%KCl+0.25%去離子水(PAAS為聚丙烯酸鈉)。其相變溫度為6.4 ℃,滿足果蔬冷鏈物流保鮮溫度區(qū)間要求,相變潛熱為141 J/g,導熱系數(shù)為0.547 W/(m·K),如表1所示。
表1 蓄冷劑性能對比
與同溫區(qū)蓄冷材料相比,其具有儲能潛熱大,無過冷和相分離現(xiàn)象,熱傳導性、穩(wěn)定性良好,可循環(huán)使用以及成本低廉等優(yōu)點[31]。選用上海力統(tǒng)冷鏈科技有限公司生產(chǎn)的2種蓄冷保溫箱作為試驗對象,保溫箱的技術參數(shù)如表2所示。其中一種采用發(fā)泡聚丙烯作為保溫材料,EPP是一種高結(jié)晶型聚合物、氣體復合材料,具有優(yōu)良的耐熱性能、化學穩(wěn)定性好、絕熱性、耐油性、質(zhì)量輕、使用壽命長等優(yōu)點,目前已成為市場上廣泛應用的一種新型環(huán)保隔熱材料。另外一種保溫箱材質(zhì)為真空絕熱板,VIP是一種新型節(jié)能、高效的絕熱保溫材料,該材料通過提高板內(nèi)真空度以及填充隔熱芯材來達到保溫效果。真空絕熱板具有較低的導熱系數(shù)、較小的厚度等優(yōu)點。2種保溫箱匹配不同形狀尺寸的蓄冷板如圖1所示,將自主研發(fā)硫酸鈉蓄冷材料填充至蓄冷板內(nèi),對保溫箱進行降溫。
表2 保溫箱的技術參數(shù)
圖1 不同形狀尺寸的蓄冷板
溫度測試系統(tǒng)是由杭州澤大儀器有限公司生產(chǎn)的GSP驗證設備,測試系統(tǒng)包括GSP驗證儀主機、無線溫濕度傳感器(溫濕度RFID卡片)、中繼器以及驗證云平臺。驗證儀主機通過中繼器接收到無線溫濕度傳感器采集的數(shù)據(jù)并實時顯示,方便用戶在實際使用過程中能夠?qū)崟r看到溫濕度并及時對其不合理的點位作出分析和調(diào)整。溫濕度RFID卡片的測溫范圍為?40~80 ℃,精度±0.5 ℃;Agilent 34972A型數(shù)據(jù)采集儀,每次采集時間1 s;T型熱電偶,精度±0.5 ℃,熱響應時間為0.4 s;中繼器可以增加無線傳輸距離;驗證云平臺可通過客戶端轉(zhuǎn)換采集到的數(shù)據(jù)并生成報告方便用戶分析。
1.2.1 不同冷板布置方式試驗
試驗選用EPP保溫箱進行試驗研究。由于保溫箱與冷板結(jié)構(gòu)設計原因,本試驗采用兩種蓄冷劑擺放形式進行研究,如圖2所示。
圖2 不同冷板布置方式
一種是側(cè)布的方式,在箱四周分別放置一塊蓄冷板;還有一種方式是在箱內(nèi)頂部放置兩塊,在箱兩邊各放一塊。將等量1 600 g硫酸鈉相變蓄冷材料填充至4塊蓄冷板,并利用超低溫冷柜對其進行充冷。蓄冷板充冷時間為10 h,初始溫度為?15 ℃如圖3所示。將冷板按不同擺放方式放入EPP保溫箱,用膠帶固定溫濕度RFID卡片對其各待測點溫度進行監(jiān)測,其中頂部利用膠帶固定一塊懸空溫濕度RFID卡片測量箱體內(nèi)部空間溫度變化,重復進行5次試驗,得出平均值。
1.2.2 不同材質(zhì)蓄冷保溫箱試驗
在EPP保溫箱與VIP保溫箱中同樣采用側(cè)布加頂布冷板布置方式,布置5塊蓄冷板。其中EPP保溫箱與VIP保溫箱容積為7 040 125 mm3,5 750 000 mm3。
EPP保溫箱與VIP保溫箱容積比為1.22。在VIP保溫箱中充注2 000 g十水硫酸鈉體系作為蓄冷劑。按照同體積蓄冷量相同原則,在EPP保溫箱中充注2 440 g十水硫酸鈉體系至5塊蓄冷板中。布置兩種保溫箱的溫度待測點,并用膠帶固定溫濕度RFID卡片如圖3所示,其中用膠帶固定一個溫濕度RFID卡片懸空測量箱內(nèi)空間溫度;緊閉保溫箱蓋,打開GSP驗證設備開始監(jiān)測;當各測點溫度上升至接近室溫(21.5±1.5)℃時,測量結(jié)束,重復5次試驗導出數(shù)據(jù),分析研究2種不同材質(zhì)保溫箱保冷特性。
圖3 不同材料的保溫箱
1.2.3 果蔬保鮮試驗
選用蘋果作為載貨應用試驗對象,選用2 000 g硫酸鈉蓄冷劑,VIP保溫箱保冷。為防止試驗過程中冷凝水的污染以及防止蘋果由于呼吸作用產(chǎn)生乙烯的催熟現(xiàn)象,在試驗前先將蘋果用保鮮膜包裹。由于溫濕度RFID卡片無法監(jiān)測蘋果表皮和蘋果內(nèi)部溫度,因此采用熱電偶進行溫度測試。將熱電偶分別固定在蘋果內(nèi)部和蘋果表皮處,如圖4所示。將總質(zhì)量為1 500 g的蘋果放入VIP保溫箱中,并在保溫箱內(nèi)部布置溫度測點,重復測試5次,分析平均值。
圖4 蘋果保鮮試驗示意圖
圖5與表3是不同冷板布置方式下各測點溫度變化情況。由于保溫箱蓋直接暴露在室溫下,冷量下沉,箱內(nèi)頂部保冷時間較短,因此在試驗中采用在保溫箱頂部放置兩塊板和兩側(cè)各放一塊蓄冷板的方式,同時與在保溫箱四周放置蓄冷板的方式進行對比。蓄冷劑的相變溫度為6.4 ℃,放置在保溫箱短邊的蓄冷板維持6~8 ℃時間最長。兩種蓄冷劑不同擺放方式下,箱內(nèi)的空間溫度一致,都為7~9 ℃,但是側(cè)布方式下的保冷時間較側(cè)布加頂布方式長0.81 h。側(cè)布方式下的保溫箱平均保冷時間比頂布加側(cè)布方式下的時間更長。在實際運輸中,在不影響箱體內(nèi)有效容積的情況下,可以考慮將蓄冷板布置成側(cè)布的方式,以增強保冷效果。
圖5 冷板不同布置方式下溫度變化曲線
由表3可知,側(cè)布方式頂部保冷溫度9~11 ℃,而側(cè)布加頂布方式頂部保冷溫度在6~8 ℃,兩種布置方式箱體內(nèi)頂部最大仍存在3 ℃溫差。由于短邊側(cè)板面積較小且每個邊蓄冷劑質(zhì)量一致,所以短邊側(cè)板溫度較低,保冷時間長。側(cè)布方式較頂布加側(cè)布方式將平均保冷時間有效的提高了4.7%,但箱體頂部與底部溫差較大,箱體內(nèi)溫度場分布不均勻。在頂部增加冷板后,由圖5對比可得頂部溫度明顯下降2~3 ℃。頂布加側(cè)布方式溫度場分布更為均勻,更有利于果蔬的保鮮。
表3 不同布置方式測點的溫度
從圖6可以看出,EPP和VIP保溫箱內(nèi)分別放入2 000、2 440 g的蓄冷劑,但是其保冷效果不一樣。VIP保溫箱內(nèi)空間溫度較EPP保溫箱內(nèi)空間溫度低1 ℃,而且平均保冷時間較后者長1.24 h,提高了13.31%。各箱內(nèi)蓄冷劑相變溫度都為6.4 ℃,但是維持時間長短根據(jù)箱體材質(zhì)各有不同。兩種保溫箱內(nèi)各層蓄冷板的保冷時間變化趨勢基本相同,由下至上保冷時間依次縮短,這是由于冷量向下傳輸?shù)脑?。VIP保溫箱由于導熱系數(shù)較低,各溫度測點的溫度變化更接近。其內(nèi)置于箱頂?shù)男罾浒宓谋@鋾r間比箱底的保冷時間短3.19 h。且EPP保溫箱底部的保冷時間仍長于頂部的保冷時間。保溫箱的頂部是保溫的最不利位置,因此在實際應用中可以考慮適當增加箱體內(nèi)的頂部蓄冷量或者在保溫箱頂部做附加的保溫處理,以保證箱內(nèi)均勻釋放冷量,維持更長的保冷時間。
圖6 不同材質(zhì)保溫箱溫度變化曲線
由表4可直觀看出,在室溫環(huán)境為(21±1.5 )℃,箱內(nèi)蓄冷板布置方式蓄冷劑種類、同容積蓄冷劑質(zhì)量等外界因素相同的情況下,VIP保溫箱的保冷效果更佳,溫度分布也更加均勻穩(wěn)定。但是VIP保溫箱內(nèi)體積較小,蓄冷板體積較大,使得箱內(nèi)有效利用容積減少,因此在實際應用中也需考慮這方面因素帶來的影響。
表4 不同保溫材質(zhì)測點的溫度
分別對比了VIP保溫箱空載和載貨的保冷效果,試驗結(jié)果如圖7和表5所示。通過對比發(fā)現(xiàn),載貨的保溫箱內(nèi)升溫至相變溫度6.4 ℃的升溫速率較空載的保溫箱更快,這是因為保溫箱內(nèi)放入的是未經(jīng)過預冷常溫下的蘋果,而蘋果的比熱容遠大于空氣,導致蘋果吸收了更多蓄冷劑的固態(tài)顯熱,因此載貨的升溫速率大于空載的升溫速率,而且蓄冷劑釋冷階段時間大大縮短。從表5可以看出,利用硫酸鈉水合鹽體系與真空絕熱板蓄冷保溫箱相結(jié)合,載貨的平均保冷時間為9.63 h,證明比空載的平均保冷時間短0.77 h,但是蓄冷劑的相變溫度仍在6~8 ℃范圍內(nèi)沒有變化,可有效保鮮貨物。
圖7 保溫箱空載與載貨時的溫度變化曲線
在實際應用過程中,要全方面考慮會對貨物品質(zhì)產(chǎn)生影響的各個因素,合理的選擇被保冷貨物的預冷溫度、蓄冷劑的用量及預冷溫度。蓄冷劑的預冷溫度過低雖能延長保冷時間,但是會凍壞貨物,損害貨物的品質(zhì)。
表5 載貨與空載下測點的溫度
針對應用于果蔬冷鏈物流的十水硫酸鈉蓄冷保溫箱,不同的冷板布置方式、不同的保溫箱材質(zhì)以及是否載貨等都是影響其保冷性能的關鍵因素。本文通過試驗研究主要得出以下結(jié)論:
1)側(cè)布加頂布的冷板布置方式較僅側(cè)布可提高箱體內(nèi)溫度場的均勻度,有效降低頂部溫度3 ℃,利于保證果蔬的品質(zhì);冷板側(cè)布布置可有效的提高保冷時間,較側(cè)布加頂布方式可將箱體內(nèi)保鮮時間延長4.7%。
2)將真空絕熱板及其填充隔熱芯等技術應用于蓄冷保溫箱中,與普通EPP保溫箱相比可有效延長保冷時間13.31%。且真空絕熱板材質(zhì)的蓄冷保溫箱內(nèi)溫度場分布更加均勻,各溫度測點間溫差較小,但其質(zhì)量較大,有效使用體積減小,經(jīng)濟性需要提高。
3)以蘋果為保鮮對象,利用硫酸鈉水合鹽體系與真空絕熱板蓄冷保溫箱相結(jié)合,可有效的保鮮9.63 h左右,較空載保冷時間減少0.77 h。蓄冷保溫箱可行性較高,保冷特性優(yōu)良。
[1] Rathod M K, Banerjee J. Thermal stability of phase change materials used in latent energy storage systems: A review[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 246-258.
[2] Sarier N, Onder E. Organic phase change materials and their textile applications: An overview[J]. Thermochimica Acta, 2012, 540: 7-60.
[3] 葛文杰,趙春江. 農(nóng)業(yè)物聯(lián)網(wǎng)研究與應用現(xiàn)狀及發(fā)展對策研究[J]. 農(nóng)業(yè)機械學報,2014,45(7):222-230,277.
Ge Wenjie, Zhao Chunjiang. State-of-the-art and developing strategies of agricultural internet of things[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(7): 222-230,277. (in Chinese with English abstract)
[4] 黃雪蓮,于新,馬永全. 蓄冷技術在果蔬保鮮中的研究與應用[J]. 仲愷農(nóng)業(yè)技術學院學報,2010,23(2):67-71.
Huang Xuelian, Yu Xin, Ma Yongquan. Study and application of cool storage technology in fruits and vegetables preservation[J]. Journal of Zhongkai University of Agriculture and Engineering, 2010, 23(2): 67-71. (in Chinese with English abstract)
[5] 趙春江,韓佳偉,楊信廷,等. 冷鏈物流研究中的計算流體力學數(shù)值模擬技術[J]. 農(nóng)業(yè)機械學報,2015,46(3):214-222.
Zhao Chunjiang, Han Jiawei, Yang Xinting, et al. Digital simulation technology of computational fluid dynamics in agricultural cold-chain logistics applications[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 214-222. (in Chinese with English abstract)
[6] 邸倩倩,王亞會,劉斌,等. 風速對冷藏車內(nèi)溫度分布的影響[J]. 食品科技,2017,42(5):46-51.
Di Qianqian, Wang Yanhui, Liu Bin, et al. Effect of wind speed on the temperature of liquid nitrogen refrigerated vehicle[J]. Food Science and Technology 2017, 42(5): 46-51. (in Chinese with English abstract)
[7] 張東霞,呂恩利,陸華忠,等. 保鮮運輸車溫度場分布特性試驗研究[J]. 農(nóng)業(yè)工程學報,2012,28(11):254-260.
Zhang Dongxia, Lü Enli, Lu Huazhong, et al. Experimental study on temperature field distribution characteristics in fresh-keeping transportation[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of CSAE), 2012, 28(11): 254-260. (in Chinese with English abstract)
[8] 翁衛(wèi)兵,房殿軍,李強,等. 冷藏運輸廂內(nèi)流場和溫度場協(xié)同控制[J]. 農(nóng)業(yè)機械學報,2014,45(6):260-265,290.
Weng Weibing, Fang Dianjun, Li Qiang, et al. Cooperative control of flow field and temperature field in refrigerated transport carriage[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 260-265, 290. (in Chinese with English abstract)
[9] 趙春江,韓佳偉,楊信廷,等. 基于CFD的冷藏車車廂內(nèi)部溫度場空間分布數(shù)值模擬[J]. 農(nóng)業(yè)機械學報,2013,44(11):168-173.
Zhao Chunjiang, Han Jiawei, Yang Xinting, et al. Numerical simulation of temperature field distribution in refrigerated truck based on CFD[J]. Transactions of the Chinese Society of Agricultural Machinery, 2013, 44(11): 168-173. (in Chinese with English abstract)
[10] 韓佳偉,趙春江,楊信廷,等. 基于CFD數(shù)值模擬的冷藏車節(jié)能組合方式比較[J]. 農(nóng)業(yè)工程學報,2013,29(19):55-62.
Han Jiawei, Zhao Chunjiang, Yang Xinting, et al. Comparison of combination mode of energy conservation for refrigerated car based on CFD numerical simulation[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of CSAE), 2013, 29(19): 55-62. (in Chinese with English abstract)
[11] 郭嘉明,呂恩利,陸華忠,等. 保鮮運輸車果蔬堆碼方式對溫度場影響的數(shù)值模擬[J]. 農(nóng)業(yè)工程學報,2012,28(13):231-236.
Guo Jiaming, Lü Enli, Lu Huazhong, et al. Numerical simulation on temperature field effect of stack method of garden stuff for fresh-keeping transportation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of CSAE), 2012, 28(13): 231-236. (in Chinese with English abstract)
[12] 謝晶,瞿曉華,徐世瓊. 冷藏庫內(nèi)氣體流場數(shù)值模擬與驗證[J]. 農(nóng)業(yè)工程學報,2005,21(2):11-16.
Xie Jing, Qu Xiaohua, Xu Shiqiong. Numerical simulation and verification of airflow in cold-store[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of CSAE), 2005, 21(2): 11-16. (in Chinese with English abstract)
[13] Gogou E, Katsaros G, Derens E, et al. Cold chain database development and application as a tool for the cold chain management and food quality evaluation[J]. International Journal of Refrigeration, 2015(52): 109-121.
[14] 應鐵進,朱冰清,戚曉麗,等. 用于農(nóng)產(chǎn)品保鮮的有機物水溶液相變蓄冷劑[J]. 農(nóng)業(yè)機械學報,2015,46(2):208-212,207.
Ying Tiejin, Zhu Bingqing, Qi Xiaoli, et al. Development of organic solution phase change materials for preservation of agricultural products[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(2): 208-212,207. (in Chinese with English abstract)
[15] 李曉燕,李凱娣,劉家慶,等. 相變蓄冷技術在食品冷鏈中的應用研究與進展[C]//武漢,2013中國制冷學會學術年會論文集.2013.
Li Xiaoyan, Li Kaidi, Liu Jiaqing, et al. Research and progress of phase change storage technology application inthe food cold chain[C]//Wuhan,2013 China Refrigeration Institute Academic Essays. 2013. (in Chinese with English abstract)
[16] 黃艷,章學來. 蓄冷技術在食品冷鏈物流中的研究進展[J]. 包裝工程,2015(15):23-29.
Hunag Yan, Zhang Xuelai. Research progress of the application of cold storage technology in food cold chain logistics[J]. Packaging Engineering, 2015(15): 23-29. (in Chinese with English abstract)
[17] 洪喬荻,鄒同華,宋曉燕,等. 疫苗運輸用蓄冷材料性能研究[J]. 低溫與超導,2013(8):59-62.
Hong Qiaodi, Zou Tonghua, Song Xiaoyan, et al. Study on the performance of cool storage material for vaccine transportation[J]. Cryogenics & Superconductivity, 2013(8): 59-62. (in Chinese with English abstract)
[18] Brosnan T, Sun D. Precooling techniques and applications for horticultural products a review[J]. International Journal of Refrigeration, 2001, 24(2): 154-170.
[19] 吳麗媛,宋文吉,高日新,等. 基于板式冰蓄冷的冷藏庫恒溫特性的試驗研究[J]. 制冷學報,2012(33):66-69.
Wu Liyuan, Song Wenji, Gao Rixin, et al. Experimental study of plate ice storage cold storage temperature based on the characteristics of cold[J]. Journal of Refrigeration, 2012(33): 66-69. (in Chinese with English abstract)
[20] 劉秀娟,賀可太,馮愛蘭. 蓄冷箱在疫苗運輸中的應用研究[J]. 物流技術,2008(6):116-118,125.
Liu Xiujuan, He Ketai, Feng Ailan. Study on application of cold box in vaccine transportation[J]. Logistics Technology, 2008(6): 116-118,125. (in Chinese with English abstract)
[21] 張靜榮,肖云茹,郁小森,等. 三種便攜式蓄冷保溫箱在韭黃保鮮應用中的效果比較[J]. 食品工業(yè)科技,2017,38(17):279-282,323.
Zhang Jingrong, Xiao Yunru, Yu Xiaosen, et al. A Comparison of application effects on three kinds of portable insulation incubator in fresh keepin[J]. Science and Technology of Food Industry, 2017, 38(17): 279-282, 323. (in Chinese with English abstract)
[22] 宋海燕,田萌萌,伍亞云. 蓄冷劑質(zhì)量對擠塑聚苯乙烯保溫箱溫控效果的影響研究[J]. 包裝工程,2016(7):56-60.
Song Haiyan, Tian Mengmeng, Wu Yayun. Influences of the coolant amount on temperature control effect of extruded polystyrene insulation box[J]. Packaging Engineering, 2016(7): 56-60. (in Chinese with English abstract)
[23] 劉翠娜,張雙喜,周恒勤,等. 便攜式蓄冷保溫箱結(jié)構(gòu)優(yōu)化[J]. 吉林化工學院學報,2011(1):29-33.
Liu Cuina, Zhang Shuangxi, Zhou Hengqin, et al.Optimization of structure of portable cool storage incubator[J]. Journal of Jilin Institute of Chemical Technology, 2011(1): 29-33. (in Chinese with English abstract)
[24] 闞安康,韓厚德,曹丹,等. 開孔聚氨酯真空絕熱板芯材的研究[J]. 絕緣材料,2008(2):45-48.
Kan An’kang, Han Houde, Cao Dan, et al. Research on open-cell rigid polyurethane formfor vacuum insulated panel core[J]. Insulating material, 2008(2): 45-48. (in Chinese with English abstract)
[25] 郭志鵬,闞安康,楊帆,等. 布置真空絕熱板的冷藏集裝箱內(nèi)溫度分布[J]. 南京航空航天大學學報,2017,49(1):29-33.
Guo Zhipeng, Kan An’kang, Yang Fan, et al. Temperature distribution inside reefer container equipped with vacuum insulation panels[J].Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(1): 29-33. (in Chinese with English abstract)
[26] 孟闖,闞安康,郭志鵬,等. 真空絕熱板研究現(xiàn)狀及其在建筑領域的應用[J]. 真空,2017,54(1):67-73.
Meng Chuang, Kan An’kang, Guo Zhipeng, et al. The research status of vacuum insulation panel and its application in the architecture field[J]. Vacuum, 2017, 54(1): 67-73. (in Chinese with English abstract)
[27] 張哲,郭永剛,田津津,等. 冷板冷藏汽車箱體內(nèi)溫度場的數(shù)值模擬及試驗[J]. 農(nóng)業(yè)工程學報,2013,29(增刊1):18-24.
Zhang Zhe, Guo Yonggang, Tian Jinjin, et al. Numerical simulation and experiment of temperature field distribution in box of cold plate refrigerated truck[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of CSAE), 2013, 29(Supp.1): 18-24. (in Chinese with English abstract)
[28] 張哲,李立民,田津津,等. 冷藏車溫度場不均勻度對蔬菜保鮮效果的影響[J]. 農(nóng)業(yè)工程學報,2014,30(15):309-316.
Zhang Zhe, Li Limin, Tian Jinjin, et al. Effects of refrigerated truck temperature field uniformity on preservation of vegetables[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of CSAE), 2014, 30(15): 309-316. (in Chinese with English abstract)
[29] 武小娟,王忠堂,梅瑞斌,等. 冷板的布置方式對冷板車車內(nèi)溫度場的影響[J]. 制冷與空調(diào),2008(5):12-15.
Wu Xiaojuan, Wang Zhongtang, Mei Ruibin, et al. Temperature distribution of refrigerator truck influence by position of cooling source[J]. Refrigeration & Air-Conditioning, 2008(5): 12-15. (in Chinese with English abstract)
[30] 陳文樸,章學來,黃艷,等. 甲酸鈉低溫相變材料的研制及其在蓄冷箱中的應用[J]. 制冷學報,2017,38(1):68-72.
Chen Wenpu, Zhang Xuelai, Huang Yan,et al.Application Sodium formate as low temperature phase change materials in cold storage insulation box[J]. Journal of Refrigeration, 2017, 38(1): 68-72. (in Chinese with English abstract)
[31] 郭長華. 相變儲熱材料三水醋酸鈉儲熱性能研究[D]. 蘭州:蘭州理工大學,2011.
Guo Changhua. Study on Heat Storage Performance of Sodium Acetate Trihydrate for Phase Change Thermal Storage Materials[D]. Lanzhou: Lanzhou University of Technology, 2011. (in Chinese with English abstract)
徐笑鋒,章學來,Jotham Muthoka Munyalo,李玉洋,陳 躍,陳啟楊,劉 升. 十水硫酸鈉相變蓄冷保溫箱保冷特性的試驗研究[J]. 農(nóng)業(yè)工程學報,2017,33(22):308-314. doi:10.11975/j.issn.1002-6819.2017.22.040 http://www.tcsae.org
Xu Xiaofeng, Zhang Xuelai, Jotham Muthoka Munyalo, Li Yuyang, Chen Yue, Chen Qiyang, Liu Sheng. Experimental study on cold retention characteristics of cold storage incubator using Na2SO4·10H2O as PCMs[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 308-314. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.22.040 http://www.tcsae.org
Experimental study on cold retention characteristics of cold storage incubator using Na2SO4·10H2O as PCMs
Xu Xiaofeng1, Zhang Xuelai1※, Jotham Muthoka Munyalo1, Li Yuyang1, Chen Yue1, Chen Qiyang1, Liu Sheng2
(1,,201306,; 2.,100097,)
At present, cold chain in China is developing rapidly, especially in the cold chain market of agricultural products, it has huge market potential. But the cold chain transportation still faces serious constrains for its development. The shortage of cold chain capacity and frequent discontinuity in the process of transportation deteriorate the quality of agricultural products. Thermal storage cold chain transportation equipment currently used includes refrigerated transportation with cold storage technology and adiabatic thermal insulation technology from which thermal storage insulation boxes are mainly used. Thermal storage insulation box is composed of heat preservation box and thermal storage plate. Thermal storage insulation box has no refrigeration function, the temperature is controlled by putting thermal storage plates of different temperature in the box, and the temperature could be maintained for a long time. The temperature of fresh-keeping and cold chain transportation are requested in the range of 2 - 8 ℃, the thermal storage material (sodium sulfate salt hydrate system) is wrapped in polyethylene thermal storage plate. It is used in polypropylene (EPP) foaming thermal storage boxes and vacuum insulation plate (VIP) boxes, and constitutes the thermal storage cold chain transportation equipment. Good Supply Practice (GSP) was used in this study to verify equipment and built temperature test system of thermal storage insulation boxes. Temperature measuring points were distributed at different sites, as such, the heating curve of each point in the box was obtained. Heat preservation effect was evaluated by the average cooling time in box. The influence of the way of holding thermal storage plates and the insulating properties of the insulation box material were considered. Our study showed that the insulation property of vacuum insulation board was better than foamed PP, the cooling maintain time could be increased by 13.31% and the average cooling maintain time increased 1.24 h. The temperature distribution was more uniform and stable. However, if each wall in the vacuum insulated plate insulation box was arranged with a cooling board, the box capacity would be reduced effectively. So it was necessary to consider the influence of this factor in the practical application. The cooling maintaining time of the refrigerant under the modality of side-sway was extended by 4.7% than top-sway. But the temperature difference between top and bottom of the box was large. The temperature distribution is uneven. Adding of thermal storage board on the top made the temperature declined 3 ℃. The temperature distribution was more uniform when the modality of top and side were adopted, which was more conducive to the preservation of fruits and vegetables. The temperature of each point when the box was loaded and unloaded was compared, and the cooling maintaining property was analyzed, the cooling maintaining time of load decreased 0.77 h than unload. In the actual application process, all factors which affect the quality of the goods and reasonable selection of the pre-cooling temperature, the amount of refrigerant and pre-cooling temperature of the refrigerant should be considered.
fruits; cold storage; phase change materials; cold chain; Na2SO4·10H2O; cold storage incubator; cold plates
10.11975/j.issn.1002-6819.2017.22.040
TK02
A
1002-6819(2017)-22-0308-07
2017-08-07
2017-10-14
上海市科委項目(16040501600);上海海事大學博士創(chuàng)新基金項目(2017ycx081)
徐笑鋒,博士生,研究方向:冷鏈物流、蓄冷技術。 Email:fxx_xu@163.com
章學來,教授,博導,研究方向:相變儲能技術。 Email:xlzhang@shmtu.edu.cn