丁一寧 衡震 韓知伯
(1.大連理工大學(xué) 海岸與近海工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,遼寧 大連 116024;2.中廣電廣播電影電視設(shè)計(jì)研究院,北京 100045)
多相導(dǎo)電混凝土的受彎開(kāi)裂自監(jiān)測(cè)性能*
丁一寧1衡震1韓知伯2
(1.大連理工大學(xué) 海岸與近海工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,遼寧 大連 116024;2.中廣電廣播電影電視設(shè)計(jì)研究院,北京 100045)
將結(jié)構(gòu)型鋼纖維(SF)、碳纖維(CF)及納米炭黑(NCB)作為多相導(dǎo)電材料加入混凝土中,研究了多相導(dǎo)電材料對(duì)混凝土開(kāi)裂后的力學(xué)性能、導(dǎo)電性能及裂縫擴(kuò)展自監(jiān)測(cè)性能的影響.建立了混凝土梁的受拉區(qū)表面電阻變化率(FCR)與裂縫張開(kāi)位移(COD)之間的關(guān)系.結(jié)果表明:導(dǎo)電相材料的加入能夠顯著提高抗彎強(qiáng)度與彎曲韌性;多相導(dǎo)電材料對(duì)彎曲性能及裂縫擴(kuò)展的自監(jiān)測(cè)性能具有正混雜效應(yīng);電阻變化率與裂縫張開(kāi)位移呈線性關(guān)系.
纖維;納米炭黑;混凝土開(kāi)裂;自監(jiān)測(cè);電阻變化率;裂縫張開(kāi)位移
要保障混凝土結(jié)構(gòu)在服役期的安全性、適用性與耐久性,對(duì)裂縫的監(jiān)測(cè)、評(píng)估與限制是先決條件,同時(shí)對(duì)于構(gòu)件荷載-位移全過(guò)程中的承載力進(jìn)行監(jiān)控也是結(jié)構(gòu)安全評(píng)價(jià)的關(guān)鍵點(diǎn)之一.對(duì)混凝土結(jié)構(gòu)進(jìn)行實(shí)時(shí)、連續(xù)的健康監(jiān)測(cè)可及時(shí)發(fā)現(xiàn)早期損傷并采取適當(dāng)?shù)木S修措施,而導(dǎo)電混凝土可通過(guò)測(cè)量其電阻變化率來(lái)探測(cè)其本身的損傷,這種對(duì)于應(yīng)變及損傷的自感知性能可為實(shí)際工程中混凝土結(jié)構(gòu)的無(wú)損監(jiān)測(cè)提供一種有效的方法[1-17].為研發(fā)導(dǎo)電混凝土以實(shí)現(xiàn)對(duì)損傷的感知,可將碳纖維[1,4-5,8-9]、納米炭黑[5,8-12]、石墨[7,13-14]、鋼渣等[6]導(dǎo)電相加入水泥基體中,改善基體的導(dǎo)電性并形成連續(xù)的導(dǎo)電網(wǎng)路.納米炭黑的導(dǎo)電性較好且成本較低、在導(dǎo)電混凝土中是一種較為理想的導(dǎo)電相.目前,國(guó)內(nèi)外的學(xué)者對(duì)納米炭黑與碳纖維復(fù)相導(dǎo)電材料應(yīng)用于水泥基材料中進(jìn)行了一些研究[5,8-9],該復(fù)相導(dǎo)電材料的優(yōu)點(diǎn)是可感知應(yīng)變,但隨著裂縫的出現(xiàn),碳纖維被不斷拔出,導(dǎo)電通路將被破壞,故無(wú)法感知裂縫的擴(kuò)展;此外,以上研究尚存在下列不足:①由于碳纖維及炭黑均為脆性材料,它們對(duì)水泥基材料的脆性沒(méi)有改善作用;②研究的基體材料多為水泥凈漿或砂漿,很少涉及摻有粗骨料的混凝土;③對(duì)損傷的感知主要集中在單軸受壓或開(kāi)裂前的受拉應(yīng)變階段.而處于正常使用階段的混凝土構(gòu)件經(jīng)常受到彎曲應(yīng)力的作用并帶裂縫工作,過(guò)大的裂縫將嚴(yán)重降低構(gòu)件的安全性、適用性、耐久性.如何實(shí)現(xiàn)構(gòu)件裂縫擴(kuò)展以及荷載-位移全過(guò)程的自監(jiān)測(cè)是亟待解決的問(wèn)題.
文中加入了結(jié)構(gòu)型鋼纖維構(gòu)成多相復(fù)合導(dǎo)電材料.鋼纖維的主要功能有以下幾點(diǎn):①結(jié)構(gòu)型鋼纖維在混凝土構(gòu)件開(kāi)裂前能提高其力學(xué)性能,在混凝土開(kāi)裂后可橋接裂縫,避免混凝土的脆性破壞;②在混凝土梁開(kāi)裂后的整個(gè)過(guò)程中,只有鋼纖維能夠限制裂縫擴(kuò)展,提高抗裂性和韌性,提供穩(wěn)定的荷載位移曲線,并在開(kāi)裂的混凝土基體間維持導(dǎo)電通路[9,18-19].文中主要針對(duì)混凝土梁開(kāi)裂性能及荷載-位移特性的自感知進(jìn)行研究.通過(guò)數(shù)據(jù)回歸分析,建立多相導(dǎo)電混凝土梁在受彎時(shí)電阻變化率與裂縫張開(kāi)位移之間的關(guān)系.
本試驗(yàn)的混凝土配合比如表1所示.其中水泥采用大連小野田P.O 42.5R 普通硅酸鹽水泥;粉煤灰選用一級(jí)粉煤灰;細(xì)骨料采用粒徑為0~5 mm的中砂(石英砂),細(xì)度模數(shù)為2.51;粗骨料選取粒徑為5~10 mm的碎石;減水劑為Sika高效減水劑;分散劑采用羧甲基纖維素;消泡劑為磷酸三丁脂.
表1 混凝土配合比1)Table 1 Mix proportions of concrete
1)各組分含量單位為kg/m3.
試驗(yàn)所用的3種導(dǎo)電相材料如圖1所示.鋼纖維為貝卡爾特-二鋼有限公司產(chǎn)RC-65/35-BN端鉤型鋼纖維,電阻率5.5×10-6Ω·m,長(zhǎng)徑比為65,單絲直徑0.55 mm,密度7.85 g/cm3;碳纖維為6 mm長(zhǎng)的瀝青基碳纖維,電阻率為3×10-5~7×10-5Ω·m,直徑為12~15 μm,密度1.55~1.60 g/cm3;納米炭黑的平均粒徑為33 nm,電阻率為0.75 Ω·cm,密度為0.3~0.5 g/cm3.
圖1 導(dǎo)電相材料Fig.1 Conductive materials
試件共分為7組,各組導(dǎo)電相材料摻量如表2所示.其中,SF22及SF44分別為單摻22、44 kg/m3結(jié)構(gòu)型鋼纖維混凝土梁;BCS22-1為三摻22 kg/m3鋼纖維、4.36 kg/m3碳纖維及1.09 kg/m3納米炭黑混凝土梁;BCS22-2為三摻22 kg/m3鋼纖維、6.54 kg/m3碳纖維及1.64 kg/m3納米炭黑混凝土梁;BCS44-1為三摻44 kg/m3鋼纖維、2.18 kg/m3碳纖維及0.55 kg/m3納米炭黑混凝土梁;BCS44-2為三摻44 kg/m3鋼纖維、6.54 kg/m3碳纖維及0.55 kg/m3納米炭黑混凝土梁.
表2 導(dǎo)電相材料摻量Table 2 Dosages of the conductive admixtures
試件尺寸為100 mm×100 mm×400 mm的混凝土梁,澆注1 d后拆模,室溫養(yǎng)護(hù)28 d(相對(duì)濕度100%).養(yǎng)護(hù)完畢后,在試件的受拉側(cè)粘貼4個(gè)導(dǎo)電膠帶作為電極.基于四電極的電阻測(cè)量方法,外側(cè)A/D兩電極通電流,同時(shí)測(cè)量?jī)?nèi)側(cè)B/C兩電極電壓[4-5].
試驗(yàn)研究電阻變化率(FCR)與受彎承載力、裂縫張開(kāi)位移的關(guān)系.電阻變化率即受彎時(shí)試件受拉區(qū)表面電阻的變化百分率.通過(guò)液壓伺服試驗(yàn)機(jī)對(duì)試件進(jìn)行3點(diǎn)加載,凈跨為300 mm,采用位移控制,加載速率為(0.2±0.02)mm/min,跨中撓度不小于3.5 mm.在梁的兩側(cè)用LVDT測(cè)量跨中撓度,在梁底部跨中受拉區(qū)用夾式引伸儀測(cè)量裂縫張開(kāi)位移.其它試驗(yàn)儀器包括:交流穩(wěn)壓電源、IMC智能信息采集系統(tǒng)、定值電阻及交直流電壓轉(zhuǎn)換模塊.試件尺寸、電極布置及試驗(yàn)裝置等如圖2所示.
圖2 受彎梁的電阻變化率、撓度、裂縫張開(kāi)位移的測(cè)量Fig.2 Measurement of FCR,deflection and COD of bending beams
參照RILEM TC 162-TDF,研究了不同導(dǎo)電相材料摻量下混凝土梁的抗彎強(qiáng)度和彎曲韌性指標(biāo).分析并建立了混凝土梁的受拉區(qū)表面電阻變化率與裂縫張開(kāi)位移之間的關(guān)系.
表3列出了立方體試件在28 d齡期時(shí)的抗壓強(qiáng)度、抗彎強(qiáng)度.由表可知,與素混凝土相比,三摻結(jié)構(gòu)型鋼纖維、碳纖維及納米炭黑試件抗壓強(qiáng)度沒(méi)有明顯增長(zhǎng).
表3 導(dǎo)電混凝土梁的抗壓強(qiáng)度、抗彎強(qiáng)度Table 3 Compressive and flexural strength of conductive concrete
由表3分析可知,與素混凝土梁(PC)相比,SF22、BCS22-1以及BCS22-2的抗彎強(qiáng)度f(wàn)u分別提高了12.5%、27.5%及37.5%,而SF44、BCS44-1以及BCS44-2的抗彎強(qiáng)度f(wàn)u分別提高了45%、70%及97%.與單摻22 kg/m3鋼纖維的SF22相比,BCS22-1與BCS22-2的抗彎強(qiáng)度f(wàn)u分別提高了13%與22%.與單摻44 kg/m3鋼纖維的SF44相比,BCS44-1與BCS44-2的抗彎強(qiáng)度f(wàn)u分別提高了17%與36%.以上結(jié)果表明:導(dǎo)電相材料的加入能夠顯著提高混凝土的抗彎強(qiáng)度;與單摻鋼纖維的混凝土梁相比,三摻鋼纖維、碳纖維與納米炭黑對(duì)于混凝土梁的抗彎強(qiáng)度起到正混雜效應(yīng).
圖3所示為素混凝土梁及不同導(dǎo)電相材料摻量下混凝土梁的荷載-位移全曲線的對(duì)比.摻有結(jié)構(gòu)型鋼纖維等導(dǎo)電相材料的混凝土梁所吸收的總能量值可表示為
(1)
式中,δi表示撓度,DBZi表示撓度為δi時(shí)對(duì)應(yīng)的總能量吸收值.
圖3 導(dǎo)電混凝土梁的荷載-撓度曲線Fig.3 Load-deflection curves of conductive concrete beams
素混凝土梁及不同導(dǎo)電相材料摻量下混凝土梁的等效抗彎強(qiáng)度及能量吸收值見(jiàn)表4.
表4 導(dǎo)電混凝土梁的等效抗彎強(qiáng)度及能量吸收值[20]Table 4 Equivalent flexural strength and energy absorption of conductive concrete beams[20]
不同導(dǎo)電相材料摻量下混凝土梁的殘余荷載值(FR,i)見(jiàn)表5.
表5 導(dǎo)電混凝土梁的殘余荷載Table 5 Residual load of conductive concrete beams
由表5可知,與單摻22 kg/m3鋼纖維的SF22相比:①BCS22-1的殘余荷載平均增幅為39%,相應(yīng)導(dǎo)電相材料增量為20%;②BCS22-2的殘余荷載平均增幅為41%,相應(yīng)導(dǎo)電相材料增量為30%.與單摻44 kg/m3鋼纖維的SF44相比:①BCS44-1的殘余荷載平均增幅為42%,相應(yīng)導(dǎo)電相材料增量?jī)H為5%;②BCS44-2的殘余荷載平均增幅為48%,相應(yīng)導(dǎo)電相材料增量?jī)H為15%.對(duì)比SF22與SF44,可以看出三摻鋼纖維、碳纖維和納米炭黑對(duì)混凝土的殘余荷載有正混雜效應(yīng).
圖4、5所示為不同導(dǎo)電相材料摻量下混凝土梁的受拉區(qū)表面電阻變化率-裂縫張開(kāi)位移的關(guān)系曲線.從圖中可以看出電阻變化率隨著裂縫張開(kāi)位移(COD)的增大而增大,且電阻變化率與裂縫張開(kāi)位移呈線性關(guān)系.電阻變化率與裂縫張開(kāi)位移之間的關(guān)系可表示為
Y=a+bX
(2)
式中,a和b分別為擬合直線的截距和斜率,二者均與導(dǎo)電相的種類和摻量有關(guān).X單位為mm.各組擬合直線參數(shù)和相關(guān)系數(shù)見(jiàn)表6.
圖4 單相導(dǎo)電混凝土梁的電阻變化率-裂縫張開(kāi)位移關(guān)系Fig.4 Relationships between FCR and COD of conductive concrete with single-phase conductive material
由表6可知,各組導(dǎo)電混凝土梁的相關(guān)系數(shù)均在0.88~0.98范圍內(nèi),說(shuō)明電阻變化率、裂縫張開(kāi)位移與等式(2)有較強(qiáng)的線性相關(guān)性.
圖4為單摻22和44 kg/m3鋼纖維時(shí),導(dǎo)電混凝土梁的電阻變化率-裂縫張開(kāi)位移關(guān)系曲線.由圖可知,單摻鋼纖維時(shí),關(guān)系曲線有較為明顯的波動(dòng),信號(hào)噪聲比較大,擬合直線的相關(guān)系數(shù)r2低于多相導(dǎo)電混凝土梁.
圖5 多相導(dǎo)電混凝土梁的電阻變化率-裂縫張開(kāi)位移關(guān)系Fig.5 Relationships between FCR and COD of concrete with multi-phase conductive materials
表6 擬合直線參數(shù)Table 6 Fitted parameters of regression equation
圖5為多相導(dǎo)電混凝土梁的受拉區(qū)表面電阻變化率-裂縫張開(kāi)位移關(guān)系.與單摻鋼纖維的SF22、SF44相比,多相導(dǎo)電混凝土的相關(guān)系數(shù)r2更大,這表明多相導(dǎo)電材料對(duì)于提高導(dǎo)電混凝土梁機(jī)敏性能的穩(wěn)定性有正混雜效應(yīng).斜率b是指單位裂縫張開(kāi)位移下受拉區(qū)表面電阻變化率的大小,可以反映出導(dǎo)電混凝土梁的裂縫自監(jiān)測(cè)靈敏度.各組擬合直線斜率b的范圍在2.04~5.55之間.截距a的范圍在1.85~8.37之間,a的取值隨著鋼纖維摻量的增加而減小,BCS22-1與BCS22-2系列的截距值a要高于其它系列,原因在于混凝土開(kāi)裂時(shí)荷載急劇下降,電阻變化率的變化幅度增大.因此,截距值a可用于判斷混凝土梁開(kāi)裂時(shí)的承載力損失情況.試驗(yàn)結(jié)果表明導(dǎo)電混凝土適用于自感知裂縫;結(jié)構(gòu)型鋼纖維既可以作為結(jié)構(gòu)材料,增強(qiáng)混凝土開(kāi)裂后的性能,又可以作為功能材料,以保證混凝土開(kāi)裂后的導(dǎo)電性;多相導(dǎo)電材料對(duì)裂縫自感知性能有正混雜效應(yīng).
綜上所述,可得出如下結(jié)論.
①與素混凝土梁相比,單摻鋼纖維可在梁開(kāi)裂后,提高混凝土的抗彎強(qiáng)度及彎曲韌性.與單摻鋼纖維混凝土梁相比,三摻鋼纖維、碳纖維與納米炭黑可更為顯著地改善混凝土梁的彎曲性能,對(duì)混凝土開(kāi)裂后的力學(xué)性能表現(xiàn)出明顯的正混雜效應(yīng).
②結(jié)構(gòu)型鋼纖維的摻入可在混凝土開(kāi)裂后繼續(xù)提供連續(xù)導(dǎo)電通路,從而實(shí)現(xiàn)混凝土的帶裂縫自監(jiān)測(cè);多相導(dǎo)電材料的加入能夠進(jìn)一步改善受拉區(qū)表面電阻變化率的信號(hào)噪聲比,對(duì)增強(qiáng)裂縫擴(kuò)展自感知性能具有正混雜效應(yīng).
③在多相導(dǎo)電混凝土梁受彎開(kāi)裂過(guò)程中,電阻變化率與裂縫張開(kāi)位移呈較好的線性關(guān)系;擬合直線的斜率b能夠反映裂縫自監(jiān)測(cè)的靈敏度,截距值a可用于判斷梁在開(kāi)裂時(shí)的承載力損失.
[1] AZHARI F,BANTHIA N.Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing [J].Cement & Concrete Composites,2012,34(7):866-873.
[2] RANADE R,ZHANG J,LYNCH J P,et al.Influence of micro-cracking on the composite resistivity of engineered cementitious composites [J].Cement & Concrete Research,2014,58(2):1-12.
[3] NGUYEN D L,SONG J,MANATHAMSOMBAT C,et al.Comparative electromechanical damage-sensing behaviors of six strain-hardening steel fiber-reinforced cementitious composites under direct tension [J].Composites Part B Engineering,2015,69:159-168.
[4] WEN S,CHUNG D D L.Self-sensing of flexural damage and strain in carbon fiber reinforced cement and effect of embedded steel reinforcing bars [J].Carbon,2006,44:1496-1502.
[5] WEN S,CHUNG D D L.Partial replacement of carbon fiber by carbon black in multifunctional cement-matrix composites [J].Carbon,2007,45(3):505-513.
[6] 彭海龍,高培偉,吳曉強(qiáng),等.石墨、炭黑替代碳纖維對(duì)砂漿力學(xué)性能和導(dǎo)電性能的影響 [J].材料科學(xué)與工程學(xué)報(bào),2013,31(6):907-909.
PENG Hai-long,GAO Pei-wei,WU Xiao-qiang,et al.Effect of graphite and carbon black on the mechanical and conductive properties of mortar with carbon fiber [J].Journal of Materials Science and Engineering,2013,31(6):907-909.
[7] 金婷艷,田秀淑,崔健,等.碳纖維粉-鋼渣水泥基復(fù)合材料的力學(xué)性能和導(dǎo)電性能研究 [J].硅酸鹽通報(bào),2015,34(12):3601-3605.
JIN Ting-yan,TIAN Xiu-shu,CUI Jian,et al.Mechanical and electrical properties of carbon fiber powder-steel slag cement based composites [J].Bulletin of the Chinese Ceramic Society,2015,34(12):3601-3605.
[8] DING Y N,CHEN Z P,ZHANG Y L,et al.Nano carbon black and carbon fiber as conductive materials for the diag-nosing of the damage of concrete beam [J].Construction and Building Materials,2013,43:233-241.
[9] 丁一寧,陳龍風(fēng).復(fù)相導(dǎo)電混凝土應(yīng)用于損傷診斷的試驗(yàn)研究 [J].復(fù)合材料學(xué)報(bào),2010,27(3):184-189.
DING Yi-ning,CHEN Long-feng.Experimental studies of diphasic electric conduction concrete applying in the diagnosis of the damnification [J].Acta Materiae Compositae Sinica.2010,27(3):184-189.
[10] XIAO H G,LI H,OU J P.Modeling of piezoresistivity of carbon black filled cement-based composites under multi-axial strain [J].Sensors & Actuators A Physical,2010,160(1/2):87-93.
[11] XIAO H G,LI H,OU J P.Self-monitoring properties of concrete columns with embedded cement-based strain sensors [J].Journal of Intelligent Material Systems & Structures,2011,22(2):191-200.
[12] PARRA-MONTESINOS G J,REINHARDT H W,NAAMAN A E.High performance fiber reinforced cement composites 6:HPFRCC 6 [M].Netherlands:Springer,2012:99-106.
[13] 范曉明,董旭,孫明清,等.摻CCCW的碳纖維石墨水泥基復(fù)合材料的導(dǎo)電及壓阻特性 [J].復(fù)合材料學(xué)報(bào),2009,26(6):138-142.
FAN Xiao-ming,DONG Xu,SUN Ming-qing,et al.Electrical characteristic and piezoresistivity of carbon fiber graphite cement-based composites containing CCCW [J].Acta Materiae Compositae Sinica,2009,26(6):138-142.
[14] 范曉明,敖芳,孫明清,等.嵌入式碳纖維石墨水泥基復(fù)合材料的壓阻特性 [J].建筑材料學(xué)報(bào),2011,14(1):88-91.
FAN Xiao-ming,AO Fang,SUN Ming-qing,et al.Piezoresistivity of carbon fiber graphite cement-based composites embedded in concrete column [J].Journal of Building Materials,2011,14(1):88-91.
[15] OU J P,HAN B G.Piezoresistive cement-based strain sensors and self-sensing concrete components [J].Journal of Intelligent Material Systems & Structures,2009,20(3):329-336.
[16] 吳獻(xiàn).導(dǎo)電混凝土受荷全過(guò)程電導(dǎo)率、應(yīng)力與應(yīng)變關(guān)系研究 [D].沈陽(yáng):東北大學(xué),2005.
[17] YANG C Q,WU Z S,HUANG H.Electrical properties of different types of carbon fiber reinforced plastics(CFRPs)and hybrid CFRPs [J].Carbon,2007,45(15):3027-3035.
[18] DING Y N.Investigations into the relationship between deflection and crack mouth opening displacement of SFRC beam [J].Construction and Building Materials,2011,25(5):2432-2440.
[19] DING Y N,ZHANG Y L,THOMAS A.The investigation on strength and flexural toughness of fibre cocktail reinforced self-compacting high performance concrete [J].Construction and Building Materials,2009,23:448-452.
[20] RILEM TC 162-TDF:Test and design methods for steel fibre reinforced concrete [S].
Supported by the National Natural Science Foundation of China(51578109)
Self-MonitoringPerformanceofCrackingDevelopmentofMultiphaseConductiveConcreteSubjectedtoBending
DINGYi-ning1HENGZhen1HANZhi-bo2
(1.State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China;2.Radio Film and Television Design and Research Institute, Beijing 100045, China)
By adding the macro steel fiber (SF), the carbon fiber (CF) and the nano-carbon black (NCB) into the concrete as the multiphase conductive materials, the influences of the SF, the CF and the NCB on the mechanical properties and conductivity of the cracked concrete as well as on the self-monitoring performance of the crack development are investigated. Then, a relationship between the fractional change of the surface resistance (FCR) and the crack opening displacement (COD) of the conductive concrete beams is established. The results show that (1) the addition of the conductive materials can greatly enhance the flexural strength and toughness of the concrete; (2) the hybrid use of the NCB, the CF and the SF shows a clear positive hybrid effect on the flexural beha-vior and the self-monitoring performance of the crack development; and (3) there is a linear relationship between the FCR and the COD.
fibers; nano-carbon black; concrete cracking; self-monitoring; fractional change in resistance; crack opening displacement
2016-09-27
國(guó)家自然科學(xué)基金資助項(xiàng)目(51578109)
丁一寧(1962-),男,博士,教授,主要從事高性能纖維混凝土研究.E-mail:ynding@dlut.edu.cn
1000-565X(2017)08-0132-07
TU 528
10.3969/j.issn.1000-565X.2017.08.019