劉堃 李正良 尤軍 涂胤
摘要:
空間KK型管板連接節(jié)點作為輸電鋼管塔中最主要的節(jié)點型式,其安全性是整個塔架結(jié)構(gòu)安全的重要保證。相比較于平面K型節(jié)點,在考慮實際結(jié)構(gòu)中節(jié)點空間效應(yīng)后的KK型節(jié)點的受力性能更為復(fù)雜。在平面K型管板節(jié)點的試驗研究基礎(chǔ)上,對兩類空間KK型管板節(jié)點展開參數(shù)化分析,重點討論了節(jié)點幾何尺寸參數(shù)和主管軸壓應(yīng)力比等因素對節(jié)點極限承載力的影響變化規(guī)律。結(jié)合大量有限元參數(shù)分析所得計算結(jié)果,并綜合考慮各種因素對節(jié)點極限承載力的影響,提出了空間KK型管板連接節(jié)點在主管管壁局部屈曲破壞模式下的極限承載力建議計算方法。
關(guān)鍵詞:
輸電鋼管塔;空間KK型;管板連接節(jié)點;極限承載力
中圖分類號:TU392.3
文獻標(biāo)志碼:A文章編號:16744764(2016)06007211
Abstract:
Multiplanar KKtype tubegusset plate connections are the main joint types in transmission steel tubular tower, the safety of the joints are critical to the entire tower. Compared to Kjoints, the mechanic characteristics of KKjoints are more complex after considering the multiplanar effects in the actual structure. Based on the bearing capacity test of Ktype tubegusset plate connections, parameterization analysis on the two kinds KKtype tubegusset plate connections are conducted respectively, the geometric parameters and the axial force of the main tube together with other factors on the influence of the ultimate bearing capacity of multiplanar KKjoints are studied in detail. According to the results of large scale finite element parametric analysis, and considering the influence of various factors on the ultimate strength of the joints, calculation formulas of KKtype tubegusset plate connections ultimate bearing capacity are proposed.
Keywords:
transmission steel tubular tower; KKtype; tubegusset plate connections; ultimate strength
近年來,中國的電網(wǎng)建設(shè)快速發(fā)展,輸電線路的輸送容量和電壓等級不斷提高,桿塔承受的荷載也越來越大,傳統(tǒng)的角鋼塔已不能滿足發(fā)展的需要。鋼管塔因具有風(fēng)壓小、剛度大、結(jié)構(gòu)簡潔、傳力清晰等眾多優(yōu)點,在大跨越工程和特高壓輸電線路中得到廣泛應(yīng)用。輸電鋼管塔屬于高聳的空間桁架結(jié)構(gòu),各鋼管構(gòu)件是由節(jié)點相互連接在一起的,桿件的傳力完全通過節(jié)點來實現(xiàn)。因此,節(jié)點設(shè)計及其構(gòu)造處理的好壞將直接影響到鋼管塔整體受力性能。節(jié)點破壞后會帶來一系列連鎖效應(yīng),導(dǎo)致從局部到整體的連續(xù)破壞,因此,安全可靠性對整個塔架而言至關(guān)重要[1]。
目前,在輸電鋼管塔節(jié)點的構(gòu)造連接方面普遍采用管板連接方式,但對此類節(jié)點受力性能的研究還很少,缺乏相應(yīng)的設(shè)計理論用于指導(dǎo)工程實踐。更為重要的是,以往所進行的研究主要是針對平面K型管板節(jié)點,對于空間KK型節(jié)點的研究非常少 [25]。因?qū)嶋H輸電鋼管塔結(jié)構(gòu)中的該類管板節(jié)點不是平面K型,而是空間KK型的,在考慮實際節(jié)點的空間效應(yīng)(包括:幾何空間效應(yīng)和荷載空間效應(yīng))后,其受力情況和破壞模式更為復(fù)雜[6]。通常情況下空間KK型管板節(jié)點呈現(xiàn)以下3種破壞模態(tài):1)主管管壁鋼材受力下局部超出彈性階段產(chǎn)生塑性變形而破壞;2)節(jié)點板過早破壞導(dǎo)致節(jié)點喪失承載力的局部失效破壞;3)上述兩種情況并存下的破壞模式。但截止到目前為止,相關(guān)規(guī)范[79]還沒有專門方法來計算這類節(jié)點的承載力。本文依托實際工程,研究在第一類破壞模式下輸電塔空間KK型節(jié)點的極限承載力。
1K型管板連接節(jié)點承載力試驗研究
1.1試驗樣本
以現(xiàn)工程常見的K型管板節(jié)點承載力試驗為基礎(chǔ)展開后續(xù)討論,試驗如圖1所示。主管和支管的尺寸分別為219×6和133×6,K型節(jié)點中承壓支管和受拉支管與主管夾角分別為45°和50°,主管長2 m,其中:在節(jié)點板與主管相交的上下端部位置設(shè)置了1/4環(huán)形加強板。各節(jié)點試件所用材料均為Q345鋼,具體尺寸參數(shù)如表1所示。
應(yīng)變的變化隨荷載逐漸增大呈現(xiàn)先直線后曲線的趨勢,非線性變化是判斷屈服的標(biāo)準(zhǔn)。當(dāng)荷載繼續(xù)增加,節(jié)點的塑性區(qū)進一步擴展,最終在主管與環(huán)板附近的塑性區(qū)域形成貫通,節(jié)點達到極限承載力狀態(tài)。隨著主管與支管上所施加荷載的不斷增加,下端環(huán)板附近的主管區(qū)域首先進入屈服階段。荷載繼續(xù)增大,此區(qū)域發(fā)生塑性變形后內(nèi)力重新分布,且擴大影響范圍至節(jié)點局部明顯變形而破壞。在整個加載過程中,環(huán)板、節(jié)點板、支管和插板等均未達到其極限承載力,沒有發(fā)生破壞。endprint
從節(jié)點試件的破壞變形圖中可以看出,節(jié)點試件的主管均在其管壁上的1號關(guān)鍵點處出現(xiàn)了局部凹陷,在2號關(guān)鍵點處出現(xiàn)了局部凸起,且2號點處的變形量較1號點處明顯。但由于環(huán)板的加強作用,這兩點處的變形量均較?。划?dāng)節(jié)點達到極限承載力時,在受拉支管一側(cè)的主管管壁與環(huán)板的相交處甚至出現(xiàn)了拉裂現(xiàn)象。
2管板連接節(jié)點有限元分析模型驗證
采用ANSYS中的SHELL181單元建立節(jié)點有限元模型,模型的材料屬性、邊界條件和加載方式等均與試驗相同。
5結(jié)論
對兩類空間KK型管板節(jié)點進行了研究,通過有限元參數(shù)分析探討了幾何無量綱參數(shù)、主管應(yīng)力水平等對節(jié)點極限承載力的影響變化規(guī)律:
1) 對于無偏心全環(huán)板KK型節(jié)點,全環(huán)板使得主管徑向剛度得到增強,節(jié)點承載力顯著提高。相比無環(huán)板節(jié)點,全環(huán)板KK型節(jié)點與對應(yīng)K型節(jié)點承載力的降幅進一步增大。β變化對節(jié)點承載力影響很?。划?dāng)D/t減小時節(jié)點承載力大幅提升;B/D增加對節(jié)點承載力提高作用很??;R較小時,R增加對節(jié)點承載力有明顯提高,但超過一定值后,R繼續(xù)增加帶來的提高作用很小;tr增加僅在R較小時對節(jié)點承載力有明顯提升;主管受壓時,隨著η增大,節(jié)點承載力直線下降。
2) 對于負(fù)偏心全環(huán)板KK型節(jié)點,采用負(fù)偏心連接基本不能提高節(jié)點承載力,相反會產(chǎn)生不利作用,在該類節(jié)點的設(shè)計中不建議使用負(fù)偏心的連接方式。
3) 結(jié)合大量有限元參數(shù)分析,針對無偏心全環(huán)板KK型節(jié)點,提出了基于主管控制的節(jié)點承載力計算公式;針對負(fù)偏心全環(huán)板KK型節(jié)點,在節(jié)點發(fā)生局部屈曲破壞模式下,提出了考慮負(fù)偏心作用的節(jié)點承載力計算公式。通過建議計算方法可以估算第一類破壞模式下節(jié)點極限承載力,用于指導(dǎo)實際工程設(shè)計。
參考文獻:
[1]
楊建平. 架空輸電線路鋼管塔結(jié)構(gòu)[M]. 北京:中國電力出版社, 2011.
YANG J P. Steel tubular tower structures of overhead transmission line [M]. Beijing:China Electric Power Press,2011. (in Chinese)
[2] 李明浩. 鋼管塔插板節(jié)點與相貫線節(jié)點及試驗設(shè)備的研究[D]. 上海:同濟大學(xué),2003.
LI M H. Studies on gusset and direct connections tubular joints of steel tower and testing machine for connections[D]. Shanghai: Tongji University,2003. (in Chinese)
[3] 黃譽. 輸電線路鋼管塔節(jié)點強度理論與試驗研究[D]. 上海:同濟大學(xué),2010.
HUANG Y. Experimental and theoretical studies on steel tubular joints of transmission tower [D]. Shanghai:Tongji University,2003. (in Chinese)
[4] 鄧洪洲,姜琦,黃譽. 輸電鋼管塔K型管板節(jié)點承載力試驗及參數(shù)[J]. 同濟大學(xué)學(xué)報(自然科學(xué)版),2014,42(2):226231.
DENG H Z,JIANG Q,HUANG Y. Experimental investigation and parametric studies on ultimate strength of Ktype tubegusset plate connections in transmission towers [J]. Journal of Tongji University (Natural Science), 2014,42(2):226231. (in Chinese)
[5] 白強,舒愛強,包永忠. 剪力對鋼管塔K型節(jié)點局部承載力的影響[J]. 電力建設(shè),2011,32(2):1923.
BAI Q,S A Q,BAO Y Z. The impact of shear forces on the local bearing capacity of steel tubular tower Kjoints [J]. Electric Power Construction,2011,32(2):1923. (in Chinese)
[6] 童樂為,孫建東,王斌,等. 空間KK形圓管搭接節(jié)點靜力性能試驗研究與有限元分析[J]. 建筑結(jié)構(gòu)學(xué)報, 2013,34(2):9198.
TONG L W,SUN J D,WANG B,et al. Experimental study and numerical analysis on static behavior of multiplanar overlapped CHS KKjoints [J]. Journal of Building Structures,2013,34(2):9198. (in Chinese)
[7] 高聳結(jié)構(gòu)設(shè)計規(guī)范: GB 50135—2006 [S]. 北京:中國計劃出版社,2007.
Code for design of highrising structures: GB 501352006 [S]. Beijing:China Planning Press,2007. (in Chinese)
[8] 架空輸電線路桿塔結(jié)構(gòu)設(shè)計技術(shù)規(guī)定: DL/T 5154—2012[S]. 北京:中國計劃出版社,2013.endprint
Technical code for the design of tower and pole structures of overhead transmission line: DL/T 51542012 [S]. Beijing:China Planning Press,2013. (in Chinese)
[9] 王肇民,馬人樂. 塔式結(jié)構(gòu)[M]. 北京:科學(xué)出版社,2004.
WANG Z M,MA R L. Tower structures [M]. Beijing: Science Press,2004. (in Chinese)
[10] LYU B H,CHEN Z Q,LI H,et al. Research on the ultimate bearing capacity for steeltubular transmission towers joints with annular plate [J]. Applied Mechanics and Materials, 2012,166:379384.
[11] 劉紅軍,李正良,白強. 基于負(fù)偏心的鋼管插板連接的極限承載力[J]. 華南理工大學(xué)學(xué)報(自然科學(xué)版),2010,38(4):112118.
LIU H J,LI Z L,BAI Q. Ultimate bearing capacity of steel tubegusset plate connections considering negative eccentricit [J]. Journal of South China University of Technology (Natural Science Edition),2010,38(4):112118. (in Chinese)
[12] 劉紅軍. 特高壓鋼管輸電塔插板連接K型節(jié)點的受力性能及承載力研究[D]. 重慶:重慶大學(xué),2010.
LIU H J. Behaviors and ultimate strength of steel tubular Kjoints with gusset plate connections in UHV transmission tower [D]. Chongqing:Chongqing University,2010. (in Chinese)
[13] KIM W B. A study on connections of circular hollow section with gusset plate [J].Architectural Inst Korea,1997,13(3):263271.
[14] KIM W B. Ultimate strength of tubegusset plate connections considering eccentricity [J]. Engineering Structures,2001,23(11):14181426.
[15] YURA J A,EDWARDS I F,ZETTLEMOVER N. Ultimate capacity of circular tubular joints [J]. American Society of Civil Engineers,2014,107(10):19651984.
(編輯王秀玲)endprint