武輝 向鏡 陳惠哲 張玉屏 張義凱 姬廣梅 王亞梁 史鴻志 張文倩 朱德峰
?
水稻盆栽速效氮淋洗法及短期虧氮效果分析
武輝#向鏡#陳惠哲 張玉屏 張義凱 姬廣梅 王亞梁 史鴻志 張文倩 朱德峰*
(中國(guó)水稻研究所 水稻生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,杭州 310006;#共同第一作者;*通訊聯(lián)系人,E-mail: cnrice@qq.com)
探索一種簡(jiǎn)易、有效的盆栽土壤速效氮淋洗方法,并分析水稻花前不同時(shí)期土壤氮虧缺對(duì)不同類型水稻主功能葉及植株花后氮積累的影響,以期為闡明水稻花后氮素積累、轉(zhuǎn)運(yùn)特征和大田生產(chǎn)減氮技術(shù)應(yīng)用奠定研究基礎(chǔ)。比較了3種水稻盆栽土壤速效氮淋洗方法的減氮效果,同時(shí)探討了水稻花前14 d和花前3 d短期虧氮對(duì)秈粳雜交稻甬優(yōu)12號(hào)、秈型雜交稻中浙優(yōu)1號(hào)上3葉SPAD值、氮濃度和花后植株含氮量的影響。通過(guò)淋洗結(jié)構(gòu)+沙土混合基質(zhì)方法進(jìn)行3次淋洗,即可將土壤中85.6%的硝態(tài)氮和67.1%的銨態(tài)氮洗脫;水稻花前處理后,土壤硝態(tài)氮和銨態(tài)氮含量分別降低42.1%~59.3%和35.0%~43.9%,可實(shí)現(xiàn)預(yù)期的土壤減氮效果,短期內(nèi)對(duì)土壤速效氮供應(yīng)能力形成有效抑制?;ㄇ巴寥赖澣睂?dǎo)致甬優(yōu)12上3葉SPAD值和氮濃度以及齊穗后10 d植株莖鞘、葉、穗和單株含氮量顯著降低,且莖鞘、穗和單株含氮量在兩淋洗處理間差異顯著?;ㄇ?4 d淋洗減氮導(dǎo)致中浙優(yōu)1號(hào)上3葉SPAD值和氮濃度以及齊穗后10 d單株和穗部含氮量顯著下降,花前3 d淋洗處理則對(duì)中浙優(yōu)1號(hào)上3葉氮濃度和植株氮積累量幾乎無(wú)影響。水稻對(duì)花前14 d氮虧缺的敏感性顯著高于花前3 d,植株不同葉位葉片的葉色和氮濃度對(duì)土壤氮虧缺敏感度由下而上增強(qiáng),兩時(shí)期土壤氮虧缺對(duì)秈粳雜交稻甬優(yōu)12的影響均遠(yuǎn)大于秈型雜交稻中浙優(yōu)1號(hào),意味著秈型雜交稻中浙優(yōu)1號(hào)花后對(duì)土壤速效氮需求明顯降低,而秈粳雜交稻甬優(yōu)12減數(shù)分裂期后對(duì)土壤速效氮存在更高需求。
水稻;淋洗;速效氮;氮虧缺;減數(shù)分裂期;花后
施氮是目前提高水稻產(chǎn)量最直接、有效的途徑之一。然而,我國(guó)水稻栽培普遍存在氮肥施用量過(guò)高,施用方式不合理、養(yǎng)分損失嚴(yán)重等問(wèn)題[1, 2],氮肥利用率僅為28.3%[3],遠(yuǎn)低于國(guó)際水平,同時(shí)造成嚴(yán)重環(huán)境污染[4-6],直接威脅著人們的健康。優(yōu)化氮肥投入技術(shù),減少氮肥損失,實(shí)現(xiàn)農(nóng)業(yè)節(jié)氮減氮、提高氮肥利用率的同時(shí)做到穩(wěn)產(chǎn)增產(chǎn),是農(nóng)業(yè)生產(chǎn)和環(huán)境和諧共存、可持續(xù)發(fā)展的必然趨勢(shì)。
目前學(xué)者主要通過(guò)調(diào)整氮肥總量[7]、分期調(diào)控[8]、同位素示蹤[9]、水肥一體化技術(shù)、測(cè)土配方施肥、新型肥料施用[10, 11]、選育氮高效品種[12]、增密減氮[13, 14]等方法,研究水稻生長(zhǎng)生理、產(chǎn)量形成和氮素積累、轉(zhuǎn)運(yùn)、再利用的關(guān)系,以及氮效率提高的可能途徑。一般認(rèn)為,水稻籽粒中氮素主要來(lái)源于花前植株積累的氮素轉(zhuǎn)運(yùn)以及花后植株對(duì)土壤氮素的吸收[15, 16],其中,花前積累氮素轉(zhuǎn)移量可占到籽??偟?0%以上[17],而隨著秈粳雜交稻研究的興起,其灌漿期和葉片超長(zhǎng)保綠期與花后土壤氮的吸收、再轉(zhuǎn)運(yùn)特征的關(guān)系成為重點(diǎn)。研究表明,拔節(jié)至抽穗期是水稻吸氮高峰期[18, 19],穗分化期特別是減數(shù)分裂期至始穗期對(duì)氮素非常敏感[20],此時(shí)供氮或虧氮,會(huì)對(duì)穎花退化、功能葉片生理、源庫(kù)器官非結(jié)構(gòu)性碳水化合物(nonstructural carbohydrate, NSC)積累[21],甚至植株生育進(jìn)程產(chǎn)生重要影響。
土壤氮素淋溶流失源于地表徑流的向下滲漏和土壤水的向下移動(dòng),是稻田可用氮的主要損失方式。有研究者通過(guò)土壤滲漏池[22]、排水采集器[23]、土柱淋溶[24]等方式來(lái)研究肥料養(yǎng)分淋溶損失,而通過(guò)土壤滲漏淋洗的方式主動(dòng)降低土壤中速效氮含量,快速抑制土壤供氮能力,以此來(lái)分析土壤氮虧缺對(duì)水稻花后氮素積累、轉(zhuǎn)運(yùn)影響的研究尚未見(jiàn)報(bào)道。本研究擬探索一種簡(jiǎn)易、有效的土壤速效氮淋洗方法,并分別于花前14 d和3 d進(jìn)行淋洗處理,探討水稻花前不同時(shí)期土壤氮虧缺對(duì)秈型雜交稻和秈粳型雜交稻主功能葉及植株花后氮積累的影響,以期為闡明水稻花后氮素積累及轉(zhuǎn)運(yùn)特征,并為大田生產(chǎn)減氮技術(shù)應(yīng)用提供研究基礎(chǔ)。
1.1.1 盆栽淋洗結(jié)構(gòu)
盆栽土壤淋洗結(jié)構(gòu)從下到上依次為浮石、排水板(PVC材質(zhì))、無(wú)紡布(40 g/m2)、沙土混合基質(zhì)/過(guò)篩干土,高度如圖1所示。栽培盆內(nèi)徑為25.5 cm× 20.0 cm×26.5 cm(長(zhǎng)×寬×高),均裝入過(guò)篩干土或沙土混合基質(zhì)(10±0.2) kg,土表距盆口約4 cm。栽培盆側(cè)下方開(kāi)有排水孔1個(gè),并用橡膠塞堵塞。盆底部放置若干浮石,上置裁剪好的帶孔排水板。排水板表面墊2層無(wú)紡布,防止淋洗過(guò)程中土壤隨水淋失堵塞排水孔。沙土混合基質(zhì)為過(guò)篩干土與粗沙按4∶1(質(zhì)量比)混勻。
1.1.2 試驗(yàn)Ⅰ
于2015年在中國(guó)水稻研究所富陽(yáng)試驗(yàn)基地進(jìn)行,用以比較不同淋洗結(jié)構(gòu)的減氮效果,包括淋洗結(jié)構(gòu)+過(guò)篩干土(T1)、盆裝沙土混合基質(zhì)(T2)、淋洗結(jié)構(gòu)+沙土混合基質(zhì)(T3)共3個(gè)處理,各處理5盆。土壤理化性質(zhì)如下:pH值 5.40,有機(jī)質(zhì)41.29 g/kg,全氮0.17%,堿解氮66.60 mg/kg,有效磷59.89 mg/kg,速效鉀49.73 mg/kg。
模擬水稻盆栽方法,澆水浸泡3周后,打碎上層土塊,分別施入尿素2.2 g,繼續(xù)浸泡3 d,開(kāi)始淋洗處理。淋洗前一天,將栽培盆置于周轉(zhuǎn)箱內(nèi)(內(nèi)徑長(zhǎng)×寬×高:25 cm×18 cm×8 cm),并澆水1 L,確保土壤水飽和,第二天下午拔掉橡膠塞,開(kāi)始第一次淋洗。12 h后收集周轉(zhuǎn)箱內(nèi)淋洗溶液,各盆加橡膠塞并澆水1 L,12 h后開(kāi)始第二次淋洗,共淋洗4次。淋洗過(guò)程中花盆略微傾斜放置,便于淋洗液盡快排出。所有栽培盆置于遮雨棚下,淋洗均于夜間進(jìn)行,減少日間高溫引起的淋洗液蒸發(fā)和氨揮發(fā)的損耗。
圖中數(shù)字為淋洗結(jié)構(gòu)各組成高度(cm)。
Fig. 1. Nitrogen leaching structure in potted soil.
表1參試品種主要生育期以及生育階段天數(shù)
Table 1. Development stage and growth period of the tested varieties.
1.1.3 試驗(yàn)Ⅱ
分別于2015和2016年在中國(guó)水稻研究所富陽(yáng)試驗(yàn)基地進(jìn)行,用以比較水稻不同時(shí)期土壤速效氮淋洗效果。兩年試驗(yàn)均采用淋洗結(jié)構(gòu)+沙土混合基質(zhì)(T3)模式,所有植株掛牌主莖確定發(fā)育進(jìn)程。2015年于植株開(kāi)花前3 d(3 d before anthesis, 3DBA),主莖抽穗前3 d)選擇發(fā)育進(jìn)程一致的植株進(jìn)行淋洗處理,以不淋洗植株作為對(duì)照(CK),共2個(gè)處理。2016年分別于植株花前14 d(14 d before anthesis, 14DBA,劍葉抽出1/2)和花前3 d(3DBA)選擇發(fā)育進(jìn)程一致的植株進(jìn)行淋洗處理,以不淋洗植株作為對(duì)照(CK),共3個(gè)處理。淋洗方法同試驗(yàn)Ⅰ,共淋洗3次,各處理均20盆。
兩年試驗(yàn)材料均選用秈粳型雜交稻代表品種甬優(yōu)12和秈型雜交稻代表品種中浙優(yōu)1號(hào)。2015年盆栽土壤理化性質(zhì)同試驗(yàn)Ⅰ,2016年pH 5.80,有機(jī)質(zhì)42.57 g/kg,全氮0.19%,堿解氮73.54 mg/kg,有效磷54.30 mg/kg,速效鉀44.22 mg/kg。采用162穴大缽盤育秧,水稻機(jī)插專用育秧基質(zhì)育秧,催芽種2粒/穴,移栽秧齡21~22 d,葉齡5.1~5.5,1穴/盆。全生育期施尿素3 g/盆,按基肥∶分蘗肥∶穗肥為4∶3∶3施用。基肥于移栽前1 d施入,分蘗肥于移栽后7 d施入,穗肥于倒3~4葉施入。過(guò)磷酸鈣(含P2O512%)3 g,隨基肥一次性施入;氯化鉀(含K2O 40%)2 g,按基肥和穗肥等量施入。主要生育期情況見(jiàn)表1。
1.2.1 淋洗液及土壤速效氮測(cè)定
試驗(yàn)Ⅰ用于不同淋洗方法的速效氮損失比較。分別于淋洗前及每次淋洗后,取上層10 cm混合土樣50 g/盆,測(cè)定鮮土速效氮(硝態(tài)氮、銨態(tài)氮)含量(FOSS流動(dòng)注射分析儀)及土壤含水量,為避免土壤含水量差異,均折算為干土硝態(tài)氮、銨態(tài)氮含量(mg/kg)。共5次土樣,分別標(biāo)記為S0、S1、S2、S3、S4。每次淋洗后快速收集淋洗液,記錄體積,過(guò)濾后測(cè)定水樣中硝態(tài)氮、銨態(tài)氮含量,并折算為單位質(zhì)量土壤硝態(tài)氮、銨態(tài)氮淋洗量(mg/kg)。共4次淋洗液,分別標(biāo)記為W1、W2、W3、W4。土樣及水樣均為5次重復(fù)。
試驗(yàn)Ⅱ用于水稻花前不同時(shí)期速效氮損失比較。2016年于3次淋洗結(jié)束后,取對(duì)照和淋洗處理土樣測(cè)定硝態(tài)氮、銨態(tài)氮含量(mg/kg)。同時(shí)收集3次淋洗液,標(biāo)記為W1、W2、W3,測(cè)定水樣中硝態(tài)氮、銨態(tài)氮含量(mg/kg)。土樣及水樣均為5次重復(fù)。
1.2.2 植株上3葉SPAD和氮濃度測(cè)定
試驗(yàn)Ⅱ兩年試驗(yàn)均于淋洗處理結(jié)束后,測(cè)定主莖上3葉SPAD值(SPAD502,日本),各處理均10次重復(fù)。2016年在測(cè)定SPAD的同時(shí)取葉烘干,磨成細(xì)粉,消煮測(cè)定上3葉氮濃度(%,F(xiàn)OSS全自動(dòng)定氮儀),各處理均為5次重復(fù)。
1.2.3 植株各部位氮積累量測(cè)定
試驗(yàn)Ⅱ兩年試驗(yàn)均取齊穗后10 d植株樣品,分莖鞘、葉片、穗三部分,殺青、烘干、稱重、磨粉后消煮測(cè)定氮濃度(%),并計(jì)算各部位氮積累量(mg)。各處理均為5次重復(fù)。
數(shù)據(jù)統(tǒng)計(jì)分析采用Microsoft Excel 2016和SPSS 23.0軟件結(jié)合進(jìn)行;采用Duncan新復(fù)極差法進(jìn)行差異顯著性檢驗(yàn);利用Origin 8.5軟件制作圖片。
表2 不同淋洗方法對(duì)淋洗液中速效氮積累量的影響
W1、W2、W3、W4和Sum分別代表淋洗第1次、第2次、第3次、第4次及淋洗總積累量;表中數(shù)據(jù)為平均值±標(biāo)準(zhǔn)誤;=5;不同小寫字母代表淋洗液中速效氮總積累量在各淋洗處理間差異達(dá)顯著水平。
W1, W2, W3, W4, and Sum indicate the first time, the second time, the third time, and the fourth time of leaching, and total accumulation amount, respectively; All data are mean±;=5; Different lowercase letters indicate statistical significance (<0.05) ofavailable nitrogen accumulation in leacheate among different leaching treatments.
土壤中90%以上的氮素以有機(jī)形態(tài)存在,只有經(jīng)過(guò)礦化轉(zhuǎn)變成無(wú)機(jī)態(tài)的銨態(tài)氮和硝態(tài)氮,才可被作物吸收利用[25]。試驗(yàn)Ⅰ和Ⅱ均為短期淋洗處理,且土壤總氮濃度在淋洗前后均差異較小(數(shù)據(jù)略),因此以銨態(tài)氮和硝態(tài)氮檢測(cè)為主。
由表2可知,通過(guò)淋洗結(jié)構(gòu)+過(guò)篩干土(T1)、盆裝沙土混合基質(zhì)(T2)、淋洗結(jié)構(gòu)+沙土混合基質(zhì)(T3)3種淋洗方法對(duì)盆栽土壤進(jìn)行4次淋洗后,淋洗液銨態(tài)氮和硝態(tài)氮總積累量均表現(xiàn)為T3>T1>T2,處理間差異均達(dá)顯著水平。T3處理淋洗液中硝態(tài)氮積累量分別比T1、T2處理高29.7%和42.9%,銨態(tài)氮積累量分別高14.7%和26.0%,且淋洗1次后,T3處理硝態(tài)氮和銨態(tài)氮淋洗量累積百分比分別達(dá)到75.2%和77.8%,淋洗3次后可分別達(dá)91.7%和95.2%。
由圖2可知,盆栽土壤經(jīng)4次淋洗后,T3處理中土壤硝態(tài)氮?dú)埩袅績(jī)H為5.6 mg/kg,淋洗前后土壤硝態(tài)氮降低幅度達(dá)87.8%,T1和T2處理土壤硝態(tài)氮?dú)埩袅糠謩e達(dá)12.6和11.4 mg/kg,兩者降幅均遠(yuǎn)低于T3。土壤銨態(tài)氮淋洗趨勢(shì)與硝態(tài)氮相近,但其淋洗量明顯低于硝態(tài)氮,3個(gè)處理淋洗前后降幅分別為52.7%、49.0%和67.5%。T3處理淋洗1次后,土壤硝態(tài)氮和銨態(tài)氮?dú)埩袅枯^淋洗前分別下降79.5%和61.6%,淋洗3次分別降至85.6%和67.1%,繼續(xù)淋洗對(duì)土壤速效氮?dú)埩袅繋谉o(wú)影響。
S0、S1、S2、S3和S4分別代表淋洗前、淋洗第1次、第2次、第3次、第4次土壤速效氮含量。圖中數(shù)據(jù)為平均值±標(biāo)準(zhǔn)誤;n=5。
Fig. 2.Effects of different leaching methods on available nitrogen residues in soil.
W1、W2和W3分別代表淋洗第1次、第2次、第3次。ZZY1-中浙優(yōu)1號(hào);YY12-甬優(yōu)12。14DBA-花前14d;3DBA-花前3d。不同小寫字母代表處理間差異達(dá)顯著水平(<0.05,=5)。下同。
W1, W2, and W3indicate the first time, the second time, and the third time of leaching, respectively. ZZY1, Zhongzheyou 1; YY12, Yongyou 12. 14DBA, Fourteen days before anthesis; 3DBA, Three days before anthesis. Different lowercase letters indicate statistical significance (<0.05) among different leaching treatments. (=5). The same as below.
圖3水稻花前不同時(shí)期淋洗對(duì)淋洗液中速效氮積累量的影響
Fig. 3.Effects of leaching before anthesis on available nitrogen accumulation in leacheate.
**表示土壤速效氮?dú)埩袅吭趯?duì)照和淋洗處理間差異達(dá)顯著水平(<0.01)。圖中數(shù)據(jù)為平均值±標(biāo)準(zhǔn)誤;=5。
**,Available nitrogen residues in soil significantly difference at<0.01 level between CK and leaching treatment. All data are mean±;=5.
圖4水稻花前不同時(shí)期淋洗對(duì)土壤速效氮?dú)埩袅康挠绊?/p>
Fig. 4.Effects of leaching before anthesis on available nitrogen residues in soil.
以上結(jié)果表明,采用淋洗結(jié)構(gòu)+沙土混合基質(zhì)的淋洗法,淋洗液中速效氮素積累量最高,土壤速效氮?dú)埩袅孔畹?,淋洗減氮效果最佳,且淋洗3次即可將土壤中85.6%的硝態(tài)氮和67.1%的銨態(tài)氮洗脫。
2016年采用淋洗結(jié)構(gòu)+沙土混合基質(zhì)的淋洗減氮方法,分別于植株花前14 d (14DBA)和花前3 d (3DBA)進(jìn)行3次淋洗處理。由圖3可知,淋洗液硝態(tài)氮和銨態(tài)氮損失積累量均表現(xiàn)為14DBA>3DBA,甬優(yōu)12>中浙優(yōu)1號(hào),且品種間及處理間差異均達(dá)顯著水平。
由圖4可知,與對(duì)照相比,水稻花前14 d和花前3 d經(jīng)淋洗處理,中浙優(yōu)1號(hào)土壤硝態(tài)氮含量分別下降59.3%和42.1%,甬優(yōu)12同比分別降低53.6%和43.1%,中浙優(yōu)1號(hào)土壤銨態(tài)氮含量分別下降43.5%和35.0%,甬優(yōu)12則分別下降43.9%和40.9%,淋洗前后土壤速效氮含量差異均達(dá)顯著水平。
總體上,淋洗結(jié)構(gòu)+沙土混合基質(zhì)的淋洗減氮方法可將水稻栽植土壤速效氮有效淋洗,減氮效果顯著。淋洗速效氮形態(tài)以硝態(tài)氮為主,其淋洗量可達(dá)銨態(tài)氮淋洗量的2.1~2.7倍。水稻花前14 d與花前3 d相比,植株氮積累量較少,因此前者土壤速效氮淋洗效果顯著高于后者,其硝態(tài)氮淋洗量為后者的1.5~1.6倍,銨態(tài)氮淋洗量則為1.2~1.4倍。
由圖5~7可見(jiàn),通過(guò)淋洗結(jié)構(gòu)+沙土混合基質(zhì)進(jìn)行土壤淋洗減氮,可對(duì)水稻形成短期虧氮,兩品種上3葉SPAD和氮濃度均大幅下降。2016年試驗(yàn)中,花前14 d淋洗處理導(dǎo)致兩品種上3葉SPAD值降幅分別達(dá)16.0%~16.7%,9.9%~11.2%和8.3%~8.9%,與對(duì)照差異均達(dá)顯著水平(<0.01)。
兩年試驗(yàn)中,花前3 d淋洗減氮導(dǎo)致兩品種劍葉SPAD值下降8.3%~9.8%,倒2葉降幅5.1%~7.5%,甬優(yōu)12倒3葉SPAD值降低5.6%~6.2%,均與對(duì)照差異顯著,中浙優(yōu)1號(hào)倒3葉較對(duì)照則無(wú)顯著差異。處理間比較發(fā)現(xiàn),土壤氮虧缺條件下,水稻兩處理時(shí)期上3葉SPAD降幅排序均為劍葉>倒2葉>倒3葉,且土壤供氮不足對(duì)甬優(yōu)12葉片SPAD的影響明顯大于中浙優(yōu)1號(hào)。
上3葉氮濃度變化趨勢(shì)與SPAD值相似,但對(duì)淋洗減氮造成的短期虧氮更為敏感。與對(duì)照相比,花前14 d減氮處理導(dǎo)致中浙優(yōu)1號(hào)葉片氮濃度顯著下降,各葉位降幅為13.2%~19.5%,花前3 d處理中中浙優(yōu)1號(hào)各葉位氮濃度僅下降5.2%~7.1%,與對(duì)照差異未達(dá)顯著水平。兩處理均導(dǎo)致甬優(yōu)12葉片氮濃度顯著下降,降幅分別達(dá)18.2%~23.3% (14DBA)和11.3%~15.8%(3DBA)。
總體上,各葉位氮濃度降幅排序?yàn)閯θ~>倒2葉>倒3葉,品種間則為甬優(yōu)12>中浙優(yōu)1號(hào)。水稻花前14 d劍葉僅抽出一半,倒2葉和倒3葉氮積累時(shí)間亦比花前3 d少11 d,同時(shí)土壤速效氮淋洗效果顯著高于花前3 d處理,因此植株上3葉SPAD和氮濃度對(duì)淋洗處理的響應(yīng)遠(yuǎn)大于花前3 d處理。
對(duì)齊穗后10 d植株各部位含氮量(圖8)進(jìn)行比較后發(fā)現(xiàn),水稻花前不同時(shí)期淋洗處理對(duì)植株各部位氮素分配比例幾無(wú)影響,但品種間、處理間的單株及各部位含氮量存在明顯差異?;ㄇ?4 d減氮處理后,中浙優(yōu)1號(hào)單株和穗部含氮量顯著下降,花前3 d淋洗處理則導(dǎo)致中浙優(yōu)1號(hào)單株含氮量分別下降3.8%~4.8%,植株各部位分別下降2.3%~7.9%(莖鞘),0.0%~2.2%(葉片)和6.0%~6.3%(穗部),與對(duì)照差異均未達(dá)顯著水平。與對(duì)照相比,甬優(yōu)12兩時(shí)期處理含氮量分別下降11.1%~14.9%(單株),12.0%~17.5%(莖鞘),11.7%~13.9%(葉片),8.1%~13.1%(穗部),均與對(duì)照差異顯著。
*和**表示葉片SPAD在對(duì)照和淋洗處理間差異分別在0.05和0.01水平上達(dá)顯著水平。圖中數(shù)據(jù)為平均值±標(biāo)準(zhǔn)誤;n=10。下同。
Fig. 5.Effects of leaching before anthesis on SPAD value of three leaves from the top in 2016.
圖6 2015年花前3 d淋洗處理對(duì)植株上3葉SPAD值的影響
Fig. 6.Effects of leaching three days before anthesis on SPAD value of three leaves from the top in 2015.
圖中數(shù)據(jù)為平均值±標(biāo)準(zhǔn)誤;n=5。
Fig. 7. Effects of leaching before anthesis on nitrogen concentration of three leaves from the top in 2016.
處理間比較發(fā)現(xiàn),花前14 d土壤氮淋失對(duì)單株和植株各部位含氮量的影響明顯大于花前3 d處理,特別是甬優(yōu)12莖鞘、穗部和單株含氮量均顯著低于花前3 d處理,而中浙優(yōu)1號(hào)在兩處理間差異未達(dá)顯著水平。
不同小寫字母代表同一部位含氮量在各淋洗處理間差異達(dá)顯著水平(P<0.05)。不同大寫字母代表單株含氮量在各淋洗處理間差異達(dá)顯著水平(P<0.05)。圖中數(shù)據(jù)為平均值±標(biāo)準(zhǔn)誤;n=5。
Fig. 8.Effects of leaching before anthesis on nitrogen content in different parts of plant.
氮肥在現(xiàn)代水稻高產(chǎn)栽培中占有重要地位,而如何在保證水稻優(yōu)質(zhì)、穩(wěn)產(chǎn)或增產(chǎn)的前提下,減少氮肥用量,提高肥料利用率,減輕環(huán)境污染,是近年來(lái)的研究熱點(diǎn)[11, 26]。硝態(tài)氮或銨態(tài)氮是水稻可直接吸收的兩種氮形態(tài),由于栽培土壤類型、生態(tài)環(huán)境、耕作制度、稻田管理措施等因素影響,稻田土淋失氮形態(tài)是以硝態(tài)氮還是以銨態(tài)氮為主仍存在爭(zhēng)議[22- 23, 27-30]。本研究希望能通過(guò)適宜方法快速降低土壤硝態(tài)氮和銨態(tài)氮含量,主動(dòng)抑制土壤供氮能力,為水稻氮營(yíng)養(yǎng)研究提供思路和手段。結(jié)果表明,本研究設(shè)計(jì)的淋洗結(jié)構(gòu)+沙土混合基質(zhì)(T3)對(duì)土壤中速效氮淋溶效果顯著,淋洗3次即可將土壤中85.6%的硝態(tài)氮和67.1%的銨態(tài)氮洗脫。淋洗結(jié)構(gòu)+栽培土(T1)處理的單位質(zhì)量土壤含氮量明顯高于沙土混合基質(zhì),但純?cè)耘嗤翆?duì)速效氮的固定作用明顯高于沙土混合基質(zhì),導(dǎo)致淋洗效果顯著低于T3。采用T3方法在水稻花前14 d進(jìn)行淋洗處理后,土壤硝態(tài)氮和銨態(tài)氮含量分別下降53.6%~59.3%和43.5%~43.9%,花前3 d處理中硝態(tài)氮和銨態(tài)氮降幅分別為42.1%~43.1%和35.0%~40.9%,可實(shí)現(xiàn)預(yù)期的速效氮淋洗效果,短期內(nèi)對(duì)土壤供氮能力產(chǎn)生快速、有效抑制。同時(shí)因銨態(tài)氮遷移半徑較小,其淋洗效果明顯低于硝態(tài)氮。
氮素在葉片中再移動(dòng)能力最強(qiáng),且不同葉位間自下而上轉(zhuǎn)運(yùn),并總是優(yōu)先供應(yīng)新生葉片[31, 32],缺氮時(shí)下位葉的氮含量明顯低于上位葉[33],因此不同葉位SPAD值及葉位間葉色差值可作為氮素營(yíng)養(yǎng)快速診斷手段[34-36]。但在本研究中,不同葉位葉色和含氮量對(duì)土壤短期氮虧缺敏感度為劍葉>倒2葉>倒3葉,原因在于前人研究采用氮饑餓(無(wú)氮肥處理)均為長(zhǎng)期虧氮脅迫,下部葉片的含氮物質(zhì)分解并持續(xù)向頂部轉(zhuǎn)運(yùn)[37],而短期虧氮?jiǎng)t出現(xiàn)氮素向上轉(zhuǎn)運(yùn)滯后現(xiàn)象,其氮代謝生理差異還需進(jìn)一步研究。同時(shí),花前不同時(shí)期土壤氮虧缺亦存在明顯差異。特別是花前14 d即減數(shù)分裂期正值劍葉展開(kāi)階段,速效氮淋失導(dǎo)致劍葉氮濃度降幅達(dá)19.5%~23.3%,SPAD值下降16.0%~16.7%,倒2葉和倒3葉亦顯著下降。而破口期劍葉已完全展開(kāi),植株生長(zhǎng)中心轉(zhuǎn)移至穗部,葉片由氮庫(kù)開(kāi)始向氮源轉(zhuǎn)化,此時(shí)上3葉對(duì)土壤氮虧缺的敏感度降低,葉片SPAD值和氮濃度下降幅度遠(yuǎn)低于減數(shù)分裂期處理,同時(shí)由于此時(shí)期土壤速效氮淋失效果低于減數(shù)分裂期,導(dǎo)致齊穗后植株含氮量亦明顯高于減數(shù)分裂期。
此外,本研究發(fā)現(xiàn),不同類型水稻葉片氮營(yíng)養(yǎng)和植株氮積累對(duì)花前不同時(shí)期土壤氮虧缺的響應(yīng)存在明顯差異。與對(duì)照相比,秈型雜交稻中浙優(yōu)1號(hào)上3葉氮濃度和齊穗后10 d單株含氮量因花前14 d土壤速效氮淋失而顯著下降,花前3 d淋洗則幾無(wú)影響,意味著中浙優(yōu)1號(hào)花后對(duì)土壤氮需求明顯降低。與之相比,花前14 d和花前3 d淋洗處理均導(dǎo)致秈粳雜交稻甬優(yōu)12上3葉氮濃度顯著下降,齊穗后10 d單株含氮量降低10.3%~14.9%,莖鞘、葉片、穗部氮積累亦均與對(duì)照差異顯著。韋還和等[38]研究表明,與常規(guī)粳稻和雜交秈稻相比,秈粳雜交稻花后氮素積累量最高,而本研究中甬優(yōu)12淋洗前土壤含氮量高,主功能葉和植株含氮量對(duì)氮虧缺敏感度高,表明秈粳雜交稻甬優(yōu)12花前14 d之前對(duì)土壤速效氮需求相對(duì)較低,而此后植株氮素積累對(duì)土壤速效氮供給量有更高的需求。土壤氮虧缺對(duì)不同類型水稻花后碳、氮代謝生理生化及結(jié)實(shí)率、產(chǎn)量、品質(zhì)的影響將在其他論文中進(jìn)一步討論。
通過(guò)本研究設(shè)計(jì)的淋洗結(jié)構(gòu)+沙土混合基質(zhì)方法進(jìn)行3次淋洗,即可洗脫土壤中42.1%~59.3%的硝態(tài)氮和35.0%~43.9%的銨態(tài)氮,可實(shí)現(xiàn)預(yù)期的土壤減氮效果,短期內(nèi)對(duì)土壤供氮能力形成有效抑制。水稻花前14 d氮虧缺敏感度顯著高于花前3 d,且水稻不同葉位葉片的葉色和氮濃度對(duì)虧氮敏感度由下而上增強(qiáng)。秈型雜交稻中浙優(yōu)1號(hào)花后對(duì)土壤速效氮需求明顯降低;秈粳雜交稻甬優(yōu)12主功能葉和植株含氮量對(duì)花前短期虧氮的響應(yīng)顯著高于秈型雜交稻中浙優(yōu)1號(hào),意味著減數(shù)分裂期后對(duì)土壤速效氮存在更高需求。
[1] Peng S B, Buresh R J, Huang J L, Yang J C, Zou, Y B, Zhong X H, Wang, G H, Zhang F S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China., 2006, 96(1): 37-47.
[2] Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands., 2010, 327(5968): 1008-1010.
[3] 張福鎖, 王激清, 張衛(wèi)峰, 崔振嶺, 馬文奇, 陳新平, 江榮風(fēng). 中國(guó)主要糧食作物肥料利用率現(xiàn)狀與提高途徑. 土壤學(xué)報(bào), 2008, 45(5): 915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement., 2008, 45(5): 915-924. (in Chinese with English abstract)
[4] 曹仁林, 賈曉葵. 我國(guó)集約化農(nóng)業(yè)中氮污染問(wèn)題及防治對(duì)策. 土壤肥料, 2001(3): 3-6.
Cao R L, Jia, X K. The problems and control countermeasures of nitrogen pollution in agriculture of China., 2001(3): 3-6. (in Chinese with English abstract)
[5] Vitousek P M, Naylor R, Crews T, David M B, Drinkwater L E, Holland E, Johns, P J, Katzenberger J, Martinelli L A, Matson P A, Nziguheba G, Ojima D, Palm C A, Robertson G P, Sanchez P A, Townsend A R, Zhang F S. Nutrient imbalances in agricultural development., 2009, 324(5934): 1519-1520.
[6] Gilbert N. The disappearing nutrient., 2009, 461(7265): 716-718.
[7] Qiao J, Yang L Z, Yan T M, Xue F, Zhao D. Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu Lake area., 2012, 146(1): 103-112.
[8] Chen Y T, Peng J, Wang J, F P H, Hou Y, Zhang C D, Fahad S, Peng S B, Cui K H, Nie L X, Huang J L. Crop management based on multi-split topdressing enhances grain yield and nitrogen use efficiency in irrigated rice in China., 2015, 184: 50-57.
[9] 晏娟, 沈其榮, 尹斌, 萬(wàn)新軍. 應(yīng)用15N示蹤技術(shù)研究水稻對(duì)氮肥的吸收和分配. 核農(nóng)學(xué)報(bào), 2009, 23(3): 487-491, 496.
YAN J, SHEN Q R, YIN B, WAN X J. Fertilizer-N uptake and distribution in rice plants using 15N tracer technique., 2009, 23(3): 487-491, 496. (in Chinese with English abstract)
[10] Deng F, Wang L, Ren W J, Mei X F. Enhancing nitrogen utilization and soil nitrogen balance in paddy fields by optimizing nitrogen management and using polyaspartic acid urea., 2014, 169: 30-38.
[11] Deng F, Wang L, Ren W J, Mei X F, Li S X. Optimized nitrogen managements and polyaspartic acid urea improved dry matter production and yield of indica hybrid rice., 2015, 145: 1-9.
[12] Li M, Zhang H C, Yang X, Ge M J, Ma Q, Wei H Y, Dai Q G, Huo Z Y, Xu K, Luo D Q. Accumulation and utilization of nitrogen, phosphorus and potassium of irrigated rice cultivars with high productivities and high N use efficiencies., 2014, 161: 55-63.
[13] 杜加銀, 茹美, 倪吾鐘. 減氮控磷穩(wěn)鉀施肥對(duì)水稻產(chǎn)量及養(yǎng)分積累的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2013, 19(3): 523-533.
Du J Y, Ru M, Ni W Z. Effects of fertilization with reducing nitrogen, controlling phosphorus and stabilizing potassium on rice yield and nutrient accumulation., 2013, 19(3): 523-533. (in Chinese with English abstract)
[14] 朱相成, 張振平, 張俊, 等. 增密減氮對(duì)東北水稻產(chǎn)量、氮肥利用效率及溫室效應(yīng)的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2016(2): 453-461.
Zhu X C, Zhang Z P, Zhang J, Deng A X, Zhang W J. Effects of increased planting density with reduced nitrogen fertilizer application on rice yield, N use efficiency and greenhouse gas emission in Northeast China., 2016(2): 453-461. (in Chinese with English abstract)
[15] Jiang L G, Dai T B, Jiang D, Cao W X, Gan X Q, Wei S Q. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars., 2004, 88(2): 239-250.
[16] Jiang L G, Dong D F, Gan X Q, Wei S Q. Photosynthetic efficiency and nitrogen distribution under different nitrogen management and relationship with physiological N-use efficiency in three rice genotypes., 2005, 271(1): 321-328.
[17] 米國(guó)華, 陳范駿, 張福鎖. 作物養(yǎng)分高效的生理基礎(chǔ)與遺傳改良. 北京:中國(guó)農(nóng)業(yè)大學(xué)出版社, 2012.
Mi G H, Chen, F J, Zhang, F S. Physiological basis and genetic improvement of nutrient use efficiency in crops. Beijing: China Agricultural Press, 2012.
[18] 俞巧鋼, 葉靜, 楊梢娜, 符建榮, 馬軍偉, 孫萬(wàn)春姜麗娜, 王強(qiáng), 汪建妹. 不同施氮量對(duì)單季稻養(yǎng)分吸收及氨揮發(fā)損失的影響. 中國(guó)水稻科學(xué), 2012, 26(4): 487-494.
Yu Q G, J Y, Yang S N, Fu J R, Ma J W, Sun W C, Jiang L N, Wang Q, Wang J M. Effects of different introgen application levels on rice nutrient uptake and ammonium volatilization., 2012, 26(4): 487-494. (in Chinese with English abstract)
[19] 王秀芹, 張洪程, 黃銀忠, 戴其根, 霍中洋, 許軻, 邵世志, 徐巡軍. 施氮量對(duì)不同類型水稻品種吸氮特性及氮肥利用率的影響. 上海交通大學(xué)學(xué)報(bào): 農(nóng)業(yè)科學(xué)版, 2003, 21(4): 325-330.
Wang X Q, Zhang H C, Huang Y Z, Dai Q G, Huo Z Y, Xu K, Shao S Z, Xu X J. Effects of N-application rate on the characters of uptake nitrogen and nitrogen recovery of different rice varieties., 2003, 21(4): 325-330.
[20] 陳玉泉, 王延頤, 孫玲, 劉羽. 水稻群體葉色的光譜診斷及其在高產(chǎn)栽培中的應(yīng)用基礎(chǔ). 江蘇農(nóng)業(yè)學(xué)報(bào), 1995(2): 6-10.
Chen Y Q, Wang Y Y, Sun L, Liu Y. Spectral diagnosis of rice canopy leaf colors and its possible application in high yielding cultivation., 1995(2): 6-10. (in Chinese with English abstract)
[21] 李剛?cè)A, 王惠芝, 王紹華, 王強(qiáng)盛, 鄭永美, 丁艷鋒. 穗肥對(duì)水稻穗分化期碳氮代謝及穎花數(shù)的影響. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2010, 33(1): 1-5.
Li G H, Wang H Z, Wang S H, Wang Q S, Zheng Y M, Ding Y F. Effect of nitrogen applied at rice panicle initiaton stage on carbon and nitrogen metabolism and spikelets per panicle., 2010, 33(1): 1-5. (in Chinese with English abstract)
[22] 紀(jì)雄輝, 鄭圣先, 石麗紅, 廖育林. 洞庭湖區(qū)不同稻田土壤及施肥對(duì)養(yǎng)分淋溶損失的影響. 土壤學(xué)報(bào), 2008(4): 663-671.
Ji X H, Zheng S X, Shi L H, Liu Y L. Effect of fertilization on nutrient leaching loss from different paddy soils in Dongting lake area., 2008, 7(4): 663-671.(in Chinese with English abstract)
[23] 連綱, 王德建, 林靜慧, 閻德智. 太湖地區(qū)稻田土壤養(yǎng)分淋洗特征. 應(yīng)用生態(tài)學(xué)報(bào), 2003, 14(11): 1879-1883.
Lian G, Wang D J, Lin J H, Yan D Z. Characteristics of nutrient leaching from paddy field in Taihu Lake area., 2003, 14(11): 1879-1883. (in Chinese with English abstract)
[24] 高茹, 李裕元, 楊蕊, 魏紅安, 聶敏, 張滿意, 吳金水. 亞熱帶主要耕作土壤硝態(tài)氮淋失特征試驗(yàn)研究. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2012, 18(4): 839-852.
Gao R, Li Y Y, Yang R, Wei H A, Nie M, Zhang M Y, Wu J S. Study on nitrate leaching characteristics in arable soils in subtropical region., 2012, 18(4): 839-852. (in Chinese with English abstract)
[25] 張玉玲, 陳溫福, 虞娜, 張玉龍, 鄒洪濤, 黨秀麗. 北方地區(qū)濱海鹽漬土型稻田土壤供氮能力的研究. 土壤通報(bào), 2011(5): 1143-1147.
Zhang Y L, Chen W F, Yu N, Zhang Y L, Zou H T, Dang X L. Studies on nitrogen supplying capacity of paddy soil of coastal saline soil in the North area., 2011(5): 1143-1147. (in Chinese with English abstract)
[26] Ataulkarim S T, Yao X, Liu X J, Cao W X, Zhu Y. Development of critical nitrogen dilution curve of Japonica rice in Yangtze River Reaches., 2013, 149(149): 149-158.
[27] 羅良國(guó), 聞大中, 沈善敏. 北方稻田生態(tài)系統(tǒng)養(yǎng)分滲漏規(guī)律研究. 中國(guó)農(nóng)業(yè)科學(xué), 2000, 33(2): 68-74.
Luo L G, Wen D Z, Shen S M. Study on the percolating regularity of nutrient in rice field ecosystem of Northern China., 2000, 33(2): 68-74. (in Chinese with English abstract)
[28] 吳建富, 張美良, 劉經(jīng)榮, 王海輝. 不同肥料結(jié)構(gòu)對(duì)紅壤稻田氮素遷移的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2001, 7(4): 368-373.
Effect of different structure of fertilizer on the migration of nitrogen in red rice soil., 2001, 7(4): 368-373. (in Chinese with English abstract)
[29] 王少平, 俞立中, 許世遠(yuǎn), 程聲通. 上海青紫泥土壤氮素淋溶及其對(duì)水環(huán)境影響研究. 長(zhǎng)江流域資源與環(huán)境, 2002, 11(6): 554-558.
Wang S P, Yu L Z, Xu S Y, Chen S T. Nitrogen leaching in the purple clay and analysis on its influence on water environmental quality in Shanghai., 2002, 11(6): 554-558. (in Chinese with English abstract)
[30] Chowdary V M, Rao N H, Sarma P B S. A coupled soil water and nitrogen balance model for flooded rice fields in India., 2004, 103(3): 425-441.
[31] Mae T, Ohira K. The Remobilization of nitrogen related to leaf growth and senescence in rice plants (L.)., 1981, 22(6): 1067-1074.
[32] Mae T, Makino A, Ohira K. Changes in the amounts of ribulose bisphosphate carboxylase synthesized and degraded during the life span of rice leaf (L.).1983, 24(6): 1079-1086.
[33] Wang S H, Zhu Y, Jiang H D, Cao W X. Positional differences in nitrogen and sugar concentrations of upper leaves relate to plant N status in rice under different N rates., 2006, 96: 224-234.
[34] 李剛?cè)A, 丁艷鋒, 薛利紅, 王紹華. 利用葉綠素計(jì)(SPAD-502)診斷水稻氮素營(yíng)養(yǎng)和推薦追肥的研究進(jìn)展. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2005, 11(3): 412-416.
Li G H, Ding Y F, Xue L H, Wang S H. Research progress on diagnosis of nitrogen nutrition and fertilization recommendation for rice by use chlorophyll meter., 2005, 11(3): 412-416. (in Chinese with English abstract)
[35] Peng S, Garcia F V, Laza R C, Sanico A L, Visperas R M, Cassman K G. Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice., 1996, 47(2-3): 243-252.
[36] 姜繼萍, 楊京平, 楊正超, 鄒俊良, 戈長(zhǎng)水. 不同氮素水平下水稻葉片及相鄰葉位SPAD值變化特征. 浙江大學(xué)學(xué)報(bào): 農(nóng)業(yè)與生命科學(xué)版, 2012, 38(2): 166-174.
Jiang J P, Yang J P, Yang Z C, Zou J L, Ge C S. Dynamic characteristics of SPAD value of rice leaf and adjacent leaf under different N application rates., 2012, 38(2): 166-174. (in Chinese with English abstract)
[37] 趙全志, 陳靜蕊, 劉輝, 喬江方, 高桐梅, 楊海霞, 王繼紅. 水稻氮素同化關(guān)鍵酶活性與葉色變化的關(guān)系. 中國(guó)農(nóng)業(yè)科學(xué), 2008, 41(9): 2607-2616.
Zhao Q Z, Chen J R, Liu H, Qiao J F, Gao T M, Yang H X, Wang J S. Relationship between activities of nitrogen assimilation enzymes and leaf color of rice., 2008, 41(9): 2607-2616. (in Chinese with English abstract)
[38] 韋還和, 孟天瑤, 李超, 張洪程, 史天宇, 馬榮榮, 王曉燕, 楊筠文, 戴其根, 霍中洋, 許軻, 魏海燕, 郭保衛(wèi). 秈粳交超級(jí)稻甬優(yōu)538花后氮素積累模型與特征分析. 作物學(xué)報(bào), 2016, 42(4): 540-550.
Wei H H, Meng T Y, Li C, Zhang H C, Shi T Y, Ma R R, Wang X Y, Yang J W, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Dynamic model and its characteristics analysis for nitrogen accumulationafter heading in Yongyou 538., 2016, 42(4): 540-550. (in Chinese with English abstract)
Leaching Method of Available Nitrogen in Rice Potted Soil and Effect Analysis of Short-term Nitrogen Deficiency
WU Hui#, XIANG Jing#, CHEN Huizhe, ZHANG Yuping, ZHANG Yikai, JI Guangmei, WANG Yaliang, SHI Hongzhi, ZHANG Wenqian, ZHU Defeng*
(,,;; Corresponding author,:.)
This study aims to explore a simple and effective leaching method of available nitrogen in potted soil, and to reveal the effects of soil nitrogen deficiency at different periods before anthesis on nitrogen accumulation in main functional leaves and post-anthesis plant of different types rice, which would clarify the characteristics of nitrogen accumulation and translocation after anthesis, and lay the research foundation for reducing nitrogen fertilizer application.In this study, the effects of three leaching methods on available nitrogen reduction in potted soils were compared. Meanwhile, the effects of short-term nitrogen deficiency 14 d and 3 d before anthesis on SPAD value, nitrogen concentration of top-three leaves and plant nitrogen content after anthesis were discussed usinghybirid rice Yongyou 12(YY12), andhybrid rice variety Zhongzheyou 1(ZZY1).The results showed that 85.6% nitrate nitrogen and 67.1% ammonium nitrogen in soil could be eluted by leaching structure + sandy /soil mixed matrix(T3) with 3 times of leaching. Under the two leaching treatments, the contents of nitrate and ammonium nitrogen in potted soil decreased by 42.1%-59.3% and 35.0%-43.9%, respectively. This could achieve the expected effect of reducing soil nitrogen to inhibit effectively the soil available nitrogen supply capacity in the short term. Affected by soil nitrogen deficiency before anthesis, SPAD value and nitrogen concentration of top-three leaves, stem-sheath, leaves, panicle and plant nitrogen content at the 10th day after heading of YY12 were decreased significantly. At the same time, there was a remarkable difference of stem-sheath, panicle and plant nitrogen content between the two leaching treatments. SPAD value and nitrogen concentration of top-three leaves, panicle and plant nitrogen content at the 10th day after heading of ZZY1 were also decreased dramatically under the leaching treatment 14 d before anthesis. However, the leaching treatment 3 d before anthesis had little effect on nitrogen concentration of top-three leaves and plant nitrogen content.In conclusion, the sensitivity of rice to nitrogen deficiency 14 d before anthesis(meiosis stage) was greatly higher than that 3 d before anthesis. The sensitivity of leaf color and nitrogen concentration of leaves at different leaf positions to soil nitrogen deficiency were enhanced from bottom to top. The influence of soil nitrogen deficiency at the two leaching periods on YY12 was greater than that of ZZY1, which means that the lower demand for soil available nitrogen ofhybrid rice ZZY1 after anthesis, and the higher demand ofhybirid rice YY12 after the meiosis period.
rice; leaching; available nitrogen; nitrogen deficiency; meiosis stage; post-anthesis
10.16819/j.1001-7216.2018.7069
S143.1; S511.06
A
1001-7216(2018)01-0078-11
2017-06-09;
2017-07-06。
國(guó)家重點(diǎn)研發(fā)計(jì)劃資助項(xiàng)目(2016YFD0300502,2016YFD0200801);國(guó)家自然科學(xué)基金資助項(xiàng)目(31501272);2015年浙江省三農(nóng)六方項(xiàng)目;現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(ARS-01-22)。