• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      拉索加強(qiáng)式溫室單層球面網(wǎng)殼穩(wěn)定性分析

      2017-12-15 02:53:45張中昊
      關(guān)鍵詞:網(wǎng)殼球面單層

      張中昊,付 強(qiáng),范 峰

      ?

      拉索加強(qiáng)式溫室單層球面網(wǎng)殼穩(wěn)定性分析

      張中昊1,2,付 強(qiáng)1※,范 峰2

      (1. 東北農(nóng)業(yè)大學(xué)水利與建筑學(xué)院,哈爾濱 150030; 2. 哈爾濱工業(yè)大學(xué)土木工程學(xué)院,哈爾濱 150090)

      雙向網(wǎng)格型單層球面網(wǎng)殼透光好、耗材小、作為溫室結(jié)構(gòu)設(shè)計(jì)具有廣泛的應(yīng)用前景。但是結(jié)構(gòu)面內(nèi)剛度和面外剛度較低,過(guò)度增大跨度易發(fā)生大變形導(dǎo)致結(jié)構(gòu)失穩(wěn)。為了提高結(jié)構(gòu)的穩(wěn)定性能,針對(duì)30、40、50 m跨度的單層球面網(wǎng)殼提出了在雙向網(wǎng)格對(duì)角處即面內(nèi)布置拉索及和面外不相鄰節(jié)點(diǎn)處布置斜拉索的方案,開(kāi)發(fā)了剛性網(wǎng)殼和柔性拉索組成的拉索加強(qiáng)式溫室空間結(jié)構(gòu)體系。利用有限元程序ANSYS以及自編的前后處理程序,針對(duì)不同跨度溫室球面網(wǎng)殼進(jìn)行了彈性、彈塑性全過(guò)程分析,考察了拉索布置形式、拉索預(yù)應(yīng)力、初始幾何缺陷、荷載不對(duì)稱分布等因素對(duì)溫室網(wǎng)殼穩(wěn)定性的影響規(guī)律,并結(jié)合結(jié)構(gòu)的屈曲模態(tài)、塑性發(fā)展分布等特征響應(yīng),進(jìn)一步揭示了結(jié)構(gòu)的失穩(wěn)機(jī)理。在此基礎(chǔ)上,分析了材料非線性對(duì)溫室網(wǎng)殼穩(wěn)定性的影響規(guī)律,通過(guò)對(duì)網(wǎng)殼結(jié)構(gòu)的彈性、彈塑性臨界荷載的統(tǒng)計(jì),重新核定了此類溫室結(jié)構(gòu)體系的“塑性折減系數(shù)”。結(jié)果表明:拉索充分發(fā)揮了材料的抗拉性能,布置拉索后使原結(jié)構(gòu)極限荷載提高了29%~92%,對(duì)拉索施加30 kN預(yù)應(yīng)力后極限荷載最大可提高43%,論證了該結(jié)構(gòu)形式的合理性;塑性折減系數(shù)在0.7~1.0之間,說(shuō)明材料非線性對(duì)此類溫室結(jié)構(gòu)穩(wěn)定性的影響不大,以上研究成果對(duì)該結(jié)構(gòu)體系的工程實(shí)踐提供了技術(shù)參考。

      溫室;荷載;穩(wěn)定性;拉索加強(qiáng)式;雙向網(wǎng)格型;極限荷載;

      0 引 言

      單層網(wǎng)殼結(jié)構(gòu)外形美觀、受力合理、網(wǎng)格形式多樣,被廣泛應(yīng)用于溫室建筑設(shè)計(jì)中[1-3]。但是單層網(wǎng)殼面外剛度弱,隨著跨度的增大,結(jié)構(gòu)的承載力主要由穩(wěn)定控制,因此穩(wěn)定性驗(yàn)算成為結(jié)構(gòu)設(shè)計(jì)的關(guān)鍵。球面網(wǎng)殼是單層網(wǎng)殼最常見(jiàn)的結(jié)構(gòu)形式之一,包括三角形、四邊形等網(wǎng)格,從網(wǎng)殼耗材、采光等方面考慮,四邊形球面網(wǎng)殼優(yōu)于三角形,但是四邊形球面網(wǎng)殼剛度較低、穩(wěn)定性差,應(yīng)用于溫室建筑的工程實(shí)例并不多見(jiàn)。

      近年來(lái)國(guó)內(nèi)有關(guān)三角形網(wǎng)殼穩(wěn)定性的研究取得了豐碩的成果。曹正罡等[4-6]對(duì)不同形式單層球面網(wǎng)殼進(jìn)行了雙重非線性全過(guò)程分析,掌握了各種因素變化對(duì)球面網(wǎng)殼彈塑性穩(wěn)定性能的影響規(guī)律,重點(diǎn)考察了材料非線性對(duì)網(wǎng)殼承載力的影響。范峰等[7]針對(duì)K8型單層球面網(wǎng)殼,論證了桿件初彎曲對(duì)網(wǎng)殼極限承載力的影響,提出了網(wǎng)殼極限承載力修正的一致缺陷模態(tài)法。蔡健等[8]運(yùn)用不同的缺陷模態(tài)分析方法,針對(duì)K8型球面進(jìn)行了彈塑性全過(guò)程分析,探討了初始幾何缺陷對(duì)單層網(wǎng)殼結(jié)構(gòu)的穩(wěn)定性能的影響。

      空間結(jié)構(gòu)在滿足強(qiáng)度和剛度的前提下,更加追求大跨度、輕量及美觀。各種新型結(jié)構(gòu)不斷涌現(xiàn),雜交空間結(jié)構(gòu)得以迅速發(fā)展,此類空間結(jié)構(gòu)是將不同類型的結(jié)構(gòu)進(jìn)行組合,充分利用材料特點(diǎn)形成的一種新型結(jié)構(gòu)體系[9]。郭佳民等[10]以單層球面網(wǎng)殼為研究對(duì)象,分析了不同布索形式對(duì)弦支穹頂結(jié)構(gòu)穩(wěn)定性的影響。王哲等[11]將向心關(guān)節(jié)索桿體系應(yīng)用于弦支穹頂結(jié)構(gòu)中,利用索桿張拉建立預(yù)應(yīng)力,解決了張拉環(huán)索時(shí)摩擦預(yù)應(yīng)力損失問(wèn)題。殷志祥等[12]系統(tǒng)研究了布索方案、矢跨比、初始缺陷等因素對(duì)K6、K8型大跨度預(yù)應(yīng)力帶肋單層球面網(wǎng)殼的穩(wěn)定性的影響,最終確定了最佳布索方案。李永梅等[13-14]結(jié)合算例對(duì)索承網(wǎng)殼結(jié)構(gòu)進(jìn)行了特征值屈曲、非線性屈曲分析,研究了索承網(wǎng)殼結(jié)構(gòu)的受力特性。日本學(xué)者Kawaguchi等[15]針對(duì)弦支穹頂結(jié)構(gòu)的施工張拉特點(diǎn)提出弦支穹頂結(jié)構(gòu)的正向施工模擬計(jì)算法,實(shí)現(xiàn)了設(shè)計(jì)所要求的預(yù)應(yīng)力狀態(tài)。針對(duì)雙向網(wǎng)格型網(wǎng)殼結(jié)構(gòu),學(xué)者們通常采用在雙向網(wǎng)格對(duì)角處布置拉索或支桿來(lái)增強(qiáng)其面內(nèi)剛度,通過(guò)試驗(yàn)及理論分析論證了布索形式有效地提高了結(jié)構(gòu)的穩(wěn)定承載能力[16-23]。在剛?cè)犭s交結(jié)構(gòu)的索桿預(yù)應(yīng)力施加方法方面,郭正興等[24]介紹了大跨空間結(jié)構(gòu)預(yù)應(yīng)力施工技術(shù)及各種預(yù)應(yīng)力索桿的應(yīng)用情況。胡小勇等[25]通過(guò)結(jié)合實(shí)際工程,闡述了鋼拉索預(yù)緊快速安裝力高效施工技術(shù)。楊建國(guó)等[26]介紹了預(yù)應(yīng)力鋼拉索在高強(qiáng)建筑結(jié)構(gòu)中的應(yīng)用情況。李淑嫻等[27]結(jié)合越南河內(nèi)國(guó)際機(jī)場(chǎng)的施工過(guò)程,對(duì)屋面結(jié)構(gòu)中預(yù)應(yīng)力鋼拉索的施工過(guò)程進(jìn)行了全過(guò)程分析和監(jiān)測(cè)。秦杰等[28]針對(duì)預(yù)應(yīng)力索拱結(jié)構(gòu)形式的屋頂結(jié)構(gòu)進(jìn)行了預(yù)應(yīng)力仿真和施工技術(shù)研究,并介紹了鋼索張拉技術(shù)及應(yīng)力監(jiān)控技術(shù)。

      以上研究表明,有關(guān)布置拉索的網(wǎng)殼結(jié)構(gòu)穩(wěn)定性研究取得了豐碩的成果,但結(jié)構(gòu)形式多采用弦支及索承形式,在網(wǎng)殼面外不相鄰節(jié)點(diǎn)間布置斜拉索的設(shè)計(jì)方案很少見(jiàn),更缺乏此類結(jié)構(gòu)應(yīng)用到溫室建筑的工程實(shí)例。因此,在不影響結(jié)構(gòu)采光、保證結(jié)構(gòu)穩(wěn)定的前提下,本文提出了在雙向網(wǎng)格對(duì)角處及網(wǎng)殼面外布置拉索的方案,開(kāi)發(fā)了拉索加強(qiáng)式溫室單層球面網(wǎng)殼體系。通過(guò)彈塑性穩(wěn)定分析論證了拉索布置方案的合理性,考察了材料非線性對(duì)溫室網(wǎng)殼穩(wěn)定性的影響規(guī)律。

      1 結(jié)構(gòu)模型及分析方法

      1.1 結(jié)構(gòu)模型

      圖1 拉索加強(qiáng)式溫室單層球面網(wǎng)殼幾何構(gòu)造

      溫室邊緣所有節(jié)點(diǎn)在三向施加位移約束,并考慮了3種矢跨比=1/5、1/6、1/7,材料采用Q235鋼材,屈服強(qiáng)度為235 N/mm2。彈性模量=2.06×1011MPa,密度為7 850 kg/m3。荷載分布形式為對(duì)稱分布和非對(duì)稱分布2種,考慮了活荷載與恒荷載的4種比例:/=0、1/4、1/2、3/4?;詈奢d作用在網(wǎng)殼中央軸上方半個(gè)球面上,如圖1c所示的區(qū)域內(nèi)。

      1.2 分析方法

      基于有限元軟件ANSYS,結(jié)合自編的前后處理程序,對(duì)溫室結(jié)構(gòu)進(jìn)行了彈性、彈塑性全過(guò)程分析。溫室桿件及支桿采用Beam189梁元,節(jié)點(diǎn)為剛接,并應(yīng)用亨奇-伊柳辛理論,通過(guò)軸向塑性應(yīng)變判定桿件屈服[29],實(shí)時(shí)輸出桿件截面的塑性發(fā)展?fàn)顩r,其判別方程為

      式中、、S分別為應(yīng)力強(qiáng)度,應(yīng)變強(qiáng)度和應(yīng)力分量;為剪切彈性模量。

      溫室桿件截面共32個(gè)積分點(diǎn),1~32數(shù)字為積分點(diǎn)個(gè)數(shù),32表示全截面進(jìn)入塑性。拉索(僅受拉)采用link180單元,具有塑性、大變形和大應(yīng)變等功能。本文將結(jié)構(gòu)的第1個(gè)臨界荷載值作為極限荷載,在大規(guī)模參數(shù)分析中均利用特征值缺陷模態(tài)法將結(jié)構(gòu)的最低階特征屈曲模態(tài)作為初始幾何缺陷的最不利分布模式,缺陷的最大值分別取網(wǎng)殼跨度的1/250、1/300、1/500、1/750和1/1 000[30]。

      2 拉索及其預(yù)應(yīng)力對(duì)結(jié)構(gòu)穩(wěn)定性的影響

      2.1 面內(nèi)、面外拉索的布置

      本部分研究面內(nèi)、面外布置拉索對(duì)3種不同跨度溫室網(wǎng)殼結(jié)構(gòu)穩(wěn)定性的影響。結(jié)果表明,不同跨度溫室網(wǎng)殼在布置拉索后,其承載能力有不同程度地提高趨勢(shì),溫室跨度越大,提高幅度越明顯。圖2以50m跨度溫室為例,分別給出了面內(nèi)布置拉索、面內(nèi)面外布置拉索后溫室網(wǎng)殼荷載-位移變化曲線。本文所述位移均為溫室網(wǎng)殼在方向上發(fā)生的位移。矢跨比=1/5、1/6、1/7的溫室網(wǎng)殼結(jié)構(gòu)在布置面內(nèi)拉索后的極限荷載和無(wú)拉索網(wǎng)殼相比,分別提高了119%、74%、45%;布置面內(nèi)、面外拉索后溫室網(wǎng)殼結(jié)構(gòu)的極限荷載和無(wú)拉索網(wǎng)殼相比,分別提高了134%、86%、55%。

      注:為矢跨比,為跨度,位移為溫室網(wǎng)殼在方向上,下同。

      Note:is rise span ratio,represents span, the displacement is going along z direction, the same as below.

      圖2布索前后溫室單層球面網(wǎng)殼荷載-位移全過(guò)程曲線(=50 m)

      Fig.2 Load-deflection curves of greenhouse before and after installing cables (=50 m)

      2.2 拉索預(yù)應(yīng)力

      以往的研究表明,對(duì)拉索施加一定范圍的預(yù)應(yīng)力增強(qiáng)了溫室單層柱面網(wǎng)殼結(jié)構(gòu)的整體剛度,提高了結(jié)構(gòu)的承載能力[19]。本部分通過(guò)溫度荷載對(duì)面內(nèi)拉索施加一定范圍的預(yù)應(yīng)力(0~30 kN),考察拉索預(yù)應(yīng)力對(duì)溫室單層球面結(jié)構(gòu)極限荷載的影響。拉索預(yù)應(yīng)力和施加溫度荷載Δ的關(guān)系式為

      式中為拉索的抗拉剛度,為線膨脹系數(shù),本文取1.2×10-5[19],?為溫度增量。

      結(jié)果表明,拉索預(yù)應(yīng)力在0~30 kN范圍內(nèi),拉索預(yù)應(yīng)力越大,結(jié)構(gòu)的極限荷載提高幅度越大。表1給出了綜合考慮跨度、矢跨比的影響下,拉索在施加30 kN預(yù)應(yīng)力后結(jié)構(gòu)極限荷載的增加幅度。由表1可知,溫室跨度越大,拉索預(yù)應(yīng)力對(duì)提高結(jié)構(gòu)極限荷載的效果愈明顯。50 m跨度溫室網(wǎng)殼隨著矢跨比的增大,拉索預(yù)應(yīng)力的效果越明顯。這是由于大跨度溫室網(wǎng)殼結(jié)構(gòu)網(wǎng)格數(shù)量多,對(duì)應(yīng)的剛度薄弱區(qū)多,在施加拉索預(yù)應(yīng)力后,整體剛度提高幅度相對(duì)明顯。

      表1 拉索施加預(yù)應(yīng)力后結(jié)構(gòu)極限荷載的增加幅度

      注:拉索預(yù)應(yīng)力為30 kN。

      Note:Cable prestress is 30 kN.

      3 失穩(wěn)模態(tài)及塑性發(fā)展分布

      3.1 失穩(wěn)模態(tài)

      圖3給出了2種荷載分布下、矢跨比=1/5的溫室單層球面網(wǎng)殼在臨界點(diǎn)時(shí)刻的失穩(wěn)模態(tài)。

      注:p、g分別為活荷載、恒荷載,下同。

      由圖3可知,溫室單層球面網(wǎng)殼在臨界點(diǎn)時(shí)刻的失穩(wěn)模態(tài)與其他形式球面網(wǎng)殼類似,局部區(qū)域失穩(wěn)從最大位移節(jié)點(diǎn)屈曲開(kāi)始,逐漸發(fā)展成較大局部凹陷。此類溫室網(wǎng)殼結(jié)構(gòu)的失穩(wěn)模態(tài)分布呈一定的規(guī)律性,失穩(wěn)區(qū)域均發(fā)生在靠近網(wǎng)殼邊緣處的中央位置,且一個(gè)邊緣處僅存在一個(gè)局部凹陷。隨著溫室跨度和對(duì)應(yīng)網(wǎng)格數(shù)的增加,結(jié)構(gòu)失穩(wěn)位置沒(méi)有發(fā)生明顯變化,外緣沿球面呈3個(gè)半波的凹陷形式。對(duì)稱荷載作用下的30 m跨度溫室網(wǎng)殼,在約束邊外緣算起第2環(huán)中央節(jié)點(diǎn)處失穩(wěn),40、50 m跨度溫室網(wǎng)殼,在約束邊外緣算起第3環(huán)中央節(jié)點(diǎn)處失穩(wěn);非對(duì)稱荷載作用下的失穩(wěn)發(fā)生在荷載較大一側(cè)并靠近約束邊的第2、3環(huán)中心位置。出現(xiàn)失穩(wěn)的主要原因在于局部區(qū)域桿件屈服導(dǎo)致網(wǎng)殼無(wú)法繼續(xù)承載,使結(jié)構(gòu)的極限荷載降低。

      3.2 桿件塑性發(fā)展分布

      圖4給出了臨界點(diǎn)時(shí)刻拉索進(jìn)入塑性的位置。對(duì)稱荷載作用下拉索進(jìn)入塑性位置呈對(duì)稱分布,非對(duì)稱荷載下拉索進(jìn)入塑性位置偏于荷載較大一側(cè)。圖5給出了對(duì)稱荷載作用下溫室網(wǎng)殼桿件在臨界點(diǎn)時(shí)刻及失穩(wěn)后的塑性發(fā)展分布狀況。網(wǎng)殼結(jié)構(gòu)在臨界點(diǎn)時(shí)刻,桿件進(jìn)入塑性位置主要集中在第2環(huán)中央節(jié)點(diǎn)處(圖5b),隨著位移的繼續(xù)增大,在位移達(dá)到30 cm的時(shí)刻,進(jìn)入塑性桿件數(shù)量逐漸增多,均以第2環(huán)中央節(jié)點(diǎn)處為中心,桿件進(jìn)入塑性范圍逐漸增大(圖5c),與圖3所示的結(jié)構(gòu)失穩(wěn)模態(tài)相對(duì)應(yīng)。

      圖4 臨界點(diǎn)時(shí)刻拉索進(jìn)入塑性位置(f/b=1/5)

      圖5 對(duì)稱荷載作用下溫室球面網(wǎng)殼在臨界點(diǎn)時(shí)刻及失穩(wěn)后的塑性發(fā)展分布狀況 (f/b=1/5)

      圖6分別給出了在對(duì)稱荷載和非對(duì)稱荷載作用下溫室網(wǎng)殼失穩(wěn)后位移達(dá)到30 cm的時(shí)刻網(wǎng)殼桿件局部坐標(biāo)系中方向的彎矩圖。下文所述方向均指桿件局部坐標(biāo)系方向,引起桿件沿坐標(biāo)正方向彎曲對(duì)應(yīng)的彎矩為正,相反為負(fù)。局部區(qū)域網(wǎng)殼桿件提前進(jìn)入塑性,主要因?yàn)樽畲笪灰乒?jié)點(diǎn)處方向彎矩過(guò)大引起桿件內(nèi)力增大所導(dǎo)致,是局部區(qū)域塑性發(fā)展過(guò)于集中的體現(xiàn)。因此,最大位移節(jié)點(diǎn)無(wú)法承受繼續(xù)加載,并發(fā)生較大凹陷,結(jié)構(gòu)提前喪失承載能力。

      圖6 失穩(wěn)后B時(shí)刻溫室桿件局部坐標(biāo)y方向的彎矩分布(f/b=1/5)

      4 各參數(shù)對(duì)結(jié)構(gòu)穩(wěn)定性的影響

      4.1 矢跨比

      表2給出了不同矢跨比溫室網(wǎng)殼結(jié)構(gòu)的極限荷載。由表2可知,拉索加強(qiáng)式溫室網(wǎng)殼的極限荷載不受荷載分布形式差異的影響,都隨著矢跨比的增大呈現(xiàn)遞增的規(guī)律性變化,極限荷載平均提高20%;隨著跨度及相應(yīng)網(wǎng)格數(shù)的增加,極限荷載隨矢跨比的增大提高幅度略為明顯。

      表2 不同矢跨比的溫室網(wǎng)殼結(jié)構(gòu)的極限荷載

      4.2 初始幾何缺陷

      圖7給出了初始幾何缺陷對(duì)溫室網(wǎng)殼結(jié)構(gòu)極限荷載的影響曲線。由圖7可知,隨著初始幾何缺陷的增加,網(wǎng)殼結(jié)構(gòu)初始剛度逐漸降低,極限荷載也呈降低趨勢(shì),不同跨度溫室網(wǎng)殼剛度及荷載的變化規(guī)律基本相同。當(dāng)缺陷值=/250時(shí),30、40、50 m跨度不同矢跨比的網(wǎng)殼結(jié)構(gòu)極限荷載和完整網(wǎng)殼相比,分別平均降低31%、40%、41%,溫室網(wǎng)殼跨度越大,降低幅度越明顯。矢跨比/=1/6、50 m跨度溫室結(jié)構(gòu)的極限荷載受缺陷影響最大,當(dāng)缺陷=/250時(shí),結(jié)構(gòu)極限荷載和完整網(wǎng)殼相比最大降低45%(圖7b)。

      注:為缺陷最大值,下同。

      Note:is maximum imperfection, the same as below.

      a. 荷載-位移全過(guò)程曲線(=1/6,=50 m)

      a. Load-displacement curves (=1/6,=50 m)

      b. 溫室極限荷載隨缺陷比例變化曲線

      圖8給出了跨度50 m、缺陷=/250溫室網(wǎng)殼桿件在臨界點(diǎn)時(shí)刻溫室網(wǎng)殼的塑性發(fā)展分布及對(duì)應(yīng)彎矩圖。完整溫室網(wǎng)殼在臨界點(diǎn)時(shí)刻無(wú)桿件進(jìn)入塑性,/250缺陷下的溫室網(wǎng)殼在臨界點(diǎn)時(shí)刻,結(jié)構(gòu)中心開(kāi)始第2環(huán)對(duì)角節(jié)點(diǎn)處若干桿件提前進(jìn)入塑性(圖8a),這是受缺陷的影響,桿件在方向彎矩過(guò)大引起結(jié)構(gòu)局部失穩(wěn)(圖8b),極限荷載大幅度降低。

      4.3 荷載分布

      與其他球面網(wǎng)殼不同[4],拉索加強(qiáng)式溫室球面網(wǎng)殼的極限荷載受荷載不對(duì)稱分布影響,降低幅度較為明顯。為了節(jié)省篇幅,圖9分別給出了矢跨比為1/6和1/7的2個(gè)溫室網(wǎng)殼在4種荷載分布比例下的荷載-位移全過(guò)程曲線??梢钥闯?,荷載不對(duì)稱分布比例越大,極限荷載降低幅度越大,在不對(duì)稱荷載/=3/4作用下,結(jié)構(gòu)極限荷載最大降低36%。隨著溫室跨度的增加,結(jié)構(gòu)極限荷載受荷載不對(duì)稱分布的影響降低幅度更為明顯,30 m、40 m、50 m跨度溫室網(wǎng)殼在不對(duì)稱荷載/=3/4作用下,結(jié)構(gòu)極限荷載分別平均降低37%、38%、42%。主要因?yàn)樵诓粚?duì)稱荷載作用下,面內(nèi)拉索的布置使偏于荷載較大一側(cè)桿件內(nèi)力增加,僅提高了單側(cè)殼面剛度,而荷載較小一側(cè)殼面剛度無(wú)明顯提升,兩側(cè)剛度差異導(dǎo)致了較大的球面剪切變形,降低了結(jié)構(gòu)的穩(wěn)定承載力,加速了結(jié)構(gòu)的失穩(wěn)。

      圖8 臨界點(diǎn)時(shí)刻溫室網(wǎng)殼的塑性發(fā)展分布及對(duì)應(yīng)彎矩圖(b=50 m, f/b=1/6, r/b=250)

      圖9 荷載不對(duì)稱分布下溫室網(wǎng)殼荷載-位移全過(guò)程曲線

      圖10分別給出了完整和缺陷/250溫室網(wǎng)殼的極限荷載隨荷載分布形式的變化規(guī)律。由圖10可知,不同缺陷下結(jié)構(gòu)的全過(guò)程曲線具有一定規(guī)律性,荷載不對(duì)稱性越明顯,極限荷載降低幅度越大。30 m跨度完整溫室網(wǎng)殼受荷載不對(duì)稱分布影響,極限荷載最大降低37%,缺陷值=/250溫室網(wǎng)殼受荷載不對(duì)稱分布影響,極限荷載最大降低47%。40 m跨度完整溫室網(wǎng)殼受荷載不對(duì)稱分布影響,極限荷載最大降低36%,缺陷值=/250溫室網(wǎng)殼受荷載不對(duì)稱分布影響,極限荷載最大降低43%。因此,與完整溫室網(wǎng)殼相比,有缺陷溫室網(wǎng)殼受荷載不對(duì)稱作用的影響,極限荷載的降低程度更加明顯。

      圖10 荷載分布形式下溫室網(wǎng)殼荷載-位移全過(guò)程曲線

      圖11給出了荷載不對(duì)稱分布下溫室網(wǎng)殼桿件在臨界點(diǎn)時(shí)刻的塑性發(fā)展分布及對(duì)應(yīng)彎矩。由圖11可知,荷載不對(duì)稱作用下的溫室網(wǎng)殼在荷載較大一側(cè),因局部區(qū)域節(jié)點(diǎn)發(fā)生失穩(wěn)變形引起周圍桿件進(jìn)入塑性。和無(wú)缺陷溫室網(wǎng)殼相比,有缺陷溫室網(wǎng)殼由于初始幾何缺陷的影響,在臨界點(diǎn)時(shí)刻失穩(wěn)區(qū)域桿件由于方向彎矩過(guò)大提前進(jìn)入塑性,連帶兩側(cè)節(jié)點(diǎn)同時(shí)發(fā)生失穩(wěn),大幅度降低了網(wǎng)殼的承載能力,也驗(yàn)證了拉索加強(qiáng)式溫室單層球面網(wǎng)殼屬缺陷敏感結(jié)構(gòu)。

      圖11 網(wǎng)殼桿件在臨界點(diǎn)時(shí)刻的塑性發(fā)展分布及對(duì)應(yīng)彎矩(b=30 m, f/b=1/7)

      4.4 材料非線性

      以往研究表明,由于材料非線性的影響大幅度降低了網(wǎng)殼的承載能力,影響了結(jié)構(gòu)的穩(wěn)定性。本文針對(duì)不同跨度、矢跨比及荷載分布形式的溫室網(wǎng)殼進(jìn)行了彈性、彈塑性全過(guò)程分析,考察材料非線性對(duì)此類拉索加強(qiáng)式溫室網(wǎng)殼體系的影響,得到的分析統(tǒng)計(jì)結(jié)果可以作為拉索加強(qiáng)式溫室球面網(wǎng)殼在實(shí)際工程中該如何定量考慮材料非線性影響的依據(jù)。

      塑性折減系數(shù)用c表示,為彈塑性極限荷載與彈性極限荷載的比值。按照網(wǎng)殼規(guī)程JGJ61-2003[31]的建議,在進(jìn)行網(wǎng)殼彈塑性全過(guò)程分析時(shí),初始缺陷應(yīng)按跨度的1/300取值。表3給出了缺陷為/300不同跨度溫室網(wǎng)殼的塑性折減系數(shù)分布。本文對(duì)3種跨度的溫室如果按95%的保證率根據(jù)(3)求得的建議折減系數(shù)為:跨度30 m的c=0.83;跨度40 m的c=0.92;跨度50 m的c=0.96。

      和其他球面網(wǎng)殼不同[4],材料非線性對(duì)拉索加強(qiáng)式單層溫室網(wǎng)殼極限荷載的影響不大,并且溫室跨度越大,矢跨比越小,材料非線性的影響越小,在考慮荷載不對(duì)稱分布形式后,塑性折減系數(shù)略有變化,但均在0.7~1.0之間。

      表3 拉索加強(qiáng)式溫室單層球面網(wǎng)殼塑性折減系數(shù)

      5 結(jié) 論

      1)本文提出的拉索布置方案對(duì)提高溫室雙向網(wǎng)格型球面網(wǎng)殼結(jié)構(gòu)穩(wěn)定性的效果較為明顯,布置拉索后,結(jié)構(gòu)極限荷載最大可提高92%,跨度越大拉索效果越明顯。同時(shí),拉索預(yù)應(yīng)力的導(dǎo)入也不同程度地提高了結(jié)構(gòu)的極限荷載,網(wǎng)殼跨度越大拉索預(yù)應(yīng)力的效果越明顯,50 m跨度溫室網(wǎng)殼的極限荷載最大可提高43%。說(shuō)明拉索的布置形式有效地提高了結(jié)構(gòu)的整體剛度,同時(shí)論證了剛?cè)岱闲徒Y(jié)構(gòu)體系的合理性。

      2)拉索加強(qiáng)式溫室網(wǎng)殼在臨界點(diǎn)時(shí)刻的失穩(wěn)模態(tài)具有一定規(guī)律性,失穩(wěn)區(qū)域發(fā)生在結(jié)構(gòu)外緣第2、3環(huán)中央位置,且獨(dú)立外緣僅對(duì)應(yīng)一個(gè)失穩(wěn)區(qū)域;荷載不對(duì)稱分布時(shí),失穩(wěn)區(qū)域位于荷載較大一側(cè)。說(shuō)明網(wǎng)殼外緣為剛度薄弱區(qū)域,建議實(shí)際工程中應(yīng)適當(dāng)考慮加大失穩(wěn)區(qū)的桿件截面。

      3)初始缺陷對(duì)拉索加強(qiáng)式溫室網(wǎng)殼極限荷載的影響較大,從統(tǒng)計(jì)結(jié)果來(lái)看,溫室跨度越大,受缺陷影響導(dǎo)致結(jié)構(gòu)極限荷載降低幅度越明顯,極限荷載最大降低45%,說(shuō)明此類結(jié)構(gòu)屬缺陷敏感結(jié)構(gòu),施工中要注意嚴(yán)格控制結(jié)構(gòu)的安裝精度。

      4)荷載不對(duì)稱作用不同程度降低了結(jié)構(gòu)的承載能力,荷載不對(duì)稱性越明顯,極限荷載降低幅度越大。有缺陷網(wǎng)殼極限荷載受荷載不對(duì)稱分布影響更為明顯,極限荷載最大降低43%。

      5)通過(guò)對(duì)塑性折減系數(shù)的統(tǒng)計(jì)分析表明,對(duì)于跨度不同的溫室網(wǎng)殼,材料非線性的影響也有所不同,溫室跨度越大,材料非線性對(duì)結(jié)構(gòu)穩(wěn)定承載力的影響越??;矢跨比越小,材料非線性對(duì)結(jié)構(gòu)穩(wěn)定承載力的影響越小。在考慮荷載不對(duì)稱分布形式后,塑性折減系數(shù)略有變化,但均在0.7~1.0之間,說(shuō)明材料非線性對(duì)結(jié)構(gòu)影響不大。

      以上研究表明,拉索能夠充分發(fā)揮材料性能,有效地提高了溫室雙向網(wǎng)格型單層球面網(wǎng)殼的承載能力和穩(wěn)定性能,研究成果為溫室網(wǎng)殼體系的工程應(yīng)用提供了必要的理論依據(jù)。

      [1] 馬明,錢基宏,孔慧,等. 鄂爾多斯東勝區(qū)植物園溫室屋蓋結(jié)果設(shè)計(jì)研究[J]. 建筑結(jié)構(gòu),2013,43(6):5-9.

      Ma Ming, Qian Jihong, Kong Hui, et al. Design research on greenhouse roof structure of botanical garden in Erdos Dongsheng District[J]. Building Structure, 2013, 43(6): 5-9. (in Chinese with English abstract)

      [2] 楊軍. 大跨溫室單層網(wǎng)殼結(jié)構(gòu)穩(wěn)定分析[J]. 結(jié)構(gòu)工程師,2014,30(4):41-45.

      Yang Jun. Stability analysis of a single-layer latticed shell structure of long span greenhouse[J]. Structural Engineers, 2014, 30(4): 41-45. (in Chinese with English abstract)

      [3] 王軍林,郭華,任小強(qiáng),等. 恒災(zāi)害風(fēng)荷載下溫室單層柱面網(wǎng)殼整體動(dòng)力倒塌分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(9):195-203.

      Wang Junlin, Guo Hua, Ren Xiaoqiang, et al. Global dynamic collapse analysis of single-layer reticulated shell in greenhouse under disaster wind loads[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 195-203. (in Chinese with English abstract)

      [4] 曹正罡,范峰,沈世釗. 單層球面網(wǎng)殼的彈塑性穩(wěn)定性[J]. 土木工程學(xué)報(bào),2006,39(10):6-10.

      Cao Zhenggang, Fan Feng, Shen Shizhao. Elasto-plastic stability of single-layer reticulated domes[J]. China Civil Engineering Journal, 2006, 39(10): 6-10. (in Chinese with English abstract)

      [5] 曹正罡,范峰,沈世釗. 單層球面網(wǎng)殼結(jié)構(gòu)彈塑性穩(wěn)定性能研究[J]. 工程力學(xué),2007,24(5):17-23. Cao Zhenggang, Fan Feng, Shen Shizhao. Elasto-plastic stability analysis of single layer latticed domes[J]. Engineering Mechanics, 2007, 24(5): 17-23. (in Chinese

      with English abstract)

      [6] 曹正罡,范峰,沈世釗. K6型單層球面網(wǎng)殼的彈塑性穩(wěn)定[J]. 空間結(jié)構(gòu),2005,11(3):22-26. Cao Zhenggang, Fan Feng, Shen Shizhao. Elasto-plastic stability of K6 single layer latticed domes[J]. Spatial Structures, 2005, 11(3): 22-26. (in Chinese with English abstract)

      [7] 范峰,嚴(yán)佳川,曹正罡. 考慮桿件初彎曲的單層球面網(wǎng)殼穩(wěn)定性能[J]. 東南大學(xué)學(xué)報(bào),2009,39(II):158-164.

      Fan Feng, Yan Jiachuan, Cao Zhenggang. Stability of single layer reticulated domes with initial imperfection to members[J]. Journal of Southeast University, 2009, 39(II): 158-164. (in Chinese with English abstract)

      [8] 蔡健,賀盛,姜正榮,等. 單層網(wǎng)殼結(jié)構(gòu)穩(wěn)定性分析方法研究[J]. 工程力學(xué),2015,32(7):103-110.

      Cai Jian, He Sheng, Jiang Zhengrong, et al. Stability of large-span single-layer cylindrical reticulated shells supported along four edges[J]. Engineering Mechanics, 2015, 32(7): 103-110. (in Chinese with English abstract)

      [9] 齋藤公男. 空間結(jié)構(gòu)的發(fā)展和展望[M]. 北京:中國(guó)建筑工業(yè)出版社,2006:210-211.

      [10] 郭佳民,董石麟,袁行飛,等. 布索方式對(duì)弦支穹頂結(jié)構(gòu)穩(wěn)定性能的影響研究[J]. 土木工程學(xué)報(bào),2010,43:9-14.

      Guo Jiamin, Dong Shilin, Yuan Xingfei, et al. Influence of cable-struts arrangement on stability of suspen-dome[J]. China Civil Engineering Journal, 2010, 43: 9-14. (in Chinese with English abstract)

      [11] 王哲,王小盾,陳志華,等. 向心關(guān)節(jié)索桿體系弦支穹頂張拉模擬分析[J]. 建筑結(jié)構(gòu)學(xué)報(bào),2014,35(11):102-107.

      Wang Zhe, Wang Xiaodun, Chen Zhihua, et al. Numerical simulation of prestressing construction of suspen-dome structure with radial spherical plain bearing. Journal of Building Structures, 2014, 35(11): 102-107. (in Chinese with English abstract)

      [12] 殷志祥,李會(huì)軍. 大跨度拉索預(yù)應(yīng)力帶肋單層球面網(wǎng)殼的穩(wěn)定性及應(yīng)用研究[J]. 工程力學(xué),2008,25(8):48-53.

      Yin Zhixiang, Li Huijun. Application and stability study on large span prestressed single-layer spherical shell with ribs[J]. Engineering Mechanics, 2008, 25(8): 48-53. (in Chinese with English abstract)

      [13] 李永梅,張毅剛. 新型索承網(wǎng)殼結(jié)構(gòu)靜力、穩(wěn)定性分析[J]. 空間結(jié)構(gòu),2003,9(1):25-30.

      Li Yongmei, Zhang Yigang. Stability and static analysis of cable-supported lattice shells[J]. Spatial Structures, 2003, 9(1): 25-30. (in Chinese with English abstract)

      [14] 陳志華,竇開(kāi)亮,左晨然. 弦支穹頂結(jié)構(gòu)的穩(wěn)定性分析[J]. 建筑結(jié)構(gòu),2004,34(5):46-48.

      Chen Zhihua, Dou Kailiang, Zuo Chenran. Stability analysis of suspen-dome[J]. Building Structure, 2004, 34(5): 46-48. (in Chinese with English abstract)

      [15] Kawaguchi M, Abe M, Tatemichi I. Design tests and realization of suspen-dome system[J]. Journal of International Association for Shell and Spatial Structures, 1999, 40(131): 179-192.

      [16] Kushima S, Fujimoto M, Imai K. Numerical results on buckling behaviors of single layer two-way grid dome with tension members[J]. Journal of Structural and Construction Engineering, 2007, 617: 121-128.

      [17] Kushima S, Fujimoto M, Imai K. Experimental study on buckling behavior of single layer two-way grid dome with PC bars as diagonals[J]. Journal of Structural and Construction Engineering, 2006, 603: 85-92.

      [18] Kato S, Yoshida N and Nakazawa S. Buckling strength of two-way grid single-layer lattice domes stiffened by diagonal braces[J]. Journal of Structural and Construction Engineering, 2012, 77(676): 891-898.

      [19] 張中昊,付強(qiáng),范峰. 斜拉桿增強(qiáng)溫室雙向網(wǎng)格型單層柱面網(wǎng)殼穩(wěn)定性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(10):179-186.

      Zhang Zhonghao, Fu Qiang, Fan Feng. Tension members strengthening stability of two-way grid single-layer cylindrical shell in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(10): 179-186. (in Chinese with English abstract)

      [20] Li Pengcheng, Wu Minger. Parametric study of cable-stiffened single-layer cylindrical latticed shells with different supporting conditions[J]. Journal of Constructional Steel Research, 2016, 121: 457-467.

      [21] Li Pengcheng, Wu Minger, Xing Pengju. Novel cable-stiffened single-layer shells and their stabilities[J]. Journal of Constructional Steel Research, 2014, 92: 114-121.

      [22] Li Pengcheng, Wu Minger, Wang Hao, et al. Experimental and numerical analysis of cable-stiffened single-layer spherical latticed shells[J]. Advances in Structural Engineering, 2016, 19(3): 488-499.

      [23] Fujimoto M, Imai K, Takino A, Zhang ZH. Experimental study on single layer two-way grid spherical dome composed of prefabricated wooden truss system with tension rod members[C]// Proceedings of the IASS Annual Symposium, 2016: 26-30.

      [24] 郭正興,羅斌. 大跨空間鋼結(jié)構(gòu)預(yù)應(yīng)力施工技術(shù)研究與應(yīng)用:大跨空間鋼結(jié)構(gòu)預(yù)應(yīng)力施工成套技術(shù)[J]. 施工技術(shù),2011,13:96-102.

      Guo Zhengxing, Luo Bin. Research and application of long-span space steel structure prestress construction technology: review on development and application of long-span space steel structure prestress technology[J]. Construction Technology, 2011, 13: 96-102. (in Chinese with English abstract)

      [25] 胡小勇. 鋼拉桿預(yù)緊力施工技術(shù)[C]//第四屆全國(guó)鋼結(jié)構(gòu)工程技術(shù)交流會(huì)論文集,2012(3): 597-599

      [26] 楊建國(guó),葉建國(guó),祁海珅,等. 高強(qiáng)度建筑鋼拉桿的應(yīng)用與研究[J]. 鋼結(jié)構(gòu),2005, 5(20):31-33.

      Yang Jianguo, Ye Jianguo, Qi Haikun, et al. Application and research of high strength building steel cable[J]. Steel Construction, 2005, 5(20): 31-33. (in Chinese with English abstract)

      [27] 李淑嫻,陳國(guó)棟,王煦,等. 預(yù)應(yīng)力鋼拉桿施工全過(guò)程分析及檢測(cè)[J]. 施工技術(shù),2014, 43(8):52-54, 92.

      Li Shuxian, Chen Guodong, Wang Xu, et al. Construction whole process analysis and detection for prestressed steel rods[J]. Construction Technology, 2014,43(8): 52-54,92. (in Chinese with English abstract)

      [28] 秦杰,李國(guó)立,李繼雄,等. 預(yù)應(yīng)力索拱結(jié)構(gòu)施工仿真與施工技術(shù)研究[J]. 施工技術(shù),2004(11):9-10, 22.

      Qin Jie, Li Guoli, Li Jixiong, et al. Construction simulation and construction technology study of prestressed cable arch structures[J]. Construction Technology, 2004(11): 9-10, 22. (in Chinese with English abstract)

      [29] 徐秉業(yè),劉信聲. 應(yīng)用彈塑性力學(xué)[M]. 北京:清華大學(xué)出版社,1995.

      [30] 曹正罡. 網(wǎng)殼結(jié)構(gòu)彈塑性穩(wěn)定性能研究[D]. 哈爾濱:哈爾濱工業(yè)大學(xué),2007. Cao Zhenggang. Elasto-Plastic Stability of Reticulated Shells[D]. Harbin: Engineering of Harbin Institute of Technology, 2007. (in Chinese with English abstract)

      [31] 網(wǎng)殼結(jié)構(gòu)技術(shù)規(guī)程:JGJ61-2003 [S]. 北京:中國(guó)建筑工業(yè)出版社,2003.

      張中昊,付 強(qiáng),范 峰. 拉索加強(qiáng)式溫室單層球面網(wǎng)殼穩(wěn)定性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(22):233-240. doi:10.11975/j.issn.1002-6819.2017.22.030 http://www.tcsae.org

      Zhang Zhonghao, Fu Qiang, Fan Feng. Stability analysis of cable-stiffened single-layer two-way grid reticulated domes of greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 233-240. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.22.030 http://www.tcsae.org

      Stability analysis of cable-stiffened single-layer two-way grid reticulated domes of greenhouse

      Zhang Zhonghao1,2, Fu Qiang1※, Fan Feng2

      (1.,150030,;2.150090,)

      A single-layer reticulated dome structure is elegant and has reasonable stress distribution and various grid types. It has been widely used in various projects, and its stability problem has become the focus of research work. Single layer two-way grid reticulated domes are superior in aesthetic and material efficiency but have a low rigidity. In recent years, researchers worldwide have conducted a series of studies on the low structural rigidity of a two-way grid dome. In these studies, diagonal cables for the two-way grid are used to strengthen the in-plane rigidity of the structure and to improve the overall stability of the reticulated shell structure; the validity of the cable arrangement method is confirmed via testing and theoretical analysis. But researchers have not proposed arrangement of cables between non-adjacent nodes at the out-of-plane of the reticulated dome to improve the rigidity of out-of-plane of the structure. Therefore, to increase the rigidity of the in-plane and out-of-plane of a single-layer two-way grid reticulated dome, cables are installed in diagonals and at the out-of-plane of the reticulated dome. Hence cable installation pattern is considered to increase the in-plane and out-of-plane rigidity of two-way grid domes with width 30, 40 and 50 m. A new cable-strengthened single-layer reticulated dome system is developed for dome structure design. To further investigate structure stability before and after the cable-strengthened reticulated dome develops instability, in this study, an analysis of the complete non-linearity process was employed to perform large-scale parameterization analysis for a reticulated dome structure under various cable arrangement scenarios. More than 500 examples of reticulated domes were carried out with considering both geometric and material nonlinearity based on commercial finite element software ANSYS and self-compiled pre-post-processing programs. The effects of cables and various structural responses such as critical loads, buckling modes, and plastic development levels were examined by the numerical study. The rise-span ratio, cable pre-stress, initial geometric imperfection and unsymmetrical distribution of loads were collected to investigate the stability of reticulated domes. In the numerical calculations, cable arrangement at interior and exterior surfaces of the two-way grid reticulated dome structure effectively improved the bearing capability of the structure, with an improvement range of 29%-92%. Cable pre-stress was more effective in improving the bearing capability of a large span reticulated dome structure than small span reticulated dome structure. The stability of a cable-strengthened single-layer reticulated dome structure was affected by an asymmetric load distribution and initial geometric imperfection; bearing capacity decreases to various degrees. Through a statistical analysis of elastic and elasto-plastic stability critical loads, a plasticity reduction coefficient for the cable-stiffened single layer two-way grid domes was proposed to reveal the influence of material nonlinearity on critical loads. As a result, the plastic reduced coefficients of cylindrical shells were summarized to be 0.7 – 1.0. The impact of material non-linearity on various types of reticulated dome structures had little influence on the structural stability bearing capacity, and the plastic reduction coefficients were above 0.7 Through the analytical results, the elasto-plastic stability behaviors of cable-stiffened single layer two-way grid domes were concluded, and the results provide a theoretical basis and technical support for the practical engineering in modern greenhouse construction.

      greenhouse; loads; stability; cable-stiffened; two-way grid; critical load

      10.11975/j.issn.1002-6819.2017.22.030

      S26

      A

      1002-6819(2017)-22-0233-08

      2017-05-20

      2017-07-31

      黑龍江省博士后基金項(xiàng)目(LBH-Z14095);中國(guó)博士后基金項(xiàng)目(2015M571421);國(guó)家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(51109037);東北農(nóng)業(yè)大學(xué)“青年才俊”項(xiàng)目(518024)

      張中昊,男,黑龍江哈爾濱人,副教授,博士,哈爾濱工業(yè)大學(xué)土木工程學(xué)院博士后,主要從事空間鋼結(jié)構(gòu)、溫室網(wǎng)殼結(jié)構(gòu)抗震及穩(wěn)定性能研究。Email:zhangzhonghao1980@163.com

      付 強(qiáng),男,黑龍江哈爾濱人,教授,博士,博士生導(dǎo)師,主要從事農(nóng)業(yè)水土資源高效利用等方面研究。Email:fuqiang@neau.edu.cn

      猜你喜歡
      網(wǎng)殼球面單層
      二維四角TiC單層片上的析氫反應(yīng)研究
      分子催化(2022年1期)2022-11-02 07:10:16
      基于CFD模擬的球面網(wǎng)殼風(fēng)壓分布分析
      球面檢測(cè)量具的開(kāi)發(fā)
      基于PLC控制的立式單層包帶機(jī)的應(yīng)用
      電子制作(2019年15期)2019-08-27 01:12:04
      單層小波分解下圖像行列壓縮感知選擇算法
      Heisenberg群上移動(dòng)球面法的應(yīng)用——一類半線性方程的Liouville型定理
      大型拱頂儲(chǔ)罐三角形板式節(jié)點(diǎn)網(wǎng)殼正裝施工工藝
      新型單層布置汽輪發(fā)電機(jī)的研制
      地震動(dòng)斜入射對(duì)樁-土-網(wǎng)殼結(jié)構(gòu)地震響應(yīng)影響
      球面穩(wěn)定同倫群中的ξn-相關(guān)元素的非平凡性
      闵行区| 兴隆县| 吴旗县| 瑞丽市| 武冈市| 清水河县| 大竹县| 榆树市| 仙桃市| 乌恰县| 桃园市| 潜江市| 宁海县| 洛宁县| 清新县| 丘北县| 卓尼县| 二连浩特市| 仁寿县| 大埔区| 唐山市| 齐齐哈尔市| 于都县| 扬州市| 葫芦岛市| 鞍山市| 长治市| 清水河县| 通江县| 万州区| 中西区| 马关县| 靖江市| 怀仁县| 沙雅县| 道孚县| 新乡县| 栾城县| 靖西县| 巨野县| 丰台区|