劉友梅+薛敏峰+史文琦+黃薇+袁斌
摘要:根據(jù)RNA干擾(RNA interference,RNAi)原理,在生物體內(nèi)表達(dá)雙鏈RNA(dsRNA)可以高效沉默生物體內(nèi)基因的表達(dá)。在寄主中形成病原真菌和昆蟲特異基因的小RNA會(huì)進(jìn)入其體內(nèi)從而產(chǎn)生寄主誘導(dǎo)的基因沉默(Host-induced gene silencing,HIGS)。病蟲害對全球糧食安全構(gòu)成極大的威脅,利用HIGS技術(shù)為提高農(nóng)作物抗病蟲性提供了有效的途徑。綜述了HIGS技術(shù)在提高農(nóng)作物抗病蟲性中的應(yīng)用,總結(jié)了沉默信號(hào)在寄主與病蟲間的可能的傳遞方式以及提出該技術(shù)存在的優(yōu)缺點(diǎn)。
關(guān)鍵詞:RNA干擾(RNAi);基因沉默;農(nóng)作物;病害;蟲害
中圖分類號(hào):S332.2 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2017)23-4454-03
DOI:10.14088/j.cnki.issn0439-8114.2017.23.006
The Application of Host-induced Gene Silencing in Improving the Resistance
of Crop to Disease and Insect
LIU You-mei,XUE Min-feng,SHI Wen-qi,HUANG Wei,YUAN Bin
(Institute of Plant Protection and Clay Fertilizer,Hubei Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management Crops in Central China, Ministry of Agriculture. P. R. China/Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control,
Wuhan 430064, China)
Abstract: According to the principle of RNA interference(RNAi),the expression of double stranded RNA(dsRNA) in vivo can efficiently silence gene expression in organism. A small RNA that forms pathogenic fungi and insect specific genes in the host will enter its body and produce host-induced gene silencing(HIGS). Crop diseases and insect pests pose a great threat to global food security,and the use of HIGS technology provides an effective way to improve crop disease and insect resistance. This paper summarized the application of HIGS technology on improving crop disease resistance and insect pests,and the possible transfer mode of silent signal between host and insect pest,and put forward the advantages and disadvantages of this technology.
Key words: RNA interference(RNAi); host-induced gene silencing; crop; disease; pest
RNA干擾(RNA interference,RNAi)是一種高度保守且普遍存在的基因表達(dá)調(diào)控方式。它是由一種由雙鏈RNA(Double strand RNA)引起的基因沉默。RNA沉默不僅能夠阻止外源核苷酸的入侵,而且調(diào)控生物體的發(fā)育進(jìn)程[1,2]。簡單的說,特異的dsRNA形成siRNA導(dǎo)致特定的mRNA降解,從而導(dǎo)致特定基因表達(dá)沉默。依據(jù)這個(gè)原理開發(fā)出了RNAi技術(shù)用于研究基因的功能。近年來,RNAi技術(shù)廣泛應(yīng)用于基因功能的研究,并且在多種農(nóng)作物中用于提高作物對生物或非生物脅迫的抵抗能力[3]。研究表明,體外施加dsRNA也能夠誘導(dǎo)生物體內(nèi)目標(biāo)基因產(chǎn)生基因沉默[4]。在寄主作物體內(nèi)表達(dá)靶標(biāo)生物特異基因的dsRNA則能夠幫助寄主免受被捕食或侵染。這種在寄主細(xì)胞中表達(dá)害蟲或病原菌基因dsRNA,以提高植物抗病蟲性的生物技術(shù)被稱之為寄主誘導(dǎo)基因沉默(Host-induced gene silencing,HIGS)。與化學(xué)防治相比,這種稱為寄主誘導(dǎo)基因沉默的生物技術(shù)對靶標(biāo)生物具有高度特異性。
隨著世界人口數(shù)量的增長,糧食需求也成倍增長,病蟲害是滿足糧食需求所面臨的主要挑戰(zhàn)。隨著dsRNA在昆蟲體內(nèi)的吸收和擴(kuò)展機(jī)制被闡明,從而使以RNAi為基礎(chǔ)的植物生物技術(shù)成為一種控制病蟲害的可行策略[5]。本文圍繞HIGS在病蟲害中已有的研究成果,論述其在生產(chǎn)上應(yīng)用的可能和前景。
1 RNA沉默信號(hào)在寄主與靶標(biāo)生物間的傳遞
HIGS要能夠取得抑制靶標(biāo)生物目標(biāo)基因的效果, 外源dsRNA必須進(jìn)入靶標(biāo)生物體內(nèi)。研究表明,昆蟲吸收dsRNA主要有3條途徑:一是以SID-1蛋白和SID-2蛋白為基礎(chǔ)的跨膜通道吸收途徑。首先依賴SID-2蛋白將dsRNA從外環(huán)境運(yùn)至體內(nèi),再由SID-1蛋白將dsRNA分子傳遞到整個(gè)昆蟲體內(nèi)。二是選擇性內(nèi)吞作用吸收途徑。三是依賴?yán)ハx免疫作用的吸收途徑[6]。endprint
當(dāng)將植物寄生線蟲被浸潤在siRNA/dsRNA溶液中,siRNA/dsRNA可通過線蟲的分泌腺、排泄器官或受化學(xué)興奮劑刺激的咽部進(jìn)入線蟲體內(nèi),從而誘導(dǎo)靶基因發(fā)生沉默,進(jìn)一步影響線蟲的生長和發(fā)育。近年來,在活體條件下植物寄生線蟲RNAi信號(hào)的傳遞方式也被大量研究,植物寄生線蟲主要通過取食點(diǎn)攝取植物傳遞的siRNA或未被加工的dsRNA[7]。
小RNAs從植物細(xì)胞進(jìn)入真菌細(xì)胞的轉(zhuǎn)移途徑尚不十分明確。植物與真菌的相互識(shí)別主要發(fā)生在植物與真菌的交界面上。真菌營養(yǎng)物質(zhì)的吸收、酶的轉(zhuǎn)移、分泌毒素進(jìn)入植物細(xì)胞、真菌效應(yīng)蛋白和植物病程相關(guān)蛋白的分泌以及細(xì)胞表面感受器的相互識(shí)別均發(fā)生在這個(gè)界面上[8,9]。當(dāng)植物遭受病原菌攻擊時(shí),植物擁有專門的分泌系統(tǒng)將防衛(wèi)分子傳遞到被攻擊的位置。而這種分泌途徑調(diào)控免疫反應(yīng)所需的低分子質(zhì)量化合物的運(yùn)輸,例如細(xì)胞表面蛋白,它們通過細(xì)胞的外吐作用到達(dá)作用位點(diǎn)[10]。植物能夠活躍的輸出各類分子物質(zhì)到植物和真菌界面,可能包括siRNAs。siRNAs存在的可能傳遞途徑包括通過胞外/胞吞作用在植物和真菌界面進(jìn)行雙向傳遞;當(dāng)真菌獲取營養(yǎng)物時(shí)隨著特定的轉(zhuǎn)運(yùn)蛋白進(jìn)行真菌細(xì)胞;通過各種跨膜通道進(jìn)行被動(dòng)穿越[11]。
2 HIGS在作物蟲害防治中的應(yīng)用
農(nóng)作物病蟲害造成巨大的損失,其中動(dòng)物蟲害每年造成約15%~20%的產(chǎn)量損失[12]。長期使用化學(xué)農(nóng)藥防治害蟲,有超過500種昆蟲和螨類對一種以上的殺蟲劑存在耐藥性[13]。這意味著需要有新的方法來防治農(nóng)作物蟲害。
棉鈴蟲是世界性的害蟲之一,能夠?yàn)楹Τ^360種植物。通過HIGS策略增強(qiáng)昆蟲對植物毒素的敏感性,從而間接抑制昆蟲的取食。棉鈴蟲細(xì)胞色素P450基因在棉鈴蟲幼蟲的中腸中表達(dá),其對棉花中的棉子酚具有耐受作用。Mao等[14]通過構(gòu)造出能夠表達(dá)棉鈴蟲P450基因dsRNA的棉花,使棉鈴蟲體內(nèi)的P450基因表達(dá)量下降,從而減低其對棉酚的耐受性,最終導(dǎo)致其生長緩慢甚至死亡。來自棉鈴蟲的其他細(xì)胞色素P450基因已被作為HIGS的靶點(diǎn)用于防治那些對擬除蟲菊酯類殺蟲劑具有抗性的棉鈴蟲,同時(shí)解決了擬除蟲菊酯在田間的濫用問題。表達(dá)棉鈴蟲CYP9A14基因dsRNA的擬南芥能夠克服那些對溴氰菊酯具有抗性的棉鈴蟲幼蟲的取食[15]。Mamta等[16]以棉鈴蟲的幾丁質(zhì)酶基因(HaCHI)為靶標(biāo)基因,構(gòu)造出HaCHI-RNAi煙草和土豆,實(shí)現(xiàn)了對棉鈴蟲的有效控制。Luo等[17]以影響黑盲蝽卵巢發(fā)育的AsFAR基因作為靶標(biāo),利用農(nóng)桿菌介導(dǎo)的遺傳轉(zhuǎn)化得到了高量表達(dá)靶標(biāo)基因dsRNA的轉(zhuǎn)基因棉花,創(chuàng)制的轉(zhuǎn)基因棉花對中黑盲蝽表現(xiàn)出較強(qiáng)的抵抗能力,降低了對棉花危害程度。
3 HIGS在作物病害防治中的應(yīng)用
近年來,已有多個(gè)報(bào)道表明利用HIGS技術(shù)可以實(shí)現(xiàn)對真菌病害控制的研究。Panstruga[18]研究表明,某些植物病原真菌與寄主間通過吸器互作促進(jìn)了病原菌對dsRNA的吸收或siRNA從寄主植物細(xì)胞進(jìn)入真菌體內(nèi),使寄主植物產(chǎn)生以RNA沉默為基礎(chǔ)的抗性。Nowara等[19]將小麥白粉病菌效應(yīng)子基因Avra10作為靶標(biāo)基因,以不含抗性基因Mla10的小麥品種Pallas作為轉(zhuǎn)化親本,創(chuàng)制出表達(dá)Avra10基因dsRNA的轉(zhuǎn)基因小麥品種。該品種能使小麥白粉病菌在侵染時(shí)的吸器數(shù)目大幅減少,可以顯著提高感病品種的抗性。Koch等[20]研究表明,沉默真菌麥角固醇生物合成必需基因CYP51是限制禾谷鐮刀菌生長和發(fā)育最為有效的方法。將禾谷鐮刀菌參與合成的CYP51A、CYP51B和CYP51C 3個(gè)基因的片段構(gòu)建成嵌合的長791個(gè)核苷酸dsRNA(CYP3RNA)進(jìn)行生物測定,CYP3RNA對禾谷鐮刀菌的生長具有抑制作用,且CYP3RNA在擬南芥和大麥中表達(dá)使易感病植株提高了對真菌侵染的抗性[21]。這些結(jié)果均證實(shí)了真菌CYP51基因的寄主誘導(dǎo)沉默是抑制菌絲體形成和侵染植物的有效方式。Govindarajulu等[22]以萵苣霜霉病菌的HAM34和CES1基因?yàn)槟繕?biāo)基因,構(gòu)造出能夠?qū)iT抑制上述基因表達(dá)的轉(zhuǎn)基因萵苣品種,從而大大抑制萵苣霜霉病菌的生長和孢子形成。Zhang等[23]成功利用HIGS技術(shù)實(shí)現(xiàn)了對棉花黃萎病的防控,以真菌疏水蛋白VDH1編碼基因作為靶標(biāo)分子,構(gòu)建獲得RNAi(Vdh1i)轉(zhuǎn)基因棉花,通過致病性檢測表明該轉(zhuǎn)基因棉花對棉花黃萎病表現(xiàn)出較高的抗性。
植物寄生線蟲在2003年對全球作物造成嚴(yán)重?fù)p失[24],絕大部分為害是由根結(jié)線蟲和孢囊線蟲引起的。Yadav等[25]利用南方根結(jié)線蟲剪接因子和整合酶基因創(chuàng)制的dsRNA轉(zhuǎn)基因煙草品種;Charlton等[26]將兩個(gè)分別表達(dá)Mispc3和Miduox基因dsRNAs的轉(zhuǎn)基因擬南芥品種進(jìn)行了雜交,獲得了能夠同時(shí)表達(dá)Mispc3和Miduox基因dsRNAs的轉(zhuǎn)基因擬南芥新品種;Niu等[27]以南方根結(jié)線蟲的Rpn7基因作為靶基因,構(gòu)造出能夠表達(dá)出南方根結(jié)線蟲Rpn7基因dsRNA的菊科植物。以上利用dsRNA創(chuàng)制的轉(zhuǎn)基因植株都顯著提高對目標(biāo)病蟲的抗性。
4 HIGS在作物病蟲害防治中的利弊
HIGS 技術(shù)在應(yīng)用中的優(yōu)點(diǎn):對于尚未克隆到抗病蟲基因的農(nóng)作物,利用HIGS技術(shù)可以加速培育出抗病蟲的農(nóng)作物;若選取的靶基因序列在多種害蟲或病原菌中具有高度同源性,則改造出的農(nóng)作物可展示出抗多種蟲害或病害的特點(diǎn);與化學(xué)防治對環(huán)境造成巨大的污染相比,HIGS對環(huán)境的副作用最小。
HIGS技術(shù)在應(yīng)用中的不足:HIGS選取靶基因中的一段基因用于沉默,這有可能會(huì)造成其他同源的非目標(biāo)基因的沉默;HIGS載體在寄主基因組上是隨機(jī)插入的,當(dāng)插入到寄主某個(gè)關(guān)鍵基因中時(shí),可能會(huì)造成寄主表型發(fā)生改變;HIGS不僅需要構(gòu)建HIGS載體,而且需要較成熟的作物轉(zhuǎn)化體系,因此,并不是所有的寄主病原互作系統(tǒng)均能達(dá)到理想的效果[28]。endprint
選擇合適的靶基因是HIGS能夠成功的關(guān)鍵步驟,而致死表型基因被證實(shí)能夠最有效的用于HIGS。而通過cDNA文庫和利用下一代測序技術(shù)(如轉(zhuǎn)錄組測序)篩選到的顯著差異表達(dá)水平基因也可作為合適的靶基因。需值得注意的是,目標(biāo)基因的dsRNA和相應(yīng)的siRNA不會(huì)發(fā)生非靶效應(yīng),即對非目標(biāo)寄主、哺乳動(dòng)物和寄主植物的生理不會(huì)產(chǎn)生不良影響。綜上所述,HIGS技術(shù)的應(yīng)用在創(chuàng)制作物抗病蟲新種質(zhì)上有著廣闊的應(yīng)用前景,使得農(nóng)作物獲得持久抗病蟲性成為可能[29]。
參考文獻(xiàn):
[1] SIDAHMED A M E,WILKIE B. Endogenous antiviral mechanisms of RNA interference:A comparative biology perspective[J].Methods in Molecular Biology,2010,623:3-19.
[2] VOINNET O. Induction and suppression of RNA silencing: insights from viral infections[J].Nature Reviews Genetics,2005, 6(3):206-220.
[3] 張河山,胡亞亞,張 娜,等.寄主誘導(dǎo)的基因沉默(HIGS)技術(shù)研究進(jìn)展[J].農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2013,21(5):603-620.
[4] FIRE A,XU S Q,MONTGOMERY M K,et al. Potent and specific genetic interference mediated by double-stranded RNA in Caenorhabditis elegans[M].Nature,1998:806-811.
[5] TOMOYASU Y,MILLER S C,TOMITA S,et al. Exploring systemic RNA interference in insects:a genome-wide survey for RNAi genes in Tribolium[J].Genome Biology,2008,9(1):R10.
[6] HUVENNE H,SMAGGHE G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control:A review[J].Journal of Insect Physiology,2010,56(3):227-235.
[7] LILLEY C J,DAVIES L J,URWIN P E. RNA interference in plant parasitic nematodes:A summary of the current status[J].Parasitology,2012,139(5):630-640.
[8] LU Y J,SEBASTIAN SCHORNACK,SPALLEK T,et al. Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking[J].Cellular Microbiology,2012,14(5):682-697.
[9] MICALI C O,ULLA N,DORIT G,et al. Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria[J].Cellular Microbiology,2011, 13(2):210-226.
[10] BEDNAREK P,KWON C,SCHULZE-LEFERT P,et al. Not a peripheral issue:Secretion in plant-microbe interactions[J].Current Opinion in Plant Biology,2010,13(4):378-387.
[11] CASADEVALL A,NOSANCHUK J D,WILLIAMSON P,et al. Vesicular transport across the fungal cell wall[J].Trends in Microbiology,2009,17(4):158-162.
[12] OERKE E C. Crop losses to pests[J].Journal of Agricultural Science,2006,144(144):31-43.
[13] HOGSETTE,JEROME A. United states department of agriculture-agricultural research service research on managing insect resistance to insecticides[J].Pest Management Science,2003, 59(6-7):835-841.
[14] MAO Y B,CAI W J,WANG J W,et al. Silencing a cotton bollworm P450 mono oxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol[J].Nature Biotechnology,2007,25(11):1307-1313.endprint
[15] TAO X,XUE X,HUANG Y,et al. Gossypol-enhanced P450 gene pool contributes to cotton bollworm tolerance to a pyrethroid insecticide[J].Molecular Ecology,2012,21(17):4371-4385.
[16] MAMTA,REDDY K R,RAJAM M V. Targeting chitinase gene of Helicoverpaarmigera by host-induced RNA interference confers insect resistance in tobacco and tomato[J].Plant Molecular Biology,2015,90(3):1-12.
[17] LUO J,LIANG S,LI J,et al. A transgenic strategy for controlling plant bugs (Adelphocoris suturalis) through expression of double-stranded RNA homologous to fatty acyl-coenzyme:A reductase in cotton[J].New Phytol,2017,215(3):1173-1185.
[18] PANSTRUGA R. Establishing compatibility between plants and obligate biotrophic pathogens[J].Current Opinion in Plant Biology,2003,6(4):320-326.
[19] NOWARA D,GAY A,LACOMME C,et al.HIGS:Host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeriagraminis[J].Plant Cell,2010,22(9):3130-3141.
[20] KOCH A,KOGEL K. New wind in the sails:Improving the agronomic value of crop plants through RNAi-mediated gene silencing[J].Plant Biotechnology Journal,2014,12(7):821-831.
[21] KOCH A,KUMAR N,WEBER L,et al. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to Fusarium species[J].Proceedings of the National Academy of Sciences,2013,110(48):19324-19329.
[22] GOVINDARAJULU M,EPSTEIN L,WROBLEWSKI T,et al. Host-induced gene silencing inhibits the biotrophic pathogen causing downy mildew of lettuce[J].Plant Biotechnology Journal,2014,13(7):875-883.
[23] ZHANG T,JIN Y,ZHAO J H,et al. Host-induced gene silencing of target gene in fungal cells confers effective resistance to cotton wilt disease pathogen Verticilliumdahliae[J].Molecular Plant,2016,9(6):939-942.
[24] CHITWOOD,DAVID J. Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture-Agricultural Research Service[J].Pest Management Science,2003,59(59):748-753.
[25] YADAV B C,VELUTHAMBI K,SUBRAMANIAM K. Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection[J].Molecular & Biochemical Parasitology,2006,148(2):219-222.
[26] CHARLTON W L,HAREL H Y M,BAKHETIA M,et al. Additive effects of plant expressed double-stranded RNAs on root-knot nematode development[J].International Journal for Parasitology,2010,40(7):855-864.
[27] NIU J,JIAN H,XU J,et al. RNAi silencing of the Meloidogyne incognita Rpn7 gene reduces nematode parasitic success[J].European Journal of Plant Pathology,2012,134(1):131-144.
[28] YIN C,JURGENSON J E,HULBERT S H. Development of a host-induced RNAi system in the wheat stripe rust fungus Pucciniastriiformis f. sp. tritici[J].Molecular Plant-microbe Interactions,2011,24(5):554-561.
[29] NUNES C C,DEAN R A. Host-induced gene silencing:A tool for understanding fungal host interaction and for developing novel disease control strategies[J].Molecular Plant Pathology,2012,13(5):519-529.endprint