張立歐,孫洪贊
(中國(guó)醫(yī)科大學(xué)附屬盛京醫(yī)院放射科,遼寧 沈陽(yáng) 110004)
微環(huán)境乏氧是由氧供及氧耗不均衡導(dǎo)致。研究[1]表明,惡性腫瘤細(xì)胞生長(zhǎng)時(shí)內(nèi)部存在乏氧狀態(tài),而乏氧腫瘤細(xì)胞較富氧細(xì)胞惡性程度更高,表型更差,更易發(fā)生遠(yuǎn)處轉(zhuǎn)移;且乏氧腫瘤對(duì)臨床放化療存在抵抗性,嚴(yán)重影響患者預(yù)后。調(diào)節(jié)乏氧最重要的因子是缺氧誘導(dǎo)因子(hypoxia-inducible factors, HIFs)[2],受其調(diào)控的下游靶基因有血管生長(zhǎng)因子(vascular endothelial growth factor, VEGF)及葡萄糖轉(zhuǎn)運(yùn)蛋白(glucose transporter, Glut)基因等,前者可促進(jìn)腫瘤內(nèi)新生血管生長(zhǎng),后者可使腫瘤細(xì)胞糖代謝加快[3-4]。近年來(lái),隨著多模態(tài)成像PET及MR的興起,PET及MR多種功能新序列成像可定量判斷腫瘤內(nèi)微灌注、代謝情況,并可對(duì)腫瘤進(jìn)行生物學(xué)成像,定量檢測(cè)腫瘤內(nèi)源性乏氧分子的表達(dá)情況。
與正常細(xì)胞相比,實(shí)體腫瘤的生長(zhǎng)具有不可控制、增殖迅速的特點(diǎn)。腫瘤細(xì)胞大量攝取葡萄糖并過度代謝、增加耗能等均造成局部微環(huán)境處于缺氧的狀態(tài),而腫瘤細(xì)胞可以迅速適應(yīng)缺氧的不良環(huán)境,此過程中適應(yīng)氧分壓改變最重要的調(diào)節(jié)因子為HIFs。HIF家族包括HIF-1、HIF-2和HIF-3。HIF-1普遍表達(dá)于哺乳細(xì)胞中,是調(diào)節(jié)細(xì)胞氧代謝最重要的因子。HIF是一種異二聚體,由起低氧調(diào)節(jié)作用的α單位及組成性β單位構(gòu)成。周圍環(huán)境氧分壓處于正常范圍時(shí),HIF-1α與腫瘤抑制因子VHL結(jié)合,通過泛素化而被廣泛降解[5-6];周圍氧分壓降低時(shí),此降解過程被阻斷,HIF-1α與組成型HIF-1β組成異二聚體從核外移入細(xì)胞核內(nèi),與下游靶基因啟動(dòng)子序列中的缺氧反應(yīng)原件(hypoxia response element, HRE)特異性結(jié)合,從而調(diào)控下游百余種靶基因,增加腫瘤對(duì)缺氧的適應(yīng)性,特別是促進(jìn)血管生長(zhǎng)及增加糖代謝。
血管生長(zhǎng)是腫瘤生長(zhǎng)過程中重要的促成因素,主要由數(shù)種不同的生長(zhǎng)因子以及相關(guān)受體酪氨酸激酶調(diào)節(jié),其中VEGF是刺激血管內(nèi)皮增生最強(qiáng)的生成因子,有促進(jìn)血管內(nèi)皮細(xì)胞增殖、增加血管通透性等作用,在腫瘤生長(zhǎng)、侵襲、遠(yuǎn)處轉(zhuǎn)移中均起重要作用[7]。
葡萄糖通過載體擴(kuò)散方式由細(xì)胞膜進(jìn)入細(xì)胞內(nèi)時(shí),需依靠轉(zhuǎn)運(yùn)蛋白,即易化葡萄糖轉(zhuǎn)運(yùn)蛋白(Gluts)。Glut家族中,Glut-1是目前分布最為廣泛的轉(zhuǎn)運(yùn)體,與其他轉(zhuǎn)運(yùn)體共同為增殖細(xì)胞提供大量生長(zhǎng)所需的葡萄糖。腫瘤細(xì)胞受ras、grc等多種癌基因及轉(zhuǎn)錄因子作用,大量攝取葡萄糖,天然葡萄糖通過轉(zhuǎn)運(yùn)蛋白轉(zhuǎn)運(yùn)至胞漿后,在己糖激酶的作用下磷酸化成為6-磷酸葡萄糖,參與后續(xù)的糖代謝反應(yīng),為腫瘤細(xì)胞提供能量支持[8]。
2.1.118F-FDG PET 臨床最常用的PET顯像劑是18F-FDG,其與天然葡萄糖相似,通過與細(xì)胞膜表面的轉(zhuǎn)運(yùn)蛋白結(jié)合被轉(zhuǎn)運(yùn)至細(xì)胞內(nèi),磷酸化生成6-磷酸18F-FDG,但由于其與普通6-磷酸葡萄糖不同,不能夠進(jìn)一步發(fā)生后續(xù)反應(yīng),從而成為PET顯像的基礎(chǔ)。腫瘤細(xì)胞攝取葡萄糖類似物18F-FDG同樣需要葡萄糖轉(zhuǎn)運(yùn)蛋白的作用。近年來(lái)關(guān)于18F-FDG攝取與Glut-1表達(dá)相關(guān)性的研究[9-14]較多。Kobayashi等[9]分析57例食管鱗癌患者,發(fā)現(xiàn)18F-FDG高攝取與Glut-1和VEGF高表達(dá)相關(guān),且其最大標(biāo)準(zhǔn)攝取值(maximum standardized uptake value, SUVmax)較高,Glut-1高表達(dá)與腫瘤的惡性程度密切相關(guān);同時(shí),VEGF與Glut-1高表達(dá)均會(huì)導(dǎo)致腫瘤組織18F-FDG攝取增加。但Taylor等[10-11]研究發(fā)現(xiàn),食管腺癌患者VEGF高表達(dá)不會(huì)增加腫瘤組織對(duì)18F-FDG的攝取。導(dǎo)致以上結(jié)論不同的原因可能在于食管癌不同病理組織類型的VEGF陽(yáng)性表達(dá)率不同。Yen等[12]發(fā)現(xiàn)Glut-1約在94.1%的宮頸鱗癌患者中呈高表達(dá),而在正常宮頸組織或?qū)m頸上皮內(nèi)瘤變(carcinoma in situ, CIN)細(xì)胞中卻較少表達(dá);且Glut-1表達(dá)與SUV值有顯著相關(guān)性,并進(jìn)一步認(rèn)為Glut-1生物學(xué)行為在腫瘤細(xì)胞攝取FDG中起重要作用。Jeong等[13]觀察207例乳腺浸潤(rùn)性導(dǎo)管癌,發(fā)現(xiàn)原發(fā)腫瘤SUVmax可反映HIF-1α表達(dá)水平,并且推測(cè)其原因在于Glut-1受HIF-1α調(diào)控,故介導(dǎo)了Glut-1的表達(dá)與FDG攝取。但Higashi等[14]研究發(fā)現(xiàn),在肺腺癌患者中,18F-FDG高攝取與HIF-2α相關(guān),而與HIF-1α無(wú)相關(guān),且18F-FDG的高攝取與HIF-2α高表達(dá)會(huì)影響術(shù)后腫瘤復(fù)發(fā)。
2.1.218F-FMISO PET18F-FMISO是一種F標(biāo)記的硝基咪唑類化合物,在氧水平正常的細(xì)胞中,其-NO2可發(fā)生還原反應(yīng),但在乏氧細(xì)胞中卻不能發(fā)生上述反應(yīng),故通過PET可檢測(cè)大量集聚于腫瘤乏氧細(xì)胞中的18F-FMISO化合物,從而定量判斷腫瘤的乏氧程度。研究[15]表明,乏氧條件下細(xì)胞與18F-FMISO結(jié)合的速度是常氧條件下的28倍。
目前關(guān)于腫瘤組織對(duì)18F-FMISO乏氧顯像劑的攝取與表達(dá)乏氧相關(guān)分子的相關(guān)性研究[16-18]較多。Sato等[16]對(duì)32例口腔鱗癌患者行18F-FDG PET及18F-FMISO PET檢查,發(fā)現(xiàn)HIF-1α表達(dá)與18F-FMISO攝取相關(guān),但并未發(fā)現(xiàn)與FDG攝取有相關(guān)性,推測(cè)原因可能是腫瘤組織對(duì)FMISO攝取以及對(duì)HIF-1α的表達(dá)不僅與腫瘤細(xì)胞代謝有關(guān),還受細(xì)胞缺氧調(diào)控。Bekaert等[17]發(fā)現(xiàn)PET攝取18F-FMISO與腦膠質(zhì)瘤分級(jí)相關(guān),高攝取組HIF-1α及VEGF表達(dá)明顯多于低攝取組。而Kawai等[18]認(rèn)為18F-FMISO攝取與VEGF相關(guān),與HIF-1α表達(dá)無(wú)關(guān),原因可能是除缺氧因素外,其他因素如生長(zhǎng)因子、細(xì)胞因子等均可啟動(dòng)HIF-1α轉(zhuǎn)錄通路[19],并且腫瘤細(xì)胞短時(shí)氧濃度變化可能也說(shuō)明18F-FMISO攝取與HIF-1α表達(dá)缺乏相關(guān)性。
2.1.318F-FAZA PET18F-FAZA是一種新型的硝基咪唑類乏氧顯像劑。Sorger等[20]研究發(fā)現(xiàn),對(duì)小鼠細(xì)胞分別注射18F-FAZA以及18F-FMISO后,短時(shí)間(1 h)內(nèi)兩者攝取非常相近,而18F-FAZA可通過腎臟排泄,因此對(duì)于腹部腫瘤的診斷更具有優(yōu)勢(shì)。Piert等[21]還發(fā)現(xiàn),18F-FAZA的非靶組織清除率較18F-FMISO更快,因此18F-FAZA有望成為更好的乏氧顯像劑。因此,腫瘤組織對(duì)乏氧顯像劑的攝取與其自身組織表達(dá)HIF-1α以及下游的分子VEGF及Glut-1有密切關(guān)系。目前18F-FAZA PET被逐步應(yīng)用于骨髓瘤[22]、喉癌[23]、肺癌[24]等乏氧分子表達(dá)檢測(cè)中。
2.2.1 BOLD-fMRI 近年來(lái),隨著多種MR功能成像序列的發(fā)展,對(duì)于腫瘤乏氧的檢測(cè)也有了更多選擇,其中BOLD-fMRI是較成熟的方法之一,其原理是通過檢測(cè)腫瘤內(nèi)脫氧血紅蛋白濃度來(lái)測(cè)量腫瘤內(nèi)乏氧情況。脫氧血紅蛋白等物質(zhì)可縮短橫向T2*值,通過測(cè)量橫向弛豫率R2*(R2*=1/T2*),可反映組織的氧變化[25],其檢測(cè)組織急性缺氧程度的敏感度高[26]。McPhail等[27]對(duì)化學(xué)誘導(dǎo)的大鼠乳腺腫瘤模型進(jìn)行BOLD-fMRI,發(fā)現(xiàn)BOLD-fMRI所得的R2*值可用于檢測(cè)腫瘤乏氧標(biāo)志物。Li等[28]觀察腎透明細(xì)胞癌患者,發(fā)現(xiàn)自旋去相位速率差值(ΔR2*)與HIF-2α表達(dá)相關(guān),但與HIF-1α表達(dá)無(wú)關(guān),原因可能是腎透明細(xì)胞癌中HIF-2α陽(yáng)性表達(dá)率更大。蔡利忠等[29]對(duì)腎透明細(xì)胞癌患者行BOLD-MRI,發(fā)現(xiàn)R2*值與腫瘤組織內(nèi)HIF-2α存在相關(guān)性。Liu等[30]觀察103例乳腺癌患者,發(fā)現(xiàn)乳腺癌HIF-1α表達(dá)與基線R2*值顯著相關(guān),陰性表達(dá)組R2*值為30.35 Hz,弱陽(yáng)性表達(dá)組R2*值為41.70 Hz,中陽(yáng)性表達(dá)組R2*值為57.55Hz,強(qiáng)陽(yáng)性表達(dá)組R2*值為68.6 Hz,故認(rèn)為HIF-1α表達(dá)增加,R2*值也隨之增加。另外,Wang等[31]發(fā)現(xiàn)隨著碳酸酐酶Ⅸ的表達(dá)增加,R2*值增加,但R2*值與VEGF無(wú)相關(guān),推測(cè)可能是由于多回波GRE序列減弱了脫氧血紅蛋白的影響,并且認(rèn)為BOLD-fMRI對(duì)于慢性缺氧的檢測(cè)更加敏感。
2.2.2 動(dòng)態(tài)增強(qiáng)MRI(dynamic contrast enhanced MRI, DCE-MRI) 作為一種新興影像學(xué)成像方法,DCE-fMRI可通過動(dòng)態(tài)、連續(xù)、快速成像實(shí)時(shí)檢測(cè)組織內(nèi)對(duì)比劑含量變化所導(dǎo)致的信號(hào)強(qiáng)度改變,并通過藥代動(dòng)力學(xué)模型對(duì)實(shí)時(shí)信號(hào)強(qiáng)度進(jìn)行處理,從而獲得代表組織內(nèi)微循環(huán)灌注、血管通透性、滲透面積等生理信息的定量或半定量參數(shù)[32-33]。通常用于評(píng)估腫瘤乏氧的定量參數(shù)有正向轉(zhuǎn)運(yùn)常數(shù)(Ktrans,代表單位時(shí)間從血管至血管外間隙組織對(duì)對(duì)比劑的攝取)、反向轉(zhuǎn)運(yùn)常數(shù)(Kep,代表對(duì)比劑從血管外間隙返回至血管的廓清量)及Ve(Ktrans/Kep,代表血管外-細(xì)胞外間隙體積分?jǐn)?shù))。由于DEC-MRI可定量判斷組織內(nèi)血流情況,且與VEGF的表達(dá)密切相關(guān),近年來(lái)被廣泛用來(lái)檢測(cè)分子表達(dá)。Ma等[34]對(duì)32例胃癌患者行DEC-MRI,發(fā)現(xiàn)Ktrans值與腫瘤細(xì)胞表達(dá)的VEGF相關(guān),認(rèn)為DEC-MRI可評(píng)估腫瘤血管生成。Li等[35]將VX2腫瘤細(xì)胞移植入24只實(shí)驗(yàn)兔的小腦延髓池,發(fā)現(xiàn)不同VEGF表達(dá)組的Ktrans、Kep、Ve均存在差異,且在腫瘤生長(zhǎng)過程中,血漿及腦脊液VEGF的表達(dá)會(huì)發(fā)生變化,植入VX2腫瘤細(xì)胞的第15天,腫瘤細(xì)胞表達(dá)的VEGF最高,可能是由于血管內(nèi)皮細(xì)胞表達(dá)增多導(dǎo)致腫瘤血管灌注增加,從而增加了血管內(nèi)外的滲透率;同時(shí),作者也提出了DEC-MRI的局限性,如轉(zhuǎn)移的腫瘤細(xì)胞未成聚集性生長(zhǎng),則DEC-MRI檢測(cè)結(jié)果不夠準(zhǔn)確;盡管三維DEC-MRI提高了圖像的空間分辨率,但時(shí)間分辨率相應(yīng)減小。
2.2.3 其他 體素內(nèi)不相干運(yùn)動(dòng)DWI(intravoxel incoherent motion DWI, IVIM-DWI) 可在無(wú)需對(duì)比劑的情況下定量判斷組織內(nèi)血管灌注及擴(kuò)散信息。鐘志偉等[36]對(duì)66例肺癌患者行IVIM-DWI,發(fā)現(xiàn)測(cè)量病灶圖像中的灌注分?jǐn)?shù)(f值)與腫瘤表達(dá)的VEGF具有相關(guān)性(r=0.273,P=0.035),提示f值可提供周圍型肺癌腫瘤血管生成的客觀信息。此外,MRS也可定量檢測(cè)組織內(nèi)代謝產(chǎn)物的生化改變等。
不同顯像劑可介導(dǎo)腫瘤內(nèi)乏氧分子不同的生物學(xué)行為,且通過PET檢測(cè)核素可定量判斷腫瘤乏氧分子表達(dá)情況。近年來(lái),PET及MRI的融合使得同時(shí)進(jìn)行多種功能MR序列掃描成為可能,在獲得高軟組織分辨力的同時(shí)也可一定程度判斷腫瘤內(nèi)乏氧分子的表達(dá)情況。但腫瘤乏氧是1個(gè)復(fù)雜過程,多種因素的共同作用促進(jìn)了腫瘤的惡性增殖。隨著PET顯像劑以及功能MR序列的不斷優(yōu)化,未來(lái)尚需大樣本研究證實(shí)PET及MRI在評(píng)價(jià)腫瘤乏氧及其下游主要調(diào)控分子表達(dá)中的潛在價(jià)值。
[參考文獻(xiàn)]
[1] Greco O, Marples B, Joiner MC, et al. How to overcome (and exploit) tumor hypoxia for targeted gene therapy. J Cell Physiol, 2003,197(3):312-325.
[2] Melillo G. Inhibiting hypoxia-inducible factor 1 for cancer therapy. Mol Cancer Res, 2006,4(9):601-605.
[3] Liao D, Johnson RS. Hypoxia: A key regulator of angiogenesis in cancer. Cancer Metastasis Rev, 2007,26(2):281-290.
[4] Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell, 2010,40(2):294-309.
[5] Maxwell PH. The tumour suppressor protein VHI, targets hypoxia-inducible factors for oxygen dependentproteolysis. Nature, 1999,399(6733):271-275.
[6] Meijer TW, Kaanders JH, Span PN, et al. Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin Cancer Res, 2012,18(20):5585-5594.
[7] Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer, 2013,13(12):871-882.
[8] Joost HG, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: Nomenclature, sequence characterist, and potential function of its novel members (review). Mol Member Biol, 2001,18(4):247-256.
[9] Kobayashi M, Kaida H, Kawahara A, et al. The relationship between GLUT-1 and vascular endothelial growth factor expression and18F-FDG uptake in esophageal squamous cell cancer patients. Clin Nucl Med, 2012,37(5):447-452.
[10] Taylor MD, Smith PW, Brix WK, et al. Correlations between selected tumor markers and fluorodeoxyglucose maximal standardized uptake values in esophageal cancer. Eur J Cardiothorac Surg, 2009,35(4):699-705.
[11] Westerterp M, Sloof GW, Hoekstra OS, et al.18FDG uptake in oesophageal adenocarcinoma: Linking biology and outcome. J Cancer Res Clin Oncol, 2008,134(2):227-236.
[12] Yen TC, See LC, Lai CH, et al.18F-FDG uptake in squamous cell carcinoma of the cervix is correlated with glucose transporter 1 expression. J Nucl Med, 2004,45(1):22-29.
[13] Jeong YJ, Jung JW, Cho YY, et al. Correlation of hypoxia inducible transcription factor in breast cancer and SUVmax of F-18 FDG PET/CT. Nucl Med Rev Cent East Eur, 2017,20(1):32-38.
[14] Higashi K, Yamagishi T, Ueda Y, et al. Correlation of HIF-1α/HIF-2α expression with FDG uptake in lung adenocarcinoma. Ann Nucl Med, 2016,30(10):708-715.
[15] Rasey JS, Nelson NJ, Chin L, et al. Characteristics of the binding of labeled fluoromisonidazole in cells in vitro. Radiat Res, 1990,122(3):301-308.
[16] Sato J, Kitagawa Y, Yamazaki Y, et al.18F-fluoromisonidazole PET uptake is correlated with hypoxia-inducible factor-1α expression in oral squamous cell carcinoma. J Nucl Med, 2013,54(7):1060-1065.
[17] Bekaert L, Valable S, Lechapt-Zalcman E, et al.18F-FMISO PET study of hypoxia in gliomas before surgery: Correlation with molecular markers of hypoxia and angiogenesis. Eur J Nucl Med Mol Imaging, 2017,44(8):1383-1392.
[18] Kawai N, Lin W, Cao WD, et al. Correlation between18F-fluoromisonidazole PET and expression of HIF-1α and VEGF in newly diagnosed and recurrent malignant gliomas. Eur J Nucl Med Mol Imaging, 2014,41(10):1870-1878.
[19] Déry MA, Michaud MD, Richard DE. Hypoxia-inducible factor 1: Regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol, 2005,37(3):535-540.
[20] Sorger D, Patt M, Kumar P, et al. [18F]Fluoroazomycinarabinofuranoside (18FAZA) and [18F]Fluoromisonidazole (18FMISO): A comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors. Nucl Med Biol, 2003,30(3):317-326.
[21] Piert M, Machulla HJ, Kumar P, et a1.18F Labeled F1uoroazomycinarabinoside(FAZA): A novel marker of tumor tissue hypoxia. J Nucl Med, 2001,42:1091-1100.
[22] De Waal EG, Slart RH, Leene MJ, et al.18F-FDG PET increases visibility of bone lesions in relapsed multiple myeloma: Is this hypoxia-driven? Clin Nucl Med, 2015,40(4):291-296.
[23] Bruine De Bruin L, Bollineni VR, Wachters JE, et al. Assessment of hypoxic subvolumes in laryngeal cancer with18F-fluoroazomycinarabinoside (18F-FAZA)-PET/CT scanning and immunohistochemistry. Radiother Oncol, 2015,117(1):106-112.
[24] Mapelli P, Bettinardi V, Fallanca F, et al.18F-FAZA PET/CT in the preoperative evaluation of NSCLC: Comparison with 18F-FDG and immunohistochemistry. Curr Radiopharm, 2018,11(1):50-57.
[25] Mcphail LD, Robinson SP. Intrinsic susceptibility MR imaging of chemically induced rat mammary tumors: Relationship to histologic assessment of hypoxia and fibrosis. Radiology, 2010,254(1):110-118.
[26] Tatum JL, Kelloff GJ, Gillies RJ, et al. Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol, 2006,82(10):699-757.
[27] McPhail LD, Robinson SE. Intrinsic susceptibility MR imaging of chemically induced rat mammary tumors: Relationship to histologic assessment of hypoxia and fibrosis. Radiology, 2010,254(1):110-118.
[28] Li D, Wang X, Wang S, et al. Correlation between BOLD-MRI and HIF expression level inrenal carcinoma. Int J Clin Exp Pathol, 2015,8(10):13759-13763.
[29] 蔡利忠,邢偉,陳杰,等.BOLD-MRI評(píng)價(jià)腎透明細(xì)胞癌HIF-α表達(dá)的可行性研究.臨床放射學(xué)雜志,2016,35(4):585-588.
[30] Liu M, Guo X, Wang S, et al. BOLD-MRI of breast invasive ductal carcinoma: Correlation of R2*value and the expression of HIF-1α. Eur Radiol, 2013,23(12):3221-3227.
[31] Wang Y, Liu M, Jin ML. Blood oxygenation level-dependent magnetic resonance imaging of breast cancer: Correlation with carbonic anhydrase Ⅸ and vascular endothelial growth factor. Chin Med J (Engl), 2017,130(1):71-76.
[32] Ellingsen C, Hompland T, Galappathi K, et al. DCE-MRI of the hypoxic fraction, radioresponsiveness, and metastatic propensity of cervical carcinoma xenografts. Radiother Oncol, 2014,110(2):335-341.
[33] Chikui T, Obara M, Simonetti AW, et al. The principal of dynamic contrast enhanced MRI, the method of pharmacokinetic analysis, and its application in the head and neck region. Int J Dent, 2012,2012:480659.
[34] Ma L, Xu X, Zhang M, et al. Dynamic contrast-enhanced MRI of gastric cancer: Correlations of the pharmacokinetic parameters with histological type, Lauren classification, and angiogenesis.Magn Reson Imaging, 2017,37:27-32.
[35] Li KA, Zhang RM, Zhang F, et al. Studies of pathology and VEGF expression in rabbit cerebrospinal fluid metastasis: Application of dynamic contrast-enhanced MRI. Magn Reson Imaging, 2011,29(8):1101-1109.
[36] 鐘志偉,包盈瑩,余煜棟,等.周圍型肺癌的體素內(nèi)不相干運(yùn)動(dòng)彌散加權(quán)成像與血管內(nèi)皮生長(zhǎng)因子相關(guān)性研究.實(shí)用醫(yī)學(xué)影像雜志,2017,18(1):1-3.